
Computer Science Journal of Moldova, vol.18, no.3(54), 2010

Matrix balancing and robust Monte Carlo

algorithm for evaluating dominant eigenpair

Behrouz Fathi Vajargah Farshid Mehrdoust

Abstract

Matrix balancing may effect the stability of algorithms in ma-
trix computations and the accuracy of computed solutions. In
this paper, we first introduce an algorithm for matrix balancing.
Then, using Monte Carlo method we propose a robust algorithm
to evaluate dominant eigenpair of a given matrix. Finally, several
randomly generated examples are presented to show the efficiency
of the new method.

Keywords: Monte Carlo algorithms; Robust Monte Carlo
algorithm; Markov chain; Balancing; Eigenpair; Large scale ma-
trices

1 Introduction

The need to compute dominant eigenpair of matrices arises frequently
in scientific and engineering applications with the solution being useful
either by itself or as an intermediate step in solving a larger problem.
There are many different algorithms presently used to obtain eigenpair
of a matrix, among them are the Householder method, the QR method
and subspace iteration [6, 7]. Many of these algorithms are inefficient
when applied to very large structural systems. Krylov subspace Lanc-
zos method is widely appreciated by the numerical analysis community
[6, 7]. The problem of using Monte Carlo and quasi Monte Carlo meth-
ods for finding an eigenpair has been extensively studied, for example
[2-7]. In this paper, we study the Monte Carlo approach to obtain the
dominant eigenpair of matrices with an emphasis on preconditioning

c©2010 by B. Fathi Vajargah, F. Mehrdoust

355

B. Fathi Vajargah, F. Mehrdoust

implementation of the corresponding algorithm which is called matrix
balancing. We employ a special balancing procedure as a preprocessing
step before running the Monte Carlo procedure. Such a balancing pro-
cedure ensures robustness of the Monte Carlo algorithm and therefore
relatively small values for the stochastic error.

Let A be an n×n real matrix whose eigenvalues we seek. The pair
(λ, x) is called an eigenpair of A if

Ax = λx, x 6= 0. (1)

In equation (1) the scaler λ and the vector x are called an eigenvalue
and eigenvector, respectively. Throughout the paper we suppose that
the matrix A ∈ Rn×n is diagonalizable with eigenvalues

λmax = |λ1| > |λ2| ≥ . . . ≥ |λk|.
Note that this implies λ1 is real, otherwise λ1(conjugate of λ1) is

another eigenvalue with the same magnitude as λ1 [7].

2 Monte Carlo approach for computing (λ, x)

Consider the following Markov chain with length i

Ti : k0 → k1 → · · · → ki (2)

where kj ∈ {1, 2, ..., n} for j = 1, 2, ..., i.
The following choice of pα and pα,β, for constructing T ,

is, is considered:

p(k0 = α) = pα, p(kj = β|kj−1 = α) = pαβ, (3)

where pα and pαβ show the probability of starting chain at α and
transition probability from state α to β, respectively. We further should
have that

n∑

α=1

pα = 1 (4)

356

Matrix balancing and robust Monte Carlo algorithm . . .

and
n∑

β=1

pαβ = 1 (5)

for each α = 1, 2, ..., n. Probabilities pαβ define the transition matrix
P .

Let matrix A ∈ Rn×n and two vectors f, h ∈ Rn are given. Further
suppose that the distributions created from the density probabilities
pα and pαβ are acceptable according to the following definition [2]

pα > 0 when hα 6= 0, pα ≥ 0 when hα = 0 (6)

and

pαβ > 0 when aαβ 6= 0, pαβ ≥ 0 when aαβ = 0. (7)

We define the random variable Wj using the following recursive
equation

Wj = Wj−1

akj−1kj

pkj−1kj

, j = 1, 2, ..., i, (8)

where W0 = hk0
pk0

. Then we may apply the following probability struc-
tures

pα=
|hα|∑n

β=1 |hβ|

pαβ=
|aαβ |∑n

β=1 |aαβ | α, β = 1, 2, ..., n. (9)

Thus, from (8) and (9) we have

Wi=
n∑

β=1

|hβ|
n∑

β=1

|ak0β|
n∑

β=1

|ak1β|...
n∑

β=1

|aki−1β|
i∏

j=1

akj−1kj

|akj−1kj |
hk0

|hk0 |

=
n∑

β=1

|hβ|
i−1∏

j=0

n∑

β=1

|akjβ|sign{hk0

i∏

j=1

akj−1kj}. (10)

357

B. Fathi Vajargah, F. Mehrdoust

Now, let us define the random variable Γ(i) as

Γ(i) = Wifki =
n∑

β=1

|hβ|
i−1∏

j=0

n∑

β=1

|akjβ|sign{hk0

i∏

j=1

akj−1kj}fki , (11)

where Γ(i) will be employed for evaluating < h, Aif >, which is used for
estimating λmax. We follow the above discussions in the next theorem.

