
Computer Science Journal of Moldova, vol.18, no.2(53), 2010

Simulator of P-Systems with String Replication

Developed in Framework of P-Lingua 2.1∗

Veaceslav Macari, Galina Magariu, Tatiana Verlan

Abstract

In this paper we present beta version of simulator for P-
systems with string replication rules. This simulator is developed
according to P-Lingua ideology and principles of the P-Lingua
2.1 development environment. Format for presentation of rules
with replications in P-Lingua language is proposed. The already
known solutions by means of P-systems with string replication
for two problems are used to demonstrate the work with the sim-
ulator: the SAT problem and inflections generation problem.

Keywords: P-system, string object, string replication rule,
simulator, P-Lingua

1 Introduction

Membrane computing is a rapidly developing scientific trend. The sci-
entists, working in the domain and those who applies results obtained
in the domain for practical problems solution, need some tools for veri-
fication, demonstration and proof of their theoretical ideas and results.
Taking into consideration fast development of the domain and con-
stant appearance of new types of P-systems, the idea to create the
development environment, which can be extended as new types of P-
systems appear, seems to be successful [1]. Simulators developed in
the framework of P-Lingua 2.1 support several types of P-systems:
transition P-system model, symport/antiport P-system model, active

c©2010 by V. Macari, G. Magariu, T. Verlan
∗The authors acknowledge the support of the Science and Technology Center

in Ukraine, project 4032 “Power and efficiency of natural computing: neural-like P
(membrane) systems”.

246

Simulator of P-Systems with String Replication . . .

membranes P-system model (with membrane division rules and with
membrane creation rules), probabilistic P-system model, stochastic P-
system model. As new models have been included, new simulators have
been developed inside the pLinguaCore library, providing at least one
simulator for each supported model [2]. P-systems working with string
objects using replication rules are not covered by the P-Lingua 2.1 soft,
but considered to be powerful means for solution of some problems in
different domains (e.g. SAT problem, Hamiltonian Path Problem, some
linguistic problems, etc. [3], [4], [5]). So, in this paper we present beta
version of simulator for P-systems with string replication rules. This
simulator is developed according to P-Lingua ideology and principles
of the P-Lingua 2.1 development environment.

2 Model of P-System with String Replication
Rules

The formal definition of membrane P-systems with replications is given
in [6]. A P-system with string objects and input is a construct

Π = (O, Σ, µ,Ml1 , . . . ,Mlp , Rl1 , . . . , Rlp , i0), (1)

where
O – a finite alphabet;
Σ – a sub-alphabet, Σ ⊆ O;
µ – a membrane structure defined as a rooted tree with nodes labeled
1, . . . , p, the interior of each membrane defines a region;
Mli – multiset of strings, initially present in region li, 1 ≤ i ≤ p;
Rli – set of rules of region li, 1 ≤ i ≤ p;
li0 – label of input region, 1 ≤ i0 ≤ p.

A replication rule has the following structure:

a → (u1, t1)||(u2, t2)|| . . . ||(uk, tn), (2)

where
a ∈ O+,

247

V. Macari, G. Magariu, T. Verlan

uj ∈ O∗, 1 ≤ j ≤ n,
tj ∈ {out, here} ∪ {inli | 1 ≤ i ≤ p}, 1 ≤ j ≤ n.

It is the string rewriting rule with string replication and target
indication.

Application of a rule a → (u1, t1)||(u2, t2)|| . . . ||(uk, tn) from the set
of rules Rlk transforms any string of the form w1aw2 from region lk
into n strings w1u1w2, w1u2w2, . . . , w1unw2, where w1, w2 ∈ O∗. The
resulting string w1ujw2 should be sent to the region specified by tj :

- if tj = here, the resulting string remains in the region lk;

- if tj = out, the resulting string is sent out of the region associated
with membrane with label lk to the region immediately outside;

- if tj = inli , the resulting string is sent into the region associated
with membrane with label li, which has to be immediately nested
into the region lk.

(If k = 1 we have the usual string rewriting rule with target indication.)
The initial configuration contains the input string(s) over Σ in re-

gion i0 and the multisets of strings Mi in regions i. The rules of the
system are applied in parallel to all strings in the system. It may occur
that several rules are applicable to a string. But really only one of
them can be applied. The rule which will be applied, is determined in
non-deterministic way. The computation consists in non-deterministic
application of the rules to the strings in regions. If some string can be
involved into the computing process, it has to be involved.

