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Abstract

This article gives an overview of the recent developments in
the study of the operations of insertion and deletion. It presents
the origin of these operations, their formal definition and a series
of results concerning language properties, decidability and com-
putational completeness of families of languages generated by
insertion-deletion systems and their extensions with the graph-
control. The basic proof methods are presented and the proofs
for the most important results are sketched.
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1 Introduction

In general form, an insertion operation means adding a substring to
a given string in a specified (left and right) context, while a deletion
operation means removing a substring of a given string being in a spec-
ified (left and right) context. An insertion or deletion rule is defined
by a triple (u, x, v) meaning that x can be inserted between u and v
or deleted if it is between u and v. Thus, an insertion corresponds to
the rewriting rule uv → uxv and a deletion corresponds to the rewrit-
ing rule uxv → uv. A finite set of insertion-deletion rules, together
with a set of axioms provides a language generating device: starting
from the set of initial strings and iterating insertion or deletion oper-
ations as defined by the given rules one gets a language. The size of
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the alphabet, the number of axioms, the size of contexts and of the in-
serted or deleted string are natural descriptional complexity measures
for insertion-deletion systems.

The idea of insertion of one string into another was firstly considered
with a linguistic motivation in [23] and latter developed in [8, 29].
Marcus contextual grammars investigated in above references consider
couples (x, (u, v)), meaning that words u and v can be adjoined to the
word x. This corresponds in some sense to grammars having rules of
type x → uxv, i.e., u and v are inserted around the position marked by
x. Such grammars are alternative concepts to Chomsky grammars and
present the evolution of the descriptive linguistics. Many interesting
linguistic properties like ambiguity and duplication can be captured in
this framework. The insertion of a string in a specified context was
firstly considered in [8].

In [9, 10] the insertion operation and its iterated variant is intro-
duced with a different motivation. The author considers this opera-
tion as generalization of Kleene’s operations of concatenation and clo-
sure [17]. The operation of concatenation would produce a string x1x2y
from two strings x1x2 and y. By allowing the concatenation to happen
anywhere in the string and not only at its right extremity a string x1yx2

can be produced, i.e., y is inserted into x1x2. In [13] the deletion is de-
fined as a right quotient operation which happens not necessarily at the
rightmost end of the string. In the same thesis the duality between the
insertion and deletion is also highlighted: any insertion system gener-
ating a language L is at the same time a deletion system recognizing L.
The operations considered in above works correspond to context-free
variants of insertion and deletion operations, because no contexts are
used. In the same place several other variants of insertion and deletion
are introduced and their closure properties are investigated.

The third inspiration for insertion and deletion operations comes,
surprisingly, from the field of molecular biology. In fact they correspond
to a mismatched annealing of DNA sequences. We refer to [32] for more
details. Such operations are also present in the evolution processes
under the form of point mutations as well as in RNA editing, see the
discussions in [3], [34] and [32]. This biological motivation of insertion-
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deletion operations lead to their study in the framework of molecular
computing, see, for example, [6], [14], [32], [35].

This article is organized as follows. After a formal definition given
in Section 2, the next section describes existing formal proof methods
and presents a recent proof technique. Section 4 considers context-free
insertion-deletion systems and their links to the previous results in the
formal language theory. After that in Section 5 one-sided insertion-
deletion systems are considered. Section 6 investigates the graph-
control extension of insertion-deletion systems that permits to increase
the computational power for non-complete classes. Finally, Section 7
considers the variant where only the insertion operation is used.

2 Formal definition

We do not present here definitions concerning standard concepts of the
theory of formal languages and we refer to [33] for more details.

The empty string is denoted by λ. The length of the word x ∈ V ∗

is the number of symbols which appear in x and it is denoted by |x|.
The number of occurrences of a symbol a ∈ V in x ∈ V ∗ is denoted
by |x|a. If x ∈ V ∗ and U ⊆ V , then we denote by |x|U the number
of occurrences of symbols from U in x. For a word w ∈ V ∗ we define
Perm(w) = {w′ : |w′|a = |w|a for all a ∈ V }. The length set of a
language L is defined as |L| = {|x| : x ∈ L}. The length set of a family
of languages F is defined analogously: NF = {|L| : L ∈ F}.

