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Performance evaluation of clustering techniques

for image segmentation
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Abstract

In this paper, we tackle the performance evaluation of two
clustering algorithms: EFC and AIC-based. Both algorithms
face the cluster validation problem, in which they need to es-
timate the number of components. While EFC algorithm is a
direct method, the AIC-based is a verificative one. For a fair
quantitative evaluation, comparisons are conducted on numeri-
cal data and image histograms data are used. We also propose
to use artificial data satisfying the overlapping rate between ad-
jacent components. The artificial data is modeled as a mixture
of univariate normal densities as they are able to approximate a
wide class of continuous densities.

Keywords: Performance evaluation, probability density
function, clustering algorithm, unsupervised learning, univariate
normal mixtures, gray-level histogram.

1 Introduction

Cluster analysis appeared ever since the works in [1, 2]. It began to
attract a great deal of attention with the publication of Sokal and
Sneath’s revolutionary book on numerical taxonomy [3] and the de-
velopment of high speed computers. More than a hundred different
schemes of cluster analysis have been proposed [4-9] which makes it
difficult for users to choose the right clustering algorithm for their
application. Some authors have partially addressed this problem by
evaluating and comparing several clustering techniques [5, 9-13].
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For numerical comparison, the common model used to generate
test data is the mixture model. Several schemes for generating artifi-
cial mixtures of test data have been proposed [9, 14-16]. The task of
cluster analysis is cast as the classification of a mixture of populations
into its components provided that the number of populations and their
parameters are unknown. The contribution of mixture models is not
limited to test data generation. They are now used in the design of
clustering algorithms. This is due to the ability of mixture models,
and particularly mixture of normal densities, to approximate a wide
class of continuous probability densities. Parameters estimation in a
mixture model is accomplished using the Expectation Maximization
algorithm (EM) [17], which maximizes the likelihood function of the
observed data.

Mixture models face the difficult problem of determining the num-
ber of components in the mixture. This is known as the cluster verifi-
cation [18]. Because the mixture components are not always well sepa-
rated, the determination of their number is a difficult task. There are
two categories of clustering algorithms: direct and verificative methods.
Direct methods are those which exploit geometric properties or other
ad hoc principles such as inflexion points in histograms [20, 21]; see also
[12, 22] for other methods. Their performances depend on the applica-
tion. Recently, another direct method has been proposed: elimination
of false clusters (EFC) [23]. Methods which take explicitly account
of the nature of the observed data, perform very well, compared to
verificative methods. They are generally simple and fast. Verificative
methods on the other hand do not depend on the application. They
are general algorithms such as Akaike’s information criterion (AIC)
[25, 31], the partition coefficient (PC) [26], the ICOMP [27], the mini-
mum description length (MDL) [28] and the minimum message length
(MML) [29]. Many applications, such as image segmentation and image
retrieval [30], require collecting information about the overall distribu-
tion of the pixels in the image. The common approach is to consider the
histogram as a mixture of univariate normal densities and to estimate
the parameters of each component of the mixture. Cluster validation
techniques must be used to estimate the number of components in the
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mixture.
In this paper, we propose to benchmark EFC and AIC-based algo-

rithms. The goal of this comparison is twofold: the evaluation of the
performances of EFC against AIC-based algorithm on the same bench-
marking data since a fair a comparison has never been done before;
and the development of a new method for generating test data from
a mixture of normal densities. The artificial data shows the property
of components separation as they are generated according to compo-
nents overlapping rate. The overlapping rate allows the control of the
degree of overlap between two adjacent components. This results in
mixtures with components sufficiently separated so that the clustering
algorithm has a chance to distinguish between sub-populations. The
paper is organized as follows: standard clustering algorithms and mix-
ture models are reviewed in Section 2. Section 3 deals with comparison
purposes and experimental results. Finally, the discussion is presented
in Section 4.

2 Unsupervised learning and
standard mixtures

Consider that the data can be represented by N random vectors de-
noted by X = x1, x2, · · · , xN , and assume that it arises from a mixture
of M normal densities. The distribution of the data can be approached
by a PDF which takes the following form, for any x ∈ X:

p(x,Γ) =
M∑

j=1

κjfj(x, Θj) (1)

where fj(.) is the jth normal distribution with parameter Θj = (µj , σj)
representing respectively the mean and the standard deviation of the
jth component; κj are the mixing parameters, with the restrictions that
κj > 0 for j = 1, · · · ,M and

∑M
j=1 κj = 1, and Γj = (Θj , κj) totally

describe p(x,Γ). In the following, we use Γ(x,Γj) to describe the jth

component of the mixture. Note that µj and σj are scalar since we are
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dealing with one-dimensional distributions. Such a representation of
X is called a mixture representation [20].