Theorem 1. Under assumptions 2 to 9, the random variable Γ(i) is
an unbiased estimator for < h,Aif > i.e.,

E[Γ(i)] =< h, Aif > . (12)

Proof. We have

E[Γ(i)] = E[
hk0

pk0

ak0k1 ...aki−1ki

pk0k1 ...pki−1ki

fki]

=
n∑

k0,...,ki=1

hk0

pk0

ak0k1 ...aki−1ki

pk0k1 ...pki−1ki

fkipk0pk0k1 ...pki−1ki

=
n∑

k0=1

hk0

n∑

k1=1

ak0k1 ...
n∑

ki−1=1

aki−2ki−1

n∑

ki=1

aki−1kifki

=
n∑

k0=1

hk0

n∑

k1=1

ak0k1 ...
n∑

ki−1=1

aki−2ki−1(Af)ki−1

=
n∑

k0=1

hk0(A
if)k0 =< h, Aif > . ¥

Now, let us simulate N random paths as Ti defined in (2), (3) and
suppose Γ(i)

s is the sth realization of random variable Γ(i)
s i.e.,

Γ(i)
s =

n∑

β=1

|hβ|{
i−1∏

j=0

n∑

β=1

|akjβ|sign(
i∏

j=1

akj−1kjfki)}s, s = 1, ..., N.

Then the value

Γ̄(i) =
1
N

N∑

s=1

Γ(i)
s , i ≥ 1 (13)

358

Matrix balancing and robust Monte Carlo algorithm . . .

is considered as a Monte Carlo approximation of < h, Aif >.
Based on the power method [7], Monte Carlo method for evaluating

the dominant eigenvalue as i →∞, is

λmax ≈ Γ(i)
s

Γ(i−1)
s

. (14)

Let the goal is to find the eigenvector x that corresponds to the
eigenvalue λ, then we set h = e(j) = (0, ..., 0, 1, 0, ..., 0), where e(j) is
the jth unit vector in Rn, i.e. (e(j))α = δjα. It follows that

< h, x >=
n∑

α=1

(e(j))αxα

and the jth component of eigenvector x using Monte Carlo method is

xj ≈ 1
N

N∑

s=1

{Γ(i)[e(j)]}s. (15)

Theorem 2. The stochastic error for calculating the dominant eigen-
value of a given matrix A ∈ Rn×n, based on the Monte Carlo algorithm
is minimized if for each i and for some L > 0, we have

∑n
j=1 |aij | = L,

i.e. the absolute rowsums of A be a constant number.

Proof. Consider the following random variable

Θl(f) =
l∑

i=0

Wifki , (16)

where f ∈ Rn is an arbitrary vector and Wi is the variable, defined in
(8). It is easy to see that

V ar[Θl(f)] =
l∑

i=0

V ar[Wifki] + 2
∑

i

∑

j>i

Cov(WifkiWjfkj)

≤
l∑

i=0

V ar[Wifki
] + 2

∑

i

∑

j>i

σ(Wifki
)σ(Wjfkj

).

359

B. Fathi Vajargah, F. Mehrdoust

Therefore, it is sufficient to minimize V ar[Wifki].
We further have

E[(Wifki)
2] =

n∑

k0k1···ki=1

h2
k0

pk0

a2
k0k1

· · · a2
ki−1ki

pk0k1 · · · pki−1ki

f2
ki

=
i−1∏

k=0

n∑

j=1

|akj |
n∑

k0k1···ki=1

|hk0 ||ak0k1 | . . . |aki−1ki
|f2

ki

=
i−1∏

k=0

n∑

j=1

|akj |
n∑

k0=1

|hk0 |(|A|i, f2
ki

)k0

=
i−1∏

k=0

n∑

j=1

|akj |(|h|, |A|if2).