The computation halts when no rules are applicable. The result of
the computation is the set of all words sent out of the outermost region
into environment.

3 P-Lingua Format for P-Systems with String
Replication Rules

Since the P-Systems with String Replication had not been implemented
within the scope of P-Lingua 2.1, the format for replication rules rep-

248

Simulator of P-Systems with String Replication . . .

resentation have been developed by the authors. When developing the
format, the authors tried to keep principles and notations accepted
in the domain and in the framework of P-Lingua 2.1. The authors
acknowledge A.Alhazov for fruitful discussions on the question. The
developed format is described below.

3.1 Special Symbols

There is a set of symbols of keyboard and reserved words in P-Lingua
2.1, which are used for specific aim when a P-system is described in P-
Lingua format [2] (e.g. @mu, def , call, #). We use the special symbols
predefined in P-Lingua with the same purpose as it was designed by the
developers of P-Lingua. But, for the P-system with string replication
there was a need to introduce some additional symbols and additional
functionality for the existing ones.

Thus, the following notations are admitted:

• symbol ”’ ” is used now to present not only the label of membrane,
but the target membrane as well;

• symbol ”‖” is introduced as the sign for operation of replication;

• the new reserved word ”here” shows, that the resulting string will
remain in the current region;

• the new reserved word ”out” shows, that the resulting string will
be sent out of the current region into the immediately encom-
passing region.

3.2 Rules with Replication

P-systems with replications operate with strings. To represent a string
one has to use a sequence of alphabet symbols which are tied by
sign of concatenation and are bracketed in < and >. For example,
< c.A{1, 2}.Beta > is the string from three alphabet symbols c, A1,2,
Beta. To write the empty string, we use < # >.

249

V. Macari, G. Magariu, T. Verlan

3.2.1 Membrane to Which a Rule Belongs and Target Mem-
brane

To indicate membrane to which a rule belongs, we write symbol ”’ ”
and membrane label in the left part of the rule after the string. For
example, if a rule belongs to membrane with label 1, we write:

<a.b.c>’1 -->

To indicate the target membrane, we use the same scheme for the
right part of the rule if the target is inli . When the target is out or here,
we write (after the string) the symbol ”’ ” and the respective reserved
word out or here. For example, the following rule for membrane with
label 1

a → (abc, here)||(dd, in2)||(f, out) (3)

we present as

<a>’1 --> <a.b.c>’here || <d.d>’2 || <f> ’out

3.2.2 Rules Presentation

According to general view of a replication rule a → (u1, t1)||(u2, t2)|| . . .
. . . ||(uk, tk), it consists of a left part and a list of right parts with the
symbol of replication ”||” between them.

Left part → Right part || Right part || . . . || Right part (4)

Left part has the following format:

s′h, (5)

where
s – a non-empty string, e.g. <a.alpha.bb>;
h – the label of the membrane to which the rule belongs.

Each Right part can have one of the following three formats:

250

Simulator of P-Systems with String Replication . . .

1)
s′here, (6)

where

– s is a string, possibly empty, e.g. <a.beta.abd> or < # >;

– the reserved word ”here” shows, that the resulting string will
remain in the current region;

2)
s′out, (7)

where

– s is a string, possibly empty, e.g. <a.beta.abd> or < # >;

– the reserved word ”out” shows, that the resulting string will be
sent out of the current region into the immediately encompassing
region;

3)
s′h, (8)

where

– s is a string, possibly empty, e.g. <a.beta.abd> or < # >;

– h is the label of target membrane, which specifies the region
into which the resulting string will be placed and which has to
be immediately nested into the current membrane.

Examples of rules:
1. Suppose that we have the following rule for membrane 1:

β · e → (φ1, here) || (φ2, in3) || (λ, out) (9)

In Plingua format it looks like:

<beta.e>’1 --> <fi{1}>’here || <fi{2}>’3 || <#>’out;

2. Suppose that we have the following rule for membrane 2:

d → (µ · k, out) (10)

In Plingua format it looks like:

<d>’2 --> <mu.k>’out;

251

V. Macari, G. Magariu, T. Verlan

4 Examples of Solution Implementation to
Some Problems

4.1 A Solution to SAT

Satisfiability problem (SAT) definition is the following: Given a
Boolean expression E in conjunctive normal form (CNF), to decide
if there is some assignment to the variables in E such that E is true.