Mixture models have shown better data classification capacities
than many conventional neural network models such as layered net-
works trained with the Back-Propagation algorithm. They have been
used as basic configurations for radial functions in Radial Basis Net-
works (RBF) [32]. Various procedures have been developed for deter-
mining the parameters of a mixture of normal densities, often based on
the maximum likelihood technique, leading to the EM algorithm [17]
and stochastic sequential estimation [33]. The technique used to maxi-
mize the likelihood function relies on the choice of Γ most likely to give
rise to the observed data. For analytical convenience, it is equivalent
to minimize the log-likelihood function, which, for the given X yields:

E = − log{L(X, Γ)} = −
{

N∑

n=1

log(p(xn, Γ))

}
(2)

= −
N∑

n=1

log





M∑

j=1

κjfj(x,Θj)





Here, the log-likelihood function is considered as an error, and
its minimization with respect to Γ leads to an estimate, denoted by
Γ̂ = (Θ̂, κ̂). A review of the maximum-likelihood technique in the con-
text of mixture models is given in [34]. However, due to the structural
complexity of mixture models, most of the maximum likelihood pro-
cedures are numerical and iterative, resulting in only locally optimal
estimates. The accuracy of the final estimate Γ̂ depends heavily on
the initial value of Γ. This is essentially the reason why clustering
algorithms are usually used to produce initial estimates of Γ.

2.1 Cluster analysis and initial estimation of Γ

Clustering algorithms basically perform an unsupervised learning that
groups the input data into different categories, from which the initial
values of means and widths can be calculated. A common algorithm
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widely used in the literature to initialize Γ is the k-means algorithm [35,
36], an effective and popular algorithm developed within the pattern
recognition community. Improved schemes for the k-means algorithm
using fuzzy concepts (fuzzy c-means) are available in the literature [37].
However, clustering algorithms do not provide an estimation of M , the
number of clusters in the data set, but reorganize data into M clus-
ters, with M given by the user. Thus, a key problem, known as cluster
validation [18] concerns estimation of M . Most of the previously pro-
posed solutions to the cluster validation problem can be classified into
two broad categories [12, 19, 38]: direct approaches and verificative
methods. Regarding direct approaches, different methods have been
proposed in the literature. However, each method is generally appli-
cable only to a specific type of application data. In our study, we are
interested in estimating the number of components in gray-level image
histograms. Thus, we developed a direct algorithm, denoted by EFC
(Elimination of False Clusters), to solve the cluster validation problem
[23, 24]. In the next section, we review the basic principle of the EFC.

2.1.1 EFC algorithm

A gray-level image histogram can be represented by a function, h(x),
x ∈ GlN , of the gray-level frequencies of the image, where GlN =
{0, 1, · · · , N − 1} corresponds to the set of gray levels of the image.
When a given image contains objects/regions having quite different
gray-level values, different modes appear in the histogram of the im-
age. This type of histogram is called multi-modal. However, when
objects/regions in the image have close gray-level averages, they may
overlap to give a single mode. Our hypothesis is that each mode corre-
sponds to a normal distribution. This is acceptable in a large number
of practical applications [39]. The EFC algorithm has been developed
especially to estimate the number of modes of such histograms. Figure
1 shows a block diagram of the model, which consists of two major
steps.
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In the first step, initial estimation of the mixture parameters is done
using the k-means algorithm. In order to approximate each mode by
at least one Gaussian, the k-means algorithm is applied with a num-
ber of clusters K greater than M , the number of modes in the image
histogram. The next step mainly concerns the EFC procedure for sup-
pressing false clusters that may result from the k-means algorithm. Ba-
sically, it takes advantage of the Gaussian PDF. Before proceeding with
the elimination, a smoothing operation is performed on the histogram
using a PNN (Probabilistic Neural Network or, equivalently, Parzen
Window) [40]. While this operation is not essential in all cases, it
greatly increases the robustness of our model to noise (especially when
applied to radar images). Finding the optimal smoothing parameter
for the PNN is another interesting problem that we have studied [41].

To choose the best number of clusters to use in the k-means algo-
rithm, we have experimentally studied the accuracy of cluster centers,
denoted by yj , j = 1, · · · ,K estimated by the k-means algorithm, as
the function of K, the number of initial clusters. The experiment in-
volves computing the average distance between any true center and
the closest center estimated over a set of artificial histograms. In other
words, we wanted to get a statistical assessment of the quality of the k-
means algorithm in terms of the (average) precision with which the true
centers of histogram are estimated. For this purpose, an error function
was proposed to measure the quality of the set of clusters computed
by the k-means algorithm. The experiment yielded a very interesting
relationship between the number of initial clusters K, the true number
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of modes M , and the precision of the approximation. From the statis-
tical point of view, the k-means algorithm accurately finds all the true
centers if K is chosen as at least M + 4. This in itself is an important
discovery concerning the k-means algorithm. We further note that the
choices M +2 and M +3 are also good candidates for M . Consequently,
for real images it is not necessary to impose a very strict condition on
the accuracy with which M is estimated.