The family of matrix languages, i.e., the family of languages gen-
erated by matrix grammars without appearance checking is denoted
by MAT . The family of recursively enumerable languages is de-
noted by RE. The Parikh image of a language family F is a fam-
ily of sets of vectors denoted by PsF (we assume a fixed order-
ing on the alphabet T = {a1, . . . , an}), and is defined as follows:
Ps(L) = {(|w|a1 , . . . , |w|an) : w ∈ L} and PsF = {Ps(L) : L ∈ F}.

An insertion-deletion system is a construct ID = (V, T, A, I, D),
where V is an alphabet, T ⊆ V , A is a finite language over V , and
I,D are finite sets of triples of the form (u, α, v), α 6= λ, where u
and v are strings over V . The elements of T are terminal symbols
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(in contrast, those of V − T are called nonterminals), those of A are
axioms, the triples in I are insertion rules, and those from D are dele-
tion rules. An insertion rule (u, α, v) ∈ I indicates that the string α
can be inserted between u and v, while a deletion rule (u, α, v) ∈ D
indicates that α can be removed from the context (u, v). As stated
otherwise, (u, α, v) ∈ I corresponds to the rewriting rule uv → uαv,
and (u, α, v) ∈ D corresponds to the rewriting rule uαv → uv. We
denote by =⇒ins the relation defined by an insertion rule (formally,
x =⇒ins y iff x = x1uvx2, y = x1uαvx2, for some (u, α, v) ∈ I and
x1, x2 ∈ V ∗) and by =⇒del the relation defined by a deletion rule (for-
mally, x =⇒del y iff x = x1uαvx2, y = x1uvx2, for some (u, α, v) ∈ D
and x1, x2 ∈ V ∗). We refer by =⇒ to any of the relations =⇒ins, =⇒del,
and denote by =⇒∗ the reflexive and transitive closure of =⇒ (as usual,
=⇒+ is its transitive closure).

The language generated by ID is defined by

L(ID) = {w ∈ T ∗ | x =⇒∗ w, x ∈ A}.
The complexity of an insertion-deletion system ID = (V, T, A, I, D)

is described by the vector (n,m, m′; p, q, q′) called size, where
n = max{|α| | (u, α, v) ∈ I}, p = max{|α| | (u, α, v) ∈ D},
m = max{|u| | (u, α, v) ∈ I}, q = max{|u| | (u, α, v) ∈ D},
m′ = max{|v| | (u, α, v) ∈ I}, q′ = max{|v| | (u, α, v) ∈ D}.
We also denote by INSm,m′

n DELq,q′
p corresponding families of

insertion-deletion systems. Moreover, we define the total size of the
system as the sum of all numbers above: ψ = n + m + m′ + p + q + q′.

If some of the parameters n,m, m′, p, q, q′ is not specified, then we
write instead the symbol ∗. In particular, INS0,0

∗ DEL0,0
∗ denotes the

family of languages generated by context-free insertion-deletion sys-
tems. If one of numbers from the couples m, m′ and/or q, q′ is equal to
zero (while the other is not), then we say that corresponding families
have a one-sided context.

We remark that, historically, another complexity measure called
weight was used for insertion-deletion systems. It corresponds to 4-
tuples (n, m̄; p, q̄), where m̄ = max{m,m′} and q̄ = max{q, q′}.
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3 Basic simulation principles

In this section we show some important properties of insertion-deletion
systems, present some normal forms and indicate basic methods for
equivalence proofs used in the rest of the chapter.

We start with the presentation of the normal form for insertion-
deletion systems.

Definition 3.1. An insertion-deletion system ID = (V ∪ {$}, T, A, I,
D ∪D2) of size (n,m, m′; p, q, q′) is said to be in the normal form if

• for any (u, x, v) ∈ I it holds |u| = m, |v| = m′, |x| = n,

• for any (u, x, v) ∈ D it holds |u| = q, |v| = q′, |x| = p,

• for any (u, x, v) ∈ D it holds that x contains no letters from T ,

• the set D2 is defined as D2 = {(λ, $, λ)}.
Theorem 3.2. For any insertion-deletion system ID it is possible to
construct a system ID′ in normal form and having same size such that
L(ID) = L(ID′).