Now, since f and h are arbitrary vectors, without loss of generality
assume that f = (1, · · · , 1)T , h = (1

n , · · · , 1
n). Now, we suppose that

A = |A| = (|ai,j |)i,j=1,...,n, thus from the previous equality it follows

i−1∏

k=0

n∑

j=1

|akj | = (h, Aif),

hence we easily conclude that V ar[Wifki] vanishes when
∑n

j=1 |akj | is
equal to a constant value L, for k = 1, 2, . . . , n. ¥

The above theorem shows that to reduce the Monte Carlo error it
is important to deal with balanced matrices. In the next section, we
introduce matrix balancing procedure based on the condition given in
Theorem 2.

3 Balancing matrices

Balancing is a preprocessing step, which may produce positive effects
on the accuracy and performance of numerical methods for computing
eigenvalues. A matrix A ∈ Rn×n with a norm that is several orders

360

Matrix balancing and robust Monte Carlo algorithm . . .

of magnitude larger than the modules of its eigenvalues typically has
eigenvalues that are sensitive to perturbations in the entries of A. One
of the main methods is Sinkhorn-Knopp algorithm [1]. There are other
algorithms for balancing that can converge faster than the Sinkhorn-
Knopp algorithm, for example, Parlett and Landis [6]. In this paper,
we have used a Krylov-based balancing algorithm proposed in [1].

Definition 1. An n× n matrix A with nonnegative entries is said
to be balanced if for each i = 1, ..., n, the sum of the entries of its ith

row is equal to the sum of the entries of its ith column. In other words,

Ae = ATe, (17)

where e is the n-vector of all ones.
More generally, an n×n matrix with arbitrary real entries is said to be
balanced in lp−norm if for each i = 1, ..., n its ith row and column have
the same lp − norm. Our employed balancing algorithm is as follows:

Algorithm 1. (Balancing algorithm)

1. Input A ∈ Rn×n, t (number of iterations)
2. for s=1 : t
2.1 Set vector zn×1 of random numbers 1,−1s
2.2 Compute p = Az
2.3 for i = 1 : n
2.4 if (p(i) = 0) then
2.4.1 Set D(i) = 1
2.4.2 else D(i) = 1

p(i)
2.4.3 end for
2.5 Set A = D ∗A ∗D−1

2.6 end for
3. end of algorithm 1

Now, we present the robust Monte Carlo algorithm based on the
balanced matrix. In this algorithm, we use partitioned random number
generator for generating Markov chains (random trajectories). In fact,
we may divide the interval (0, 1) to r subintervals with equal length 1

r ,

361

B. Fathi Vajargah, F. Mehrdoust

where r is a natural number greater than 1. We use it in rand function
of MATLAB software for generating random numbers with more uni-
formity. We note that in the following algorithm each row of the N × i
matrix ZZ is a Markov chain with the length i. According to Theorem
2, we further consider the vector h = (1

n , . . . , 1
n)T .

Algorithm 2. (Robust Monte Carlo algorithm)

1. Input the matrix An×n, the number of Markov chains N
and the length of Markov chains i

2. Call algorithm 1 for balancing matrix A
3. Generate transition probability matrix P = (pij)i,j=1,...,n

according to the equation (9)
4. Generate an N × i random matrix ZZ
5. Set D1=0; D2=0
6. for s = 1 : N
7. Set z = ZZ(s, :) I sth row of the matrix ZZ
8. Set v = A(z(i− 1), :)
9. if A(z(i− 1), z(i)) 6= 0 then
10. Set D1 = D1 + sign(A(z(i− 1), z(i))) ∗ norm1(v) ∗ 1

n
11. Set D2 = D2 + h(z(i− 1))
12. End if
13. End for
14. Approximation of dominant eigenvalue is D1/D2
15. End algorithm 2

4 Computational results

In the following tables we compare the precision of the computed dom-
inant eigenpair without balancing and after applying balancing algo-
rithm. All test problems were run in MATLAB software on a PC with
Intel(R) 1.83 GHz Dual CPU processor. Moreover, the Monte Carlo
relative error was computed by the following formula

MC relative error =
|MC result− exact result|

|exact result| .

362

Matrix balancing and robust Monte Carlo algorithm . . .