Since the k-means algorithm is applied with an initial number of
clusters greater than the number of modes, there are false clusters
that must be eliminated. The EFC is used to eliminate them. The
proposed EFC procedure depends on two parameters, β and γ. β is
related to the relative level of the histogram at which the symmetry
is measured, because it specifies the percentage of histogram height
h(yj) for any cluster center yj . In practice, β can be as large as 0.975
and as small as 0.5. The parameter γ is used as a threshold for the
acceptable deviation between the true center and the closest center
for the clusters computed by the k-means algorithm. If the deviation,
written as ||µj − yj ||, is greater than γ, then yj is rejected, where µj ,
j = 1, · · · ,M , are the real centers of modes. In real applications, µj are
unknown. Thanks to the fact that a true center divides a mode into two
symmetric parts, an equivalent test can be performed without knowing
the position of the true center. Reasonable values for γ have been
computed experimentally. We have measured the deviation between
the true center and the closest center found by the k-means algorithm,
for each combination of M and K.

Some performances of the EFC procedure are listed in [23]. The
results are encouraging; nevertheless, they should be compared with
those of other cluster validation methods. For this purpose, in the
next section, we will present the general structure of the second broad
category of algorithms, known as verificative methods.

2.2 Verificative Methods

While some practical problems can be solved by using direct ap-
proaches, they do not provide a general solution. To find generally
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applicable solutions to cluster validation, many researchers have tried
to formulate the problem as a multiple-decision problem [25, 26, 27, 28,
29]. The philosophy of these techniques is quite simple. Instead of ask-
ing which hypothesis is acting (how many classes are really there), we
ask which model, parameterized by K, the number of clusters, best fits
the data. However, as the number of clusters increases, the estimated
PDF fits the empirical density increasingly tightly, at the expense of
its generalization capacity. This problem can be recognized as the bias
and variance trade-off in curve-fitting problems [42]. Thus, one should
always try to find the minimum number of components describing a
PDF, without overfitting the empirical data. In the case of mixture
models, we can generate Kmax models, where Kmax is given by the
user. The choice of the best model thus becomes a model selection
problem, since we find ourselves faced with competing Kmax models.
To choose among them, researchers have developed selection criteria.
The criteria are composed of two parts. The first part concerns the ad-
equacy, usually evaluated using the maximum likelihood. The second
part deals with penalization, which employs an expression that essen-
tially depends on the number of components, K. A general expression
for a criterion C(K), where K = 1, · · · ,Kmax is given by:

C(K) = −aLK + g(K) (3)

where a is a scalar, LK is the logarithm of the likelihood of the model
of order K, and g(.) is an increasing function depending on K. The
best model is the one which minimizes C(K), namely:

K̂ = argminK
C(K) (4)

2.2.1 Implementation

The principle is that for each value of K, K = 1, · · · ,Kmax, Γ is
initialized using the k-means algorithm with K initial clusters. Then,
a maximum-likelihood solution is obtained using the estimated Γ and
the value of K. There are no formal rules for choosing the value of
Kmax. However, several heuristics have been proposed:
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• The number of observations N must be greater than the total
number of parameters [43].

• Suggested choices for Kmax include Kmax =
√

N
2 and Kmax =

(
N

log N

) 1
3 [27].

The general algorithm can be given as follows:

Algorithm 1.
Input: Kmax

Output: K̂
For K = 1, · · · ,Kmax:

Estimate Γ using k-means with K initial clusters.
Compute the maximum likelihood for the estimated Γ.
Compute C(K).
Choose K̂, such that K̂ = argminK

C(K).

2.2.2 Akaike’s information criterion (AIC)

In this paper, we are interested in the AIC. This technique was orig-
inally proposed by Akaike [31]. However, different schemes based on
the AIC have been developed and used in different applications [19,
44,45,46]. In our work, we use the classical AIC proposed by Akaike
and given by:

AIC(K) = −2LK + 2Np (5)

where K is the number of components considered, LK is the logarithm
of the likelihood at the maximum likelihood solution Γ̂, and Np is
the number of parameters estimated. We select K which leads to the
minimum value of AIC(K).

A brief comparison of some criteria for comparing models is pre-
sented in [38]. The AIC figures among these algorithms. The AIC per-
formed better than both the ICOMP and the PC, and quite similarly
to the MDL, but relatively poorly compared to the MML. Neverthe-
less, the AIC is the most popular criterion used in the literature. We
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have chosen the classical AIC method since it does not depend on the
size of the data. This is suitable for image histograms since a normal-
ized histogram represents only the distribution of data, without any
information of its size.