This affirmation is quite obvious. For the first two conditions it is
enough to replace any rule having left or right contexts of a smaller
size by a group of rules, where the left (resp. right) context is a string
over V ∪ {$} of the required size. The same holds for the inserted or
deleted symbol and axioms. More precisely, the new symbol $ permits
to fill the context of rules and sizes of axioms up to the desired size.

The third condition can be satisfied as follows. For any terminal
symbol t ∈ T a special non-terminal Nt is considered. All rules and
axioms involving t are duplicated and t replaced by Nt. This construc-
tion ensures that symbol Nt acts like an alias for the symbol t, i.e. for
any derivation producing w1tw2 there is another derivation producing
w1Ntw2. Hence there is no difference between erasing t or Nt, there-
fore all deletion rules involving t can be omitted. A formal proof of the
theorem can be found in [2].
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Example 3.3.

Consider the system ID = ({a, b, C}, {a, b}, {ab}, I,D) of size
(2, 1, 1; 2, 1, 1), with I = {(a, aC, b), (a, b, C)} and D = {(b, C, b)}.
Then ID′ can be defined as follows: ID′ = ({a, b, C, $}, {a, b},
{ab � $$}, I ′, D′ ∪ {(λ, $, λ)}), where I ′ = {(a, aC, b), (a, $b, C),
(a, b$, C)} and D′ = {(b, C$, b), (b, $C, b)}.

Insertion-deletion systems represent a powerful model of compu-
tation. If the size of the system is not bounded, then an arbitrary
grammar can be simulated.

Theorem 3.4. For any type-0 grammar G = (N, T, S, P ) there is
an insertion-deletion system ID = (V, T, A, I, D) such that L(G) =
L(ID).

Proof. Let V = N ∪ {#i : 1≤ i≤|P |} ∪ {$}. Let k1 = max{|u|, u → v ∈
P} and k2 = max{|v|, u → v ∈ P}. Consider k = max(k1, k2). The set
A is defined as A = {$kS$k}.

For any rule i : u → v ∈ P we add insertion rules (xu,#iv, y),
x, y ∈ (N ∪{$})∗, |xu| = k, |y| = k, to I and a deletion rule (x, u#i, v),
x ∈ N ∪ {$} to D. Finally, a rule (λ, $, λ) is added to D.

It is not difficult to see that such system simulates G. Indeed, for
any derivation w1uw2 =⇒ w1vw2 in G there is a following two-step
derivation $kw1uw2$k =⇒ $kw1u#ivw2$k =⇒ $kw1vw2$k in ID that
simulates the corresponding production of G. If w ∈ L(G) then the
string $kw$k will be obtained in ID. Additional symbols $ can be
deleted at this moment. So w ∈ L(ID).

For the converse inclusion it is enough to observe that if an insertion
rule (xu, #iv, y) is used, then no more insertions inside the correspond-
ing site xu can be done. So, the only way to eliminate the symbol #i

is to perform the corresponding deletion. Hence the computation in
ID can be rearranged in such a way that an insertion is followed by
the corresponding deletion. This corresponds to a derivation step in
G, which completes the proof.

As one can see from the previous theorem, the basic idea of gram-
mar simulation by insertion-deletion systems is a construction of a set
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of related insertion and deletion rules that shall be used in some spec-
ified sequence thus performing a grammar rule simulation. Usually,
insertion rules introduce new non-terminal symbols in the string which
can be deleted only by corresponding deletion rules (like symbols #i

in the theorem above). If the correct sequence is not performed, then
some non-terminal symbols that cannot be deleted will remain in the
string. In the subsequent sections different variants of this method are
shown permitting to decrease the size of used insertion and deletion
rules.

3.1 The method of direct simulation

A simulation of type-0 grammars by insertion-deletion systems is the
main method permitting to prove the computational completeness of
insertion-deletion systems. However, when several such results are es-
tablished, it is much easier to prove the computational completeness
by simulating another insertion-deletion systems. For example:

Theorem 3.5. INS1,1
1 DEL0,0

2 = RE.