Let us consider a solution to the SAT problem, using P-systems
with string replication, given in [4].

Suppose we are given a fomula E = C1 ∧ C2 ∧ . . . ∧ Cm where C1,
C2, . . ., Cm are disjunctions, and the variables involved are x1, x2, . . .,
xn. The following P-system with string replication is proposed for the
problem solution:

Π = (V, V, µ, M1,M2, . . . , Mm+1, R1, R2, . . . , Rm+1), (11)

where
V = {ai, ti, fi | 1 ≤ i ≤ n},
µ = [1 [2 . . . [m+1]m+1]2]1;
Mm+1 = {a1}, Mi = {λ}, 1 ≤ i ≤ m,
Rm+1 = {ai → (tiai+1, here) || (fiai+1, here) | 1 ≤ i ≤ n− 1}

∪{an → (tn, out) || (fn, out)},
Rj = {ti → (ti, out) | xi is present in Cj , 1 ≤ i ≤ n}

∪{fi → (fi, out) | ¬xi is present in Cj , 1 ≤ i ≤ n} , 1 ≤ j ≤ m.

For demonstration simplicity we take the case, when the values for
m and n are not so large: m = 3, n = 4, E = (x1 + ¬x2)(¬x2 + x3 +
¬x4)¬x3.

Code of the program for this problem solution written in P-Lingua
(file with extension .pli) is the following:

@model<string_replication>

def SAT() {

@mu = [[[[]’4]’3]’2]’1;

252

Simulator of P-Systems with String Replication . . .

@ms(4) = <a{1}>;
/* rules for membrane 1 */
<t{1}>’1 --> <t{1}>’out;
<f{2}>’1 --> <f{2}>’out;
/* rules for membrane 2 */
<t{3}>’2 --> <t{3}>’out;
<f{2}>’2 --> <f{2}>’out;
<f{4}>’2 --> <f{4}>’out;
/* rules for membrane 3 */
<f{3}>’3 --> <f{3}>’out;
/* rules for membrane 4 */
<a{1}>’4 --> <t{1}.a{2}>’here || <f{1}.a{2}>’here;
<a{2}>’4 --> <t{2}.a{3}>’here || <f{2}.a{3}>’here;
<a{3}>’4 --> <t{3}.a{4}>’here || <f{3}.a{4}>’here;
<a{4}>’4 --> <t{4}>’out || <f{4}>’out;
}

def main() {
call SAT();
}

The solution is got in 7 steps (m + n steps).
The initial configuration is shown in Annex 1, Fig. 1. There is the

only string a1 in the region associated with label 4. During the first 4
steps all possible sets of values for variables x1, x2, x3, x4 are generated
in the region associated with label 4.

Step 1. (See Annex 1, Fig. 2.) Due to replication two strings are
generated in the region associated with label 4 (for different values of
the variable x1: t1 – for the value true and f1 – for the value false):
strings < t1.a2 >, < f1.a2 >.

Step 2. (See Annex 1, Fig.3.) Four strings are generated in the
region associated with label 4 for different values of the variables x1

and x2: < t1.t2.a3 >, < f1.t2.a3 >, < t1.f2.a3 >, < f1.f2.a3 >.
Step 3. (See Annex 1, Fig. 4.) Eight strings are generated in the

region associated with label 5 for different values of the variables x1,

253

V. Macari, G. Magariu, T. Verlan

x2 and x3.
Step 4. (See Annex 1, Fig. 5.) 16 strings are generated for different

values of all 4 variables x1, x2, x3, x4 and they are sent out of the region
associated with label 4 into the region associated with label 3.

Step 5. (See Annex 1, Fig. 6.) During the steps 5 – 7 the sets of
variables values are filtered: only those sets leave the region, for which
the given expression gets the value true. At the step 5 the sets are
filtered by possible values of the third disjunction C3 which in our case
is negation of the variable x3: only sets with value false for the variable
x3 leave the region associated with label 3.

Step 6. (See Annex 1, Fig. 7.) At the step 6 the sets from the
region associated with label 2 are filtered by possible values of the
second disjunction C2 which in our case is ¬x2 + x3 + ¬x4: only sets,
for which this disjunction is equal to true, are sent out of the region
associated with label 2.