3 Comparison between the EFC
and the AIC

It is unfortunately not possible to use results obtained respectively
from [23] (EFC evaluation) and [38] (AIC evaluation) to compare the
EFC and the AIC, for the simple reason that the test data used in the
two experiments are different. Furthermore, neither method has been
evaluated on an adequately verified data set. In order to perform a
fair comparison, we must apply both algorithms to the same test data,
which we will describe in the present section.

3.1 Comparison based on one vector

We used an artificial histogram composed of 3 modes as illustrated in
Fig.2. To the smoothed histogram we added a Gaussian white noise of
width σn = 3. Both algorithms were applied with Kmax = 7. Figure
3 shows the resulting AIC plotted against the number of clusters K =
1, · · · ,Kmax, computed from (3). The maximum likelihood technique
has been used to estimate Γ̂j , j = 1, · · · ,K. We can see clearly from
Fig. 3 that the minimum AIC is for K = 3, the exact number of
components in the mixture.
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Figure 4 shows the plot of both the original histogram and the
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resulting histogram at the Γ̂3 solution, given by

Γ̂3 = ((36.00, 21.63, 0.26)(141.39, 21.24, 0.25)(168.53, 8.12, 0.49))

The estimation using the AIC is good: although there is a rela-
tive shift in the means for the first two components of the estimated
histogram, the result is still acceptable. For the case of the EFC,
Table 1 summarizes the parameters estimated using the k-means al-
gorithm with Kmax = 7. Table 1 is divided into two parts. The first
multi-column, denoted by “Before EFC” presents the parameters of
each component resulting from applying the k-means algorithm with
Kmax = 7. The second part of Table 1, the multi-column “after EFC
ML”, presents the resulting estimated parameters of each component
after applying the EFC procedure and the maximum-likelihood algo-
rithm respectively. In this part, dashes represent components elimi-
nated by the EFC procedure. The values of both β and γ were set as
in the experiments performed in [23], namely β = 0.97 and γ chosen
from the γ table.
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Table 1. Results for the EFC for the artificial histogram, Kmax = 7
and β = 0.97.

Before EFC After EFC & ML
cluster means width MP means width MP

1 15.33 9.26 0.11 29.5 51.24 0.43
2 44.77 10.08 0.11 – – –
3 76.86 11.16 0.09 – – –
4 112.32 9.51 0.10 – – –
5 136.85 8.72 0.11 131.56 15.84 0.18
6 169.69 6.38 0.45 169.32 6.09 0.39
7 208.14 26.65 0.03 – – –

From Table 1, we can see that the EFC procedure has eliminated
four spurious clusters. Only clusters corresponding to the true com-
ponents of the mixture have been kept. Thus, the EFC also finds the
exact number of components. Classification using the k-means algo-
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rithm, initialized using the values of the remaining cluster means (see
Table 1), permits the redistribution of points belonging to eliminated
clusters. Finally, we apply the maximum-likelihood technique. Figure
5 shows the plot of both the original and the resulting EFC mixtures
for the parameters given in Table 1.

From Figs. 4 and 5, we can see that while both algorithms estimate
the exact number of components, the EFC procedure is more accurate
than the AIC (see MSE in Figs. 4 and 5). This result is in perfect
agreement with the k-means experiment performed in [23]. Indeed, for
the case of the AIC, the parameters used to initialize the likelihood
were obtained using the k-means algorithm. For the AIC [3], the k-
means algorithm was performed with K = 3 initial clusters. This is
the exact number of components of the test histogram. In this case,
the estimated centers of the components are less accurate than those
obtained with a large value of K. This does not help the maximum like-
lihood to result in accurate final estimates. In contrast, for the case of
the EFC, the initialization of each component’s mean is obtained using
the k-means algorithm with K = Kmax = 7 clusters. Therefore, the
centers of the real components are very well estimated. This helps the
maximum-likelihood procedure to converge, which explains why the
parameters estimated using the EFC were clearly more accurate than
those estimated by the AIC. We can also evaluate the two algorithms
in terms of complexity. For example, we need to perform the k-means
algorithm Kmax times, followed by the maximum likelihood to compute
AIC(K), K = 1, · · · ,Kmax. In contrast, the EFC algorithm requires
one k-means run, followed by the maximum likelihood. Thus, the EFC
technique is roughly Kmax times faster than the AIC. Although the
EFC compares favorably to the AIC in the example described above, it
is necessary to examine the effectiveness of the EFC in more general sit-
uations. For this purpose, we need to apply both algorithms to a large
set of test data. In this way, we can obtain a statistical assessment of
the general performance trend. Statistical comparison between algo-
rithms is possible, since mixture models have been used as general test
data for clustering algorithms. Indeed, a number of different schemes
for generating artificial mixtures have been proposed. Blashfield [9]
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and Edelbrock [14] used unconstrained multivariate normal mixtures
with fairly complex covariance structures. Milligan and Issac proved in
[8] that the generation processes used in [9] and [14] lead to data with
overlapping clusters. Other researchers such as Kuiper and Fisher [15],
and Bayne et al. [11] have used multivariate normal clusters with sim-
ple covariance structure and have directly manipulated variables such
as the separation between clusters. In 1985, Milligan and Cooper [12]
examined the ability of about 30 different clustering algorithms to de-
termine the number of clusters in a data set. For this purpose, Milligan
has developed an algorithm for generating test data [16]. The algorithm
is described in nine steps. The main assumption, however, is that the
generated data do not overlap in the first dimensional space. The
verification of this assumption was mainly done using non-automatic
techniques such as visual inspection. All of these generation methods
try to define ad hoc criteria in order to handle overlapping components.
However, there is no formal definition of the concept of overlap. This
raises questions concerning the effectiveness of the generation schemes.
In this paper, we introduce a new algorithm for generating mixtures of
univariate normal densities. First, we give an analytic definition of the
concept of overlap. We have chosen relative component overlap instead
of total component overlap in order to preserve the appearance of each
component in the mixture. This definition allows us to control the
overlapping process, thus offering the possibility of generating a large
number of such mixtures with known degrees of overlap. The genera-
tion of such examples, denoted by non-overlapped vectors, is described
in the next section.