Sketch of Proof. The proof may be done by simulating insertion-
deletion systems of size (1, 1, 1; 1, 1, 1) which are known to be com-
putationally complete, see [35, 36]. In this case it is enough to show
how a deletion rule (a, b, c), a, b, c ∈ V can be simulated using insertion
and deletion rules of size (1, 1, 1; 2, 0, 0). Let a 6= b 6= c. Then a dele-
tion rule (a, b, c) with label i may be simulated by a sequence of the
following rules: {(a, }i, b), (b, ]i, c), (a, [i, }i), ([i, {i, }i), ([i,Ki, {i, )} ⊆ I
and (λ, {i}i, λ), (λ,Kib, λ), (λ, [i]i, λ) ⊆ D. The simulation is performed
as follows (we underline the inserted symbols):

w1abcw2 =⇒ins w1a}ibcw2 =⇒ins w1a[i}ibcw2 =⇒ins w1a[i}ib]icw2

=⇒ins w1a[i{i}ib]icw2 =⇒ins w1a[iKi{i}ib]icw2 =⇒del

=⇒del w1a[iKib]icw2 =⇒del w1a[i]icw2 =⇒del w1acw2.

The idea behind the simulation is the following. Symbols [i and ]i
delimit the deletion site. Symbol Ki performs the deletion of b, while
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symbols }i and {i ensure that Ki is inserted only once after [i (hence
only one b can be deleted). If all the above steps are not performed,
then some of additional symbols will remain in the string, hence it
will never become terminal. This is a common method of simulation:
the working (insertion or deletion) site is delimited by special symbols
in order to avoid interactions between several such sites and inside the
site the sequence of insertions and deletions permits to simulate exactly
one application of the corresponding rule. All additional symbols are
related in such a way that the whole sequence of insertions and deletions
shall be performed in order to eliminate all of them.

We remark that it would be wrong to simulate a deletion rule
(a, b, c) by only rules {(a, [i, b), (b, ]i, c), ([i,Ki, b)} ⊆ I and (λ,Kib, λ),
(λ, [i]i, λ) ⊆ D, because it is possible to erase several symbols b, which
leads to a wrong computation:

w1abbcw2 =⇒ins w1a[ibbcw2 =⇒ins w1a[ibb]icw2 =⇒ins

=⇒ins w1a[iKibb]icw2 =⇒del w1a[ib]icw2 =⇒ins

=⇒ins w1a[iKib]icw2 =⇒del w1a[i]icw2 =⇒del w1acw2.

The above approach is very powerful and it permits to establish
the computational completeness of the corresponding class of insertion-
deletion systems in a much easier way. For example, the proof of Theo-
rem 3.5 in [32] (Theorem 6.3) takes more than two pages. The method
is quite generic, in order to use it one should find a computational
complete class of insertion-deletion systems having same insertion or
deletion parameters. Then, in order to prove the computational com-
pleteness, it is sufficient to simulate corresponding deletion or insertion
operation. This is significantly easier than the simulation of a Chomsky
grammar because only left-hand or only right-hand side of a production
u → v shall be simulated.

Most of the recent results about the universality of insertion-
deletion systems are obtained using this technique.
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4 Context-free insertion-deletion systems

In this section we present an important class of insertion-deletion sys-
tems: systems with context-free rules. This permits to bridge recent
results with early investigations from [9] and [13] giving answers to old
questions from this area.

4.1 Computational completeness results

We start with the sketch of the proof of the computational completeness
for context-free insertion-deletion systems. More details can be found
in [24].

Theorem 4.1. INS0,0
∗ DEL0,0

∗ = RE.

Sketch of proof. Let G = (N, T, S, P ) be type-0 Chomsky grammar
where N,T are disjoint alphabets, S ∈ N , and P is a finite subset of
rules of the form u → v with u, v ∈ (N ∪ T )∗ and u contains at least
one letter from N . We assume all rules from P labeled in a one-to-one
manner with elements of a set M , disjoint of N ∪ T .

We construct the following context-free insertion-deletion system:
γ = (N ∪ T ∪M,T, {S}, I,D), where

I = {(λ, vR, λ) | R : u → v ∈ P, R ∈ M, u, v ∈ (N ∪ T )∗},
D = {(λ,Ru, λ) | R : u → v ∈ P, R ∈ M, u, v ∈ (N ∪ T )∗}.

Two rules (λ, vR, λ) ∈ I, (λ,Ru, λ) ∈ D as above are said to be M -
related.