Step 7. (See Annex 1, Fig. 8.) At the step 7 the sets from the
region associated with label 1 are filtered by possible values of the first
disjunction C1 which in our case is x1 + ¬x2: only the sets, for which
this disjunction is equal to true, are sent out of the region associated
with label 1. And after that the computation halts: the resulting sets,
for which the formula E = (x1 + ¬x2)(¬x2 + x3 + ¬x4)¬x3 gets the
value true, are in the environment.

4.2 A Solution to the Problem of Inflections Generation
in Romanian Language

Inflection in natural language means a change in the form of a word,
usually modification or affixation, signalling change in such grammat-
ical functions as tense, voice, mood, person, gender, number, or case.
The inflection process goes on according to some set of rules (different
rules for different groups of words). The number of such rules varies
for different natural languages. The rules can be algorithmized, so the
process of inflections generation gets computer aiding.

When modeling the process of inflections generation by P-systems,
there appears the possibility to construct in parallel way all the inflec-

254

Simulator of P-Systems with String Replication . . .

tions not only for one word, but all the inflections for some group of
words which have specific common characteristics, i.e. belong to one
inflectional model (e.g. neuter noun, in Romanian, inflectional model
3).

In the article [5] there is defined the P-system with string repli-
cation performing the inflection process (including vowel/consonant
alternation with the assumption that alternating subword is present
in the input word in just one occurrence). According to this defini-
tion we construct the P-system for the words of one inflectional model
for nouns in Romanian – masculine, inflectional model 5. Below we
demonstrate the work of the P-system on the example of two nouns –
”brad” (engl. ”firtree”) and ”caid” (engl. ”kaid”), which belong to this
inflectional model. For better understanding of P-system rules, let us
consider the list of inflected words for the noun ”brad”. Taking into
account that the Romanian forms for nominative and accusative cases
coincide, as well as for the genitive and dative ones, we consider the
reduced paradigm:

brad, brad, brad, bradul, bradului, bradule,
brazi, brazi, brazi, brazii, brazilor, brazilor.

Since one part of inflections is formed without alternation and an-
other part – with alternation, we have two sublists of endings for the
nouns of inflectional model 5:

F1 = {, , , ul, ului, ule} and F2 = {i, i, i, ii, ilor, ilor}.
So in this case we have the number of sublists of endings s = 2; the

number of alternations is m− 1 = 1, then we have m = 2.
Now we can construct the P-system which models the inflection

process for considered inflection group according to the definition given
in [5].

The words ”brad” and ”caid” (followed by the symbol ”#”) we
place into the input region. The P-system looks like the following:

Π = (O, Σ, µ, brad#, λ, λ, R1, R2, R3, 1), (12)

where
Σ = V ∪ {#},

255

V. Macari, G. Magariu, T. Verlan

O = Σ ∪ E,
µ = [[]2 []3]1 ,
E = {#2} ∪ {A11, A12, A21, A22},
V = {a, b, . . . , z},
R1 = {# → A12 || (#2, in2)} ∪ {A21 → (λ, in3)}∪

{A12 → (λ, out)||(λ, out)||(λ, out)||(ul, out)||(ului, out)||(ule, out)}∪
{A22 → (i, out)||(i, out)||(i, out)||(ii, out)||(ilor, out)||(ilor, out)}

R2 = {d → (zA21, out},
R3 = {#2 → (A22, out)}.

The P-system has 1 + (s− 1)m membranes, then there are 3 mem-
branes in our case. Membrane with label 1 is intended for endings
adding. The inflections corresponding to subset F1 are generated in 2
steps. At the second step they are sent out to the environment. Addi-
tionally, in the P-system there are m membranes for each other subset
(these membranes are intended for alternations implementation). In
our case there are two membranes intended for implementation of sin-
gle alternation: membranes with labels 2 and 3. The number of steps
necessary for performing one alternation is equal to 2. When there are
several alternations, they are implemented subsequently inside a word
but in parallel for different words. So, the solution is got in 2m + 1
steps regardless of the number of words placed in the input region; then
there are 5 steps for our case.