3.2 Generation of non-overlapped vectors

When we want to generate a large set of mixture data, the problem is
how to ensure that modes are not totally overlapped. As an example
of what we mean by overlapped, we generate a three-component mix-
ture, but due to component overlap, the mixture results in only two
components. The example in Fig. 6 illustrates this phenomenon. The
mixture in Fig. 6a is actually composed of three components, despite
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the fact that only two components are visible. The vector in Fig. 6a
is called an overlapped vector; the vector in Fig. 6b on the other hand
is not. Note that the difference between the parameters of Fig. 6.a, b
is the value of the second width σ2. We can perform algorithm com-
parison using overlapped vectors, as in the example of Fig. 6a. Each
algorithm will most likely estimate the same number of components.
The process is indeed still fair. However, such vectors are not valid
for use in evaluating algorithms, due to the degree of component over-
lap. To avoid such situations, it is necessary to control the overlapping
process.

Definition 1. We define the overlapping rate, denoted by OLR, as,

OLR =
min(p(x))(µi ≤ x ≤ µi+1)

min(p(µi), p(µi+1))
. (6)

In the above formulae, p(x) is the mixture function and µi < µi + 1.
Figure 7 illustrates two different overlappings for a mixture of two
Gaussians. OLR → 0 when the Gaussians are almost totally sepa-
rated, since min(p(x)) → 0, (µi ≤ x ≤ µi+1) as in Fig. 7a. OLR → 1
when min(p(x)) → min(p(µi)) as in Fig. 7b. Thus, OLR specifies
the degree of overlap between two adjacent components of a mixture.
Our goal here is to develop an automatic algorithm for generating mix-
ture components that are not completely overlapped; in other words
OLR < 1 should be true for all pairs of adjacent components. Such an
algorithm allows us to generate a large set of non-overlapped vectors.
Furthermore, we could also control the overlapping rate if we want to
perform a refined evaluation of algorithms.
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From (6), a general condition for OLR < 1 can be obtained using
the derivatives of p(x). This idea has been applied to the solution of the
edge-detection problem using the Laplacian of Gaussian edge detector
[47]. Interestingly, there is an astonishing similarity between the case
of overlapping components and the case of a double-step edge. The
edge-detection problem involves the appearance of a false edge located
between the two true edges when they are smoothed with a Gaussian.
In [47], the problem is treated as a mixture of two Gaussians with equal
width σ. It is proven that a false edge appears if and only if 2σ < µd,
where µd is the distance between the means of the two Gaussians.
Viewed from the perspective of our case, the false edge corresponds to
min(p(x)) defined in (6). Thus, we have:
Corollary 1 - If we have a mixture of two Gaussians with the same
width σ, OLR < 1 iff 2σ < µd.

Corollary 1 is a direct consequence of results obtained in [47]. Un-
fortunately, it is not valid for the case where σ1 6= σ2, and the mathe-
matical approach used in [47] cannot be extended to this general case.
As it can be seen in what follows, developing a general condition for
OLR < 1 is much more difficult. The algorithm will be iterative, deal-
ing with two adjacent components at each iteration. When the width
of the first component is fixed, the condition OLR < 1 will depend on
the width of the next component. Here is a sketch of the algorithm:

3.2.1 Algorithm for generating
non-overlapped vectors

Algorithm 2.
Generate M , the number of components in the mixture.
For i = 1, · · · ,M :

Randomly generate µi and κi such that µi < µi+1,
κi > 0, and

∑M
i=1 κi = 1.

Randomly generate σ1 such that σ1 < µ1 − µ2.
For i = 2, · · · ,M :

Compute σi such that OLR < 1.