We have the equality L(G) = L(γ).
The inclusion L(G) ⊆ L(γ) is obvious: each derivation step

x1ux2 =⇒ x1vx2, performed in G by means of a rule R : u → v, can be
simulated in γ by an insertion operation step x1ux2 =⇒ins x1vRux2

which uses the rule (λ, vR, λ) ∈ I, followed by the deletion operation
x1vRux2 =⇒del x1vx2 which uses the rule (λ,Ru, λ) ∈ D.

Consider now the inclusion L(γ) ⊆ L(G). The idea of the proof is
to transform any terminal derivation in γ into one in which any two
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consecutive (odd, even) derivations steps simulate one production in
G. Because the labels of rules from P precisely identify a pair of M -
related insertion-deletion rules, and the elements of M are nonterminal
symbols for γ, every terminal derivation with respect to γ must involve
the same number of insertion steps and deletion steps; moreover, these
steps are performed by using pairs of M -related rules from I and D.

For every terminal derivation in γ it is possible to construct
an equivalent derivation, using the same rules in a different order,
and having only matching pairs of consecutive rules, i.e. odd steps
wi =⇒ins wi+1 are performed by a rule (λ, vR, λ) ∈ I, while even
steps wi+1 =⇒ wi+2 are performed by using the M -related rule
(λ,Ru, λ) ∈ D. Clearly, two consecutive steps of a derivation in
γ which use M -related rules (λ, vR, λ) ∈ I, (λ,Ru, λ) ∈ D, corre-
spond to a derivation step in G which uses the rule R : u → v. This
implies the inclusion L(γ) ⊆ L(G).

The context control of a type 0 grammar does not really disap-
pear in the corresponding insertion-deletion system (as constructed in
Theorem 4.1 above). It rather changes its form, becoming a rigid syn-
chronization of insertions and deletions. In other terms, if a word u
represents the context of a word v in a “context-sensitive production”
R : u → v, then in the corresponding insertion-deletion system the
word v will also be conditioned by the later occurrence of u in a suc-
cessful derivation (hence u is yet again the context of v). This condition
is enforced by the newly introduced symbol R which acts as a “remote
context binder”. The fact that the context u “seems” to appear after
the context-controlled v is of no importance, reflecting the reversal of
generative process of the grammar.

Let us denote by L ¿ L1

L2
the operation of insertion-deletion that

inserts words from L1 into L or deletes words belonging to L2 from L
and by L ¿∗ L1

L2
its reflexive and transitive closure. Then the following

representation of RE holds:

Theorem 4.2. Any language L ∈ RE can be represented in the fol-
lowing form L =

(
{S} ¿∗ L1

L2

)
∩ T ∗, where L1 and L2 are two finite

languages and T is an alphabet.
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In the proof of Theorem 4.1, the length of inserted or deleted strings
is not bounded, but a bound can be easily found by controlling the
length of strings appearing in the rules of the starting type-0 grammar:

Theorem 4.3. INS0,0
3 DEL0,0

3 = RE.

Proof. Let G = (N, T, S, P ) be type-0 Chomsky grammar in Kuroda
normal form. Then, the rules of the context-free insertion-deletion sys-
tem constructed in the proof of Theorem 4.1 are of the form (λ, α, λ)
with |α| ≤ 3, hence RE ⊆ INS0

3DEL0
3.

The total size of the system provided by the proof of Theorem 4.1
is 6. We can improve by one this result, by decreasing by one either
the length of the inserted strings or the length of the deleted strings.
These proofs can be done by a direct simulation of systems of size
(3, 0, 0; 3, 0, 0) using the method presented in Section 3.1.

Theorem 4.4. [24] INS0,0
3 DEL0,0

2 = RE.

A counterpart of this result is also true: we can trade-off the length
of inserted and deleted strings.

Theorem 4.5. [24] INS0,0
2 DEL0,0

3 = RE.

4.2 Non-completeness results

We show below that the above complexity parameters for context-free
insertion-deletion systems are optimal. If one of the parameters is fur-
ther decreased, then the language generated by such systems is included
in the family of context-free languages.

The main idea used to obtain this result is that the non-terminal
alphabet can be omitted, hence, the deletion can also be omitted.