Code of the program for this problem solution written in P-Lingua
(file with extension .pli) is the following:

@model<string_replication>

def Inflection() {
@mu = [[]’2 []’3]’1;
@ms(1) = <b.r.a.d.diez>,<c.a.i.d.diez>;

/* rules for membrane 1 */

/* <diez> -> <A{1,2}> || <diez{2}> in 2; */
<diez>’1 --> <A{1,2}>’1 || <diez{2}>’2;

256

Simulator of P-Systems with String Replication . . .

/* <A{2,1}> -> <#> in 3; */
<A{2,1}>’1 --> <#>’3;

/* <A{1,2}> -> <#> out || <#> out || <#> out || <u.l> out
|| <u.l.u.i> out || <u.l.e> out; */

<A{1,2}>’1 --> <#>’out || <#>’out || <#>’out ||
<u.l>’out || <u.l.u.i>’out || <u.l.e>’out;

/* <A{2,2}> -> <i> out || <i> out || <i> out || <i.i> out
|| <i.l.o.r> out || <i.l.o.r> out; */

<A{2,2}>’1 --> <i>’out || <i>’out || <i>’out ||
<i.i>’out || <i.l.o.r>’out || <i.l.o.r>’out;

/* rule for membrane 2 */
/* <d> -> <z.A{2,1}> out; */

<d>’2 --> <z.A{2,1}>’out;

/* rule for membrane 3 */
/* <diez{2}> -> <A{2,2}> out; */

diez{2}>’3 --> <A{2,2}>’out;
}

def main() {
call Inflection();

}

In Annex 2, Fig. 9 there is the initial configuration of the P-system
as it looks in the simulator console.

Step 1. (See Annex 2, Fig. 10.) Since we have two sublists of
endings, for each input word two strings are generated – two strings
stay in the region 1 and two strings enter the region 2:

- strings in the region 1 are responsible for generation of inflections
with endings from subset F1, which are supposed to be formed
without alternation;

- strings in the region 2 are responsible for generation of inflections
with endings from subset F2. One can see that the string is

257

V. Macari, G. Magariu, T. Verlan

marked by the special symbol diez2. It has index equal to 2 that
shows that the string corresponds to subset F2 (the subset with
index equal to 2).

Step 2. (see Annex 2, Fig. 11.) For strings from region 1 the
replicative substitutions are performed and the generated inflections
with endings from subset F1 are sent out to the environment. For
strings from region 2 the alternation is carried out (letter ”d” is changed
by letter ”z”), the marked letter A2,1 is added to show that the first
alternation was carried out and the resulting strings go to region 1.

Step 3. (see Annex 2, Fig. 12.) The marked letter A2,1 in the
strings in region 1 is dropped and the resulting strings are placed in
region 3.

Step 4. (see Annex 2, Fig. 13.). The symbol diez2 in the strings
from region 3 is replaced by the marked letter A2,2 and the resulting
strings are sent out to region 1. The second index of the marked letter
is equal to m, it means that all alternations are carried out and now
the endings have to be added.

Step 5. (see Annex 2, Fig. 14.) For strings from region 1 the
replicative substitutions are performed and generated inflections with
endings from subset F2 are sent out to the environment. The compu-
tation halts: the resulting strings corresponding to all inflections of the
input words are present in the environment.

Due to massive parallelism the process of all inflections generation
for the words ”brad” and ”caid” was implemented in 5 steps. The user
is able to place into the input region several words from this inflection
group – the number of steps for all inflections generation will be the
same.

5 Conclusion and Future Work

The simulator for P-systems with String replications is being developed
according to the ideology and in the framework of pLinguaCore. So a
set of new classes and methods were added to pLinguaCore in order to
support string objects as they are used in P-systems with replication

258

Simulator of P-Systems with String Replication . . .

rules. At the same time a set of classes and methods already existing
in PLinguaCore were modified to fit string replication P-systems.

The main idea of P-Lingua extension was to use already imple-
mented ideology and to make a separate program flow at the same
time. Therefore, new P-system implementation uses base types of P-
Lingua framework but the code is separated starting from parsing of
P-Lingua program, XML generation, XML loading and simulation with
intermediary results and final solution output.

For the implementation of P-Lingua strings replication model,
changes in parsing of string objects and rules were made.

A new model definition – ”string replication” – was added in order
to make the P-Lingua soft to start working with strings replication
P-system.