The number of components M can be set by the user. It is also
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convenient, without loss of generality, to generate M means µi and
sort them so that µi < µi+1. This will facilitate the execution of
the algorithm. However, σ1 should be smaller than µ2−µ1; otherwise,
there will be no solution for σ2 to satisfy the non-overlapping condition.
Thus, the problem is to find an upper bound for σi+1 given σi, in order
to ensure that OLR < 1.

In order to develop a general algorithm, let us consider the overlap
of two adjacent components Γ1(x) and Γ2(x) with Γ1 6= Γ2. Let us
denote by Sσ = κΓ(µ−σ) the height at which the width σ is located for
a given component Γ(x). For the general case of the overlapping process
for two adjacent components Γ1(x) and Γ2(x), we have Sσ1 6= Sσ2 since
the two components do not necessarily have the same height.

Definition 2. We define a notion of apparent width, denoted by σ̂, as
the deviation of the higher component from its center at height Sσl

, for
a pair of adjacent components. Here, Sσl

is the height at which the
width of the lower component is located.

We distinguish two cases: Γ1(µ1) > Γ2(µ2), denoted by case 1, and
Γ1(µ1) < Γ2(µ2), denoted by case 2. Figure 8 illustrates the principle of
apparent width for the two cases. Using Definition 2, a generalization
of Corollary 1 can be stated as a hypothesis:
Hypothesis 1 - If we have a mixture of two Gaussians with different
heights, OLR < 1 iff σ̂h + σl < µd.

σ̂h is the apparent width of the higher component, σl is the width
of the lower component, and µd is the distance between the two means.
It is self-evident that if the components have the same widths and the
same heights, Hypothesis 1 collapses into Corollary 1, since σ̂h = σl =
σ. However, it is very difficult to prove Hypothesis 1. For each of the
above cases, we can compute σ̂h as a function of Γ1 and Γ2. Then,
by introducing the expression of σ̂h in Hypothesis 1, we can solve the
resulting relation in order to obtain the bound on σ2. For the two cases
we have:

{
A

√
ln(Bσ2) + σ2 < µd case 1

Cσ2

√
ln D

σ2
+ σ1 < µd case 2

(7)
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where A, B, C and D are known values. For deduction details, see [48].
By solving (7), we can obtain a condition on the upper bound of σ2 as
a function of the remaining known parameters. However, (7) is non-
linear, which will introduce difficulties for obtaining general solutions.
The non-linearity of (7) arises from the non-linearity of the Gaussian
expression. Thus, it is necessary to simplify (7) by approximating the
Gaussian expression.

3.2.2 Approximation of the Gaussian

Consider a family of lines ∆l = ∆1, ∆2,∆3, · · · , ∆p, where ∆i, i =
1, · · · , p, is a tangent line to the point (xiσ = µ − iσ, p(xiσ)). If we
approximate a Gaussian by the series of lines ∆i, we obtain a piece-
wise linear approximation, denoted by ĝl(x) and given by

{
ĝl(x) = iS

σ e−
1
2
i2

(
x− µ + i2+1

i σ
)

x ∈ [µ− f(i− 1)σ, µ− f(i)σ]
(8)

where

f(i) =
(i2 + 1)e−

i2

2 − ((i + 1)2 + 1)e−
(i+1)2

2

ie−
i2

2 − (i + 1)e−
(i+1)2

2
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Due to the symmetry of the Gaussian, we have developed only
the approximation of the left part. Figure 9 shows the result of this
approximation for p = 3. The approximation error, denoted by Eapp,
is given by:

Eapp(p) =
1√
2π

p∑

i=1

e−
i2

2 × [f(i− 1)− f(i)]
[
f(i)− f(i− 1)

2
− i2 + 1

i

]

(9)
It is proven in [48] that Eapp(p) does not depend on the width σ.

However, Eapp(p) decreases as p increases and is almost constant when
p ≥ 3. Note that this approximation has been developed especially for
this work. With this new approximation of the Gaussian, the compu-
tation of the apparent width σ̂ can be done on the tangent lines ∆i

, i = 1, · · · , p, and we will have (10) as solutions to the condition of
Hypothesis 1:

0 < σ2 ≤ −(2σ1 − µd) +
√

δ

2
(case 1) (10)

where δ is the discriminant of the quadratic form given by

T1(σ2) = σ2
2 + (2σ1 − µd)σ2 − κ2

κ1
σ2

1 and

0 < σ2 ≤
κ2
κ1

2σ1−
√

δ

2 case 2
(11)
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where δ is the discriminant of the quadratic form given by

T2(σ2) = σ2
2 −

κ2

κ1
2σ1σ2 +

κ2

κ1
µdσ1 − κ2σ

2
1.