This can be argued as follows. Consider a derivation of w ∈ T ∗

starting from an empty word. Let us mark the corresponding inser-
tion pairs by an overline and the corresponding deletion pairs by an
underline. For example, suppose that we insert aA, after that bC in po-
sition 1, DE in position 2, aA in position 6 and bc in position 8. After
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that suppose that we delete EC, DA and Ab. Then the corresponding
marking will be as follows (the resulting word is w = abac):

a
_^ ]\

___________________________

b
GF ED

^^^^^^^^^^^^^^^^^

D
'& %$^^^^^

E C"#Ã!^^^^^
ABC@A

^^^^^^^^^^^^^^^^^

a
'& %$^̂^̂^

A b"#Ã!^̂ ^̂ ^

'& %$^^^^

c

We may interpret symbols as labeled graph nodes and lines as edges.
In this case we obtain a graph. It is easy to observe that this graph
consists of a set of disjoint linear paths and/or cycles. Indeed, for each
node, at most two edges corresponding to an insertion and a deletion
may be drawn. Let us also label edges corresponding to insertions by
i and edges corresponding to deletions by d. If we take the example
above, we obtain:

a i
A

d
D

i
E

d
C

i
b

a i
A

d
b

i c

We may suppose that the first and the last edge of a path are marked
with i. If this is not the case, we add an additional node labeled by λ
and we connect this node with the last node by a path labeled by i.
In particular, a path containing only one letter a (corresponding to an

insertion of a) will be written as λ
i a . Hence, each path consists of

sequences of one insertion followed by one deletion.
We observe that for a derivation of a word w ∈ T ∗ there can only

be paths of the following 4 types: (1) paths that start with a letter
a ∈ T and that end with a letter b ∈ T ; (2) Paths that have at one
end a terminal letter a and at the other end λ; (3) paths that have λ
at both ends; (4) Cycles.

We remark that in Case 1 the path leads to the word ab (i.e.,
contributes to the production of the subword ab of w), in the second
case the path produces the letter a and in the last two cases the path
generates the empty word.

Without loss of generality, we may suppose that there are no paths
of type 3 and 4, because by eliminating the corresponding insertions
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and deletions we obtain the same word.
Suppose that we have a path marked by over- and underlines as

above. We shall understand by an interior of the path the set of all
positions that are underlined. In the example above, all positions be-
tween D and the first A form the interior of the path. It is clear that
no other path (of type 1 and 2) may be situated in the interior of some
path, because in this case the corresponding deletion cannot be per-
formed. Consequently, all paths are independent of each other, and we
may group rules corresponding to each path and compute paths one
after another. Moreover, each path contributes to at most two terminal
symbols of the resulting word. Therefore, the computation consists of
insertion of terminal symbols corresponding to paths ends as well as of
deletion of terminal symbols.

Moreover, we can show that it is possible to precompute all possible
paths. This may be done by using the following observation. We

may assume that each path p has the following property: if A
i− B

belongs to p, then p does not contain an insertion that has A in the

left-hand side (A
i− X) or B in the right-hand side (Y

i− B). This
assertion is obvious, because if p contains such a pair, for example

p = · · · d− A
i− X

d− · · · d− A
i− B · · · , then we may eliminate the

subpath between two A’s by obtaining an equivalent path (that leads

to the same ends) p′ = · · · d− A
i− B · · · . So, the length of each path is

bounded by 2 · card(V ), and we may precompute all possible paths.
In a similar manner it can be proved that the nonterminal alphabet

is not relevant even in the general case. See [37] for details.

Lemma 4.6. Let ID = (V, T, A, I, D) be a context-free insertion-
deletion system of size (2, 0, 0; 2, 0, 0). Then it is possible to con-
struct a system ID2 = (T, T,A2, I2, D2) of size (2, 0, 0; 2, 0, 0) such that
L(ID) = L(ID2).

Moreover, if we consider that the initial system is in the nor-
mal form, then there are no deletions of terminal symbols. Hence
we obtain that it is sufficient to consider insertion-only systems as
INS0,0

2 DEL0,0
2 ⊆ INS0,0

2 DEL0,0
0 .
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We can describe insertion-deletion systems of size (2, 0, 0; 0, 0, 0) by
the following context-free grammar, which is a particular case of a more
general result for systems of size (∗, 1, 1; 0, 0, 0) given in [32].