First, let us consider the following test matrix

A =




0.6716 0.2417 0.2461 0.4788 0.1615
0.7003 0.1290 0.3725 0.3583 0.9478
0.9097 0.3089 0.9758 0.8556 0.5761
0.2902 0.5112 0.0766 0.6052 0.1597
0.7199 0.3323 0.2303 0.7844 0.8600




.

Basing on the Theorem 2, the rowsums vector for matrix A before
balancing is

rowsums = (1.7997, 2.5079, 3.6261, 1.6429, 2.9269)T ,

and after balancing is

rowsums = (2.3035, 2.0470, 2.4542, 2.1937, 2.5738)T ,

where the balanced matrix is

A =




0.6716 0.4076 0.5187 0.4671 0.2385
0.4153 0.1290 0.4655 0.2073 0.8299
0.4316 0.2472 0.9758 0.3960 0.4036
0.2975 0.8837 0.1655 0.6052 0.2418
0.4875 0.3795 0.3287 0.5182 0.8600




.

As we see, the rowsums after applying balancing algorithm are more
centralized. In Table 2, we have compared the precision of the com-
puted eigenvalues without balancing and after applying balancing al-
gorithm for several randomly generated matrices.

Table 1. MC relative error for calculating dominant eigenpair (λ̂, v̂)

Number of tra-
jectories

λ̂, v̂ (without bal.) Time (s) λ̂, v̂ (with bal.) Time (s)

100 0.0797, 0.2504 0.03 0.0069, 0.1637 0.05
1000 0.0727, 0.1340 0.14 0.0041, 0.0571 0.16

363

B. Fathi Vajargah, F. Mehrdoust

Table 2. MC relative error in computing the dominant eigenvalue for
several randomly generated matrices

Dimension MC method

λ̂1 (with bal.) λ̂1 (without bal.)

100 4.1289× 10−4 0.1600× 10−2

200 5.4924× 10−5 3.0526× 10−4

400 1.7083× 10−4 0.1100× 10−2

800 2.9271× 10−5 0.1900× 10−2

1600 1.3916× 10−5 3.4172× 10−4

3200 5.1900× 10−6 3.7581× 10−4

5 Concluding remarks

In this paper, we have proposed a new algorithm for obtaining dom-
inant eigenpair of desired matrices. By this algorithm, we are able
to reduce the stochastic error in Monte Carlo method. The numeri-
cal experiments have shown that the Algorithm 1 not only makes the
matrix more balanced, but also balances the sum of absolute values in
the rows which is desirable according to the Theorem 2. The proposed
algorithm has been implemented for large scale matrices in computing
dominant eigenvalue and we can conclude that the balancing of the
input matrix is very important for improving the accuracy of Monte
Carlo algorithm (Figure 1 and Figure 2).

References

[1] Chen T. Y. and Demmel J. W., Balancing sparse matrices
for computing eigenvalues, Linear algebra and its applications,
309(2000)261-287.

[2] Dimov I.T. and Alexandrov V.N., A new highly convergent Monte
Carlo method for matrix computations. Mathematics and Com-
puters in Simulation, 47(1998)165-181.

364

Matrix balancing and robust Monte Carlo algorithm . . .

Figure 1. Comparison of relative error between Monte Carlo and robust
Monte Carlo methods for various matrices

Figure 2. Comparison of relative error between Monte Carlo and robust
Monte Carlo methods for various Markov chains

365

B. Fathi Vajargah, F. Mehrdoust

[3] Fathi Vajargah B. and Mehrdoust F., New Monte Carlo algorithm
for obtaining three dominant eigenvalues, IJAM, 22(2009)553-559.

[4] Fathi Vajargah B. and Mehrdoust F., New hybrid Monte Carlo
methods and computing the dominant generalized eigenvalue, In-
ternational journal of computer mathematics, Taylor & Francic,
2009.

[5] Hammersley J. M. and Handscomb D. C., Monte Carlo Methods.
Methuen, London, (1964).

[6] Kressner D., Numerical Methods for General and Structured
Eigenvalue Problems, Springer-Verlag Berlin Heidelberg, (2005).

[7] Meyer K. D., Matrix analysis and applied linear algebra, SIAM,
(2000).

Behrouz Fathi Vajargah, Farshid Mehrdoust Received June 17, 2010
Revised January 31, 2011

Faculty of Mathematical Sciences,
University of Guilan,
Rasht, P.O. Box: 1914, Iran
E–mail: fathi@guilan.ac.ir,

fmehrdoust@guilan.ac.ir

366