All deduction details are available in [48]. The conditions in (10)
and (11) express the bound within which σ2 should be picked in order
that the overlap of the two adjacent components satisfies OLR < 1.
In each step i of the algorithm i = 1, · · · ,M − 1, (10) and (11) are
used to generate σi+1. By choosing σi+1 as suggested in (10) and
(11), we ensure control of all the parameters of the vector. For imple-
mentation purposes, especially when we want to generate a large set
of non-overlapped vectors, we define other parameter measures that
are grouped in a characteristic vector, denoted by CVS (Characteristic
Vector of the Set). These measures are:

(a) the number of vectors forming the set;

(b) the maximum number of components in the set;

(c) the minimum number of components in the set;

(d) the minimum distance between the means of components;

(e) the minimum width of Gaussian white noise added to vectors of
the set; and finally,

(f) the maximum width of Gaussian white noise added to vectors of
the set.

The example used here to compare the EFC with the AIC has a
CVS = (1, 3, 3, 12, 3, 3).

3.3 Comparison based on a set of vectors

In this section, we intend to compute a kind of average comparison
between the EFC and the AIC. For this purpose, we will use a set
of non-overlapped vectors. The evaluation proposed here is divided
in two parts. First, we will compute the ability of each algorithm to
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estimate the exact number of components. This type of evaluation is
used in [12, 23, 38]. The results will be presented in tables showing all
statistics. Secondly, we will use the parameters of each component and
reconstruct the PDF in order to compute the measure of adequacy of
the estimated vectors.

Both experiments use three different sets of 1000 vectors each, gen-
erated by the algorithm described in the previous section. The CVSs
of the three sets are given respectively by: (1) CV S1 = (1000, 1, 1,
12, 0, 0), a set containing only vectors of one component, (2) CV S2

=(1000, 2, 2, 12, 0, 0), a set containing only vectors of two components
and (3) CV S3 = (1000, 3, 3, 12, 0, 0), a set containing only vectors
of three components. Moreover, in order to evaluate the robustness of
both algorithms against noise, we have used the same generated sets
and added a Gaussian white noise of width σn = 2 to form new noisy
sets. Both algorithms were applied with Kmax = 7.

The results of the first experiment are presented in Tables 2 and 3
(non-noisy and noisy sets, respectively). Each of these tables is divided
into three parts. Each part, identified by its CVS (row 2), presents the
application of both algorithms to a given set. The first column gives
the different possibilities for the number of components each algorithm
can estimate. The cells of the table report the percentage of cases in
which the two algorithms estimate the number of components given in
column 1. As an example, when the AIC is applied to the non-noisy
set with CV S1, it estimates two components in 42% of cases.

From the results reported in Table 2 (non-noisy sets), the AIC and
EFC performances are quite similar. Nevertheless, as the number of
components of the set increases, the EFC performs relatively better
than the AIC (15% better for the set with CV S3). For the noisy sets
reported in Table 3, we see that the AIC is more robust than the EFC.
Indeed, there are no great differences between the AIC results shown
in Tables 2 and 3. The EFC is less robust since its performances were
degraded by about 12% for all three sets. Note that the smoothing
operation using the PNN was not performed in these experiments, in
order to evaluate the robustness of the EFC against noise.

The second experiment computes the adequacy degree to which the
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Table 2. Comparison between EFC and AIC applied to the noiseless
sets. NCE is the estimated number of clusters.

Noise standard deviation σn = 0
CV S1 CV S2 CV S3

NCE AIC EFC AIC EFC AIC EFC
1 54 56 15 8 0 0
2 42 23 47 52 13 6
3 2 12 21 16 51 66
4 2 5 10 10 28 15
5 0 3 6 12 6 10
6 0 0 1 2 2 2
7 0 0 0 0 0 0

Table 3. Comparison between EFC and AIC applied to noisy samples.

Noise standard deviation σn = 2
CV S1 CV S2 CV S3

cluster AIC EFC AIC EFC AIC EFC
1 54 46 12 5 0 0
2 38 31 45 43 6 3
3 5 15 25 31 49 54
4 2 4 12 11 25 26
5 1 2 2 6 13 10
6 0 1 1 3 5 5
7 0 0 1 1 2 2
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Table 4. Average MSE for each set.

σn = 0 σn = 2
CV S1 CV S2 CV S3 CV S1 CV S2 CV S3

AIC 0.022 0.047 0.248 0.021 0.43 0.0122
EFC 0.008 0.038 0.072 0.019 0.042 0.081

two algorithms fit, measured by the mean square error (MSE). When
an algorithm estimates a given number of components K, the maxi-
mum likelihood estimates for K components are used to reconstruct
the estimated PDF. Thus, a MSE is computed between the original
and the estimated vectors. This experiment is applied to both sets,
noiseless and noisy. Table 4 shows the average MSEs resulting from
the application of the two algorithms to the different sets. We can see
from Table 4 that in all cases, the EFC has better overall adequacy
than the AIC. The average MSE, however, does not provide specific
information regarding the behavior of the adequacy as a function of
the estimated number of components. Such information would help to
perform an objective comparison.