Let ID = (T, T,A, I, ∅) be an insertion-deletion system of size
(2, 0, 0; 0, 0, 0). We construct the following context-free grammar G =
({Z, S}, T, Z, P ). Define P = PA ∪ PI ∪ {S → λ}, where

PA = {Z → Sa1Sa2S . . . SanS | a1a2 . . . an ∈ A},
PI = {S → SaSbS | (λ, ab, λ) ∈ I} ∪ {S → SaS | (λ, a, λ) ∈ I}.

It is clear that L(G) = L(ID). Indeed, symbol S marks all possible
insertion positions and permits the simulation of insertion rules as well.

Consequently, we obtain:

Theorem 4.7. INS0,0
2 DEL0,0

2 = INS0,0
2 DEL0,0

0 ⊂ CF .

Proof. The strictness of the inclusion follows from the fact that
insertion-deletion systems of size (2, 0, 0; 0, 0, 0) cannot generate the
language L = {a∗b∗}. Indeed, consider an arbitrary system ID =
(T, T,A, I, ∅). It is easy to observe that for each word w that belongs
to L(ID), words {x∗wx∗ | (λ, x, λ) ∈ I} belong to L(ID). Therefore, if
we suppose that L(ID) is not finite, then I 6= ∅, and then for any word
w ∈ L(ID), there are words {x∗wx∗ | (λ, x, λ) ∈ I} in L(ID). It is easy
to see that L does not have such a property.

Theorem 4.8. INS0,0
2 DEL0,0

2 is incomparable with REG.

Proof. Previous theorem gives REG \ INS0,0
2 DEL0,0

2 6= ∅. It is also
clear that the Dyck language Dn may be generated by a context-free
insertion system having insertion rules (λ, aiāi, λ), 1 ≤ i ≤ n. Hence,
the assertion is proved.

From the description above it is clear that languages generated
by insertion-deletion systems of size (2, 0, 0; 2, 0, 0) have a particular
structure (below, we denote by

∏
the concatenation operation).
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Theorem 4.9. A language L belongs to INS0,0
2 DEL0,0

2 if and only if
it can be represented in the form

L = h


T ′∗ �

⋃

w=a1...an∈A

|w|∏

i=1

DaiD


 ,

where A ⊆ T ∗ is a finite set of words, T is an alphabet, D is the Dyck
language over an alphabet T ′′ ⊆ T , h is a coding and T ′ ⊆ T .

In a similar way next two results can be obtained. See [37] for more
details.

Theorem 4.10. INS0,0
m DEL0,0

1 = INS0,0
m DEL0,0

0 ⊂ CF , m > 0.

Theorem 4.11. INS0,0
1 DEL0,0

p ⊂ REG for any p > 0.

We collect all results above as well as some other results about
the computational power of symmetrical insertion-deletion systems in
Table 1.

Table 1. Results on symmetrical insertion-deletion systems
Size Family Ref. Size Family Ref.

(1, 2, 2; 1, 1, 1) RE [14, 32] (3, 0, 0; 2, 0, 0) RE [24]
(1, 2, 2; 2, 0, 0) RE [14, 32] (1, 1, 1; 2, 0, 0) RE [32]
(2, 1, 1; 2, 0, 0) RE [14, 32] (2, 0, 0; 1, 1, 1) RE [20]
(1, 1, 1; 1, 2, 2) RE [35] (1, 1, 1; 1, 1, 1) RE [35]
(2, 1, 1; 1, 1, 1) RE [35] (2, 0, 0; 2, 0, 0) ( CF [37]
(3, 0, 0; 3, 0, 0) RE [24] (m, 0, 0; 1, 0, 0) ( CF [37]
(2, 0, 0; 3, 0, 0) RE [24] (1, 0, 0; p, 0, 0) ( REG [37]

5 One-sided insertion-deletion systems

In this section we present results about insertion-deletion systems with
one-sided context, i.e., of size (n,m, m′; p, q, q′) where either m+m′ > 0
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and m ∗m′ = 0, or q + q′ > 0 and q ∗ q′ = 0, i.e., one of numbers in
some couple is equal to zero.