As far as when applying the rules there is an active work with
string objects in P-systems with replications, the internal representa-
tion of string objects was changed (compared with that as it is made
in PLingua 2.1). String object is represented as a list of objects (not
as a simple string), each of which containing: alphabet object name,
alphabet object indexes, alphabet object multiplicity. Due to this the
work with rules and membrane content during simulation is essentially
simplified.

The following classes were added to realize rules with replica-
tion: StringsCellLikePsystem, ReplicationLeftHandRule, StringsRepli-
cationRightHandRule, StringsReplicationCellLikeRule, ReadStringsRe-
plicationRule (for reading replication rules from XML file).

The subsequent work supposes implementation of other types of
rules for string objects, first of all, splicing operation. Moreover, the
more sophisticated means are planned to be offered for user of the sim-
ulator: for visualization of P-system (for these models) current con-
figuration and for control of evolving process. Undoubtedly that our
experience in the work on strings replication P-systems simulator will
serve the good base for elaboration of simulators for other types of
P-systems.

259

V. Macari, G. Magariu, T. Verlan

Annex 1

Figure 1. The initial configuration of the P-system for problem SAT
solution

260

Simulator of P-Systems with String Replication . . .

Figure 2. Configuration of the system after Step 1

Figure 3. Configuration of the system after Step 2

261

V. Macari, G. Magariu, T. Verlan

Figure 4. Configuration of the system after Step 3

Figure 5. Configuration of the system after Step 4

262

Simulator of P-Systems with String Replication . . .

Figure 6. Configuration of the system after Step 5

263

V. Macari, G. Magariu, T. Verlan

Figure 7. Configuration of the system after Step 6

Figure 8. Configuration of the system after Step 7

264

Simulator of P-Systems with String Replication . . .

Annex 2

Figure 9. The initial configuration of the P system for inflections gen-
eration

Figure 10. Configuration of the system after Step 1

265

V. Macari, G. Magariu, T. Verlan

Figure 11. Configuration of the system after Step 2

Figure 12. Configuration of the system after Step 3

266

Simulator of P-Systems with String Replication . . .

Figure 13. Configuration of the system after Step 4

Figure 14. Configuration of the system after Step 5

267

V. Macari, G. Magariu, T. Verlan

References

[1] D. Dı́az-Pernil, I. Pérez-Hurtado, M.J. Pérez-Jiménez, A. Riscos-
Núñez. A P-lingua programming environment for Membrane Com-
puting, Proceedings of the 9th Work-shop on Membrane Comput-
ing, pp. 155–172 (2008)

[2] M. Garćıa-Quismondo, R. Gutiérrez-Escudero, I. Pérez-Hurtado,
M.J. Pérez-Jiménez, A. Riscos-Núñez. An Overview of P-Lingua
2.0, Tenth Workshop on Membrane Computing (WMC10), Curtea
de Arges, Romania, August 24-27, pp. 240–264 (2009)

[3] V. Manca, C. Mart́ın-Vide, Gh. Păun. On the Power of P Systems
with Replicated Rewriting. Journal of Automata, Languages, and
Combinatorics, 6, 3, pp. 359–374 (2001)

[4] Sh.N. Krishna, R. Rama. P Systems with Replicated Rewriting.
Journal of Automata, Languages and Combinatorics 6(3): pp.
345–350 (2001).

[5] A. Alhazov, E. Boian, S. Cojocaru, Y. Rogozhin. Modelling Inflec-
tions in Romanian Language by P Systems with String Replication.
Computer Science Journal of Moldova, V.17, N.2(50), pp. 160–178
(2009)

[6] Gh. Păun. Membrane Computing: an Introduction. Springer
(2002).

[7] D. Dı́az-Pernil, I. Pérez-Hurtado, M.J. Pérez-Jiménez, A. Riscos-
Núñez. P-Lingua: A Programming Language for Membrane Com-
puting. In D. Dı́az, C. Graciani, M.A. Gutiérrez, Gh. Păun, I.
Pérez-Hurtado, A. Riscos (eds.) Proceedings of the Sixth Brain-
storming Week on Membrane Computing, Report RGNC 01/08,
Fénix Editora, pp. 135–156 (2008)

V. Macari, G. Magariu, T. Verlan, Received August 22, 2010

Institute of Mathematics and Computer Science,
Academy of Sciences of Moldova,
Academiei 5, Chişinău MD-2028 Moldova
E–mail: vmacari@gmail.com, gmagariu@math.md, tverlan@math.md

268