To this end, we compared the adequacy of the two algorithms using
only vectors resulting in the estimation of the same number of compo-
nents. In other words, instead of using, for example, all the vectors of
CV S1 to compute the MSE, we divide them into groups. Each group
contains only vectors resulting in the estimation of the same number
of components. Thus, we will have Kmax groups. We then compute
an average MSE for each group. Note that if a group contains only a
few vectors, the average MSE can be biased. On the other hand, the
average MSE is representative when a group contains a large number
of vectors.

Figure 10 shows the plots of adequacy for EFC, for CV S1 in (a),
CV S2 in (b) and CV S3 in (c). The adequacy behaves similarly for
the two algorithms. Indeed, adequacy for vectors resulting in correct
estimation of the number of components M is relatively good compared
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to those resulting in a close estimation of M . However, the results
totally deteriorate for a significant underestimation of M (see Fig. 10c
with CV S3 for vectors resulting in an estimation of M = 1). Finally,
the adequacy is better when we overestimate M (see Fig. 10a with
CV S1 for vectors resulting in an estimation of M = 6). When no
vector results in an estimation of a given number of components, the
corresponding error is set to MSE = 1, which explains the behavior
of the curves for K = 7. This overall behavior of the adequacy is also
observed for the noisy sets in Fig. 11.

The behavior of clustering algorithms observed above is not unique
to our experiments. Indeed, Windham and Cutler [49] observed it,
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and developed an algorithm, called MIREV in order to use it. They
argued that the best solution may be indicated by an elbow or a knee
in a plot of the values versus the number of components. However,
the occurrence of the elbow or knee may not necessarily mean that a
solution is particularly good, but simply that its neighbors are relatively
bad. Note that the experiments performed by Windham and Cutler
were done using bivariate normal densities of three components each.

4 Conclusion

The EFC and AIC algorithms are two clustering algorithms pertaining
to two different categories: direct and verificative methods. The cate-
gory of verificative methods provides algorithms than can be used for
all types of application data. However, when a prior knowledge about
certain characteristics of the application data is available, direct meth-
ods can be designed in order to exploit this knowledge. In the case of
gray-level image histograms, the EFC clearly outperforms AIC. Indeed,
the effectiveness of the EFC has been shown in this paper in terms of
its ability to estimate the exact number of modes in a histogram and
the adequacy resulting from PDF estimation using the estimated pa-
rameters. It is also straightforward to verify that the EFC is roughly
Kmax times (Kmax = 7 in our experiments) faster than the AIC. Note
that a more extensive comparison can be conducted, including other
clustering algorithms. In this paper, we have conducted a comparison
between the EFC algorithm and the AIC algorithm. The compari-
son was designed to use a novel algorithm for generating mixture test
data with non-overlapped components. This algorithm makes it pos-
sible to perform statistical tests and evaluations, since it can handle a
large number of test data. Moreover, its flexibility allows the design
of more detailed and appropriate statistical tests, such as algorithm’s
robustness in relation to component overlap. This type of test pro-
vides information about algorithm limitations. The formal definition
of component overlap introduced in this paper can be used to design
multivariate mixtures of test data. Indeed, one can keep a Milligan
[16] generation framework, while using our algorithm to satisfy the

297



M. Ouali, E. Aitnouri

non-overlap condition necessary in 1D.
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[47] Tabbone, S., Détection Multi-échelles de Contours Sous-Pixel et
de Jonctions, PhD thesis, Institut National Polytechnique de Lor-
raine, France, 1994.

[48] Aitnouri, E.M., Dubeau, F., Wang, S., and Ziou, D., Generat-
ing Test Vectors for Clustering Algorithms, Research Report 236,
Dept. Math. and Comp. Scien., University of Sherbrooke, Sher-
brooke, September 1999.

[49] Windham, M.P. and Cutler, A., Information Ratios for Validating
Mixture Analyses, American Statistical Association, Theory and
Methods, 1992, vol. 87(420), pp. 1188–1192.

Mohammed Ouali and Elmehdi Aitnouri, Received September 17, 2010

Mohammed Ouali
BAE Systems Canada, R&D Department
7600 Dr. Frederick Phillips Blvd, Montreal, Qc, Canada K2C 3M5
Phone: (514) 789-3000 (ext 443)
E–mail: mohammed.ouali@usherbrooke.ca

Elmehdi Aitnouri
DZScience-Sherbrooke
#1227-2820, Judge-Morin, Sherbrooke, Qc, Canada, J1E 2R6
Phone: (819) 329-4537 ext. 081
E–mail: elmehdi.aitnouri@usherbrooke.ca

302