One-sided insertion-deletion systems present features common to
both contextual and context-free insertion-deletion systems. More pre-
cisely, an insertion rule having an empty left (or right) context can
be applied any number of times like in the case of context-free rules.
However, while a context-free insertion can happen anywhere in the
string, in the case of a one-sided insertion the context indicates the
place where the insertion can happen. Similar properties are exposed
by deletion rules.

Example 5.1.

Consider a system ID = (T, T, {a}, I, ∅), where T = {a, b, c, d} and
I is defined as follows: I = {(a, b, λ), (b, c, λ), (c, d, λ), (d, a, λ)}.

Let L be the language generated by ID (L = L(ID)). It is
clear that L can be defined by the following formulas:

L = L1 L1 = aL∗2 L2 = bL∗3 L3 = cL∗4 L4 = dL∗1

By substituting Li, for 2 ≤ i ≤ 4 into the description of Li−1

we obtain:

L1 = a(b(c(dL∗1)
∗)∗)∗

Let R = {(abcd)∗(dcb)∗}. Consider the language L′′ = L ∩ R.
Consider the word w = abcddbc from R. This word is generated in
L as follows (we underline the inserted symbol):

a =⇒ ab =⇒ abb =⇒ abcb =⇒ abccb =⇒ abcdcb =⇒ abcddcb

We observe that the generation of the second part of w, the
subword dcb, is related to the generation of its first part abcd, be-
cause every letter is inserted two times: first for the second part and
after that for the first part. It is also clear that this is the only way
to generate the subword dcb. Moreover, it can be easily seen that
such a generation leads to a one-to-one correspondence between
abcd and dcb. Now, taking w it is possible to insert a after the first
letter d and to continue in a similar manner as before and so on,
which gives wn = (abcd)n(dcb)n, n ≥ 1. It is also possible to obtain

225



S. Verlan

more copies of abcd by performing insertions of four corresponding
letters after d, c, b or a in the first part of wn. Hence, we finally
obtain L′′ = {(abcd)i(dcb)j , j ≤ i}, which is a non-regular context-
free language (by the inverse morphism {abcd → x, dcb → y} it
becomes the well known language {xiyj , 1 ≤ j ≤ i}). Since the
intersection of two regular languages would be regular, we obtain
that L is a non-regular context-free language.

5.1 Computational completeness results

Generally, computational completeness proofs for one-sided insertion-
deletion systems take into account the above behavior and ensure that
additional symbols that potentially can be inserted more than one time
are inserted exactly once. This property is usually satisfied by intro-
ducing groups of insertion and deletion rules of a special form that can
act only if a specified pattern is present in the string. If the pattern is
compromised by inserting or deleting more than one additional sym-
bol, then the whole group of rules will fail and non-terminal symbols
will remain in the string; moreover, it can be guaranteed that these
symbols cannot be eliminated anymore.

The proofs are based on simulation of insertion-deletion systems
from Sections 3 and 4 which are known to generate all RE languages.
The proof technique is very similar to the one from Theorem 3.5.

We remark that by symmetry, all results for classes INSm,m′
n DELq,q′

p

are also true for classes INSm′,m
n DELq′,q

p .
We give the sketch of proof for the following theorem.

Theorem 5.2. INS1,2
1 DEL1,0

1 = RE.

Sketch of Proof. The proof is based on the simulation of insertion-
deletion systems of size (1, 1, 1; 1, 1, 1) in normal form. Hence, it is
sufficient to show how a deletion rule (a, x, b), with a, b, x ∈ V , may
be simulated by using rules of the target system, i.e., insertion rules of
type (a′, x′, b′c′) and deletion rules of type (a′′, y, λ).

Since the system is in normal form, we may assume that ab 6= λ.
Moreover, we may assume that the system has no insertion rules of the
form (a, b, b), a, b ∈ V. If this is the case then we replace every such rule
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by two insertion rules (a,X, b), (a, b,X), and one deletion rule (b,X, b),
where X is a new nonterminal.

A deletion rule i : (a, x, b), where i is the label of the rule, is sim-
ulated by two insertion rules (x,Xi, b), (a, Di, xXi) and three deletion
rules (Di, x, λ), (Di, Xi, λ), (a,Di, λ).

Symbols Di and Xi act like left and right parentheses that surround
x before deleting it. The simulation is performed as follows. First, two
insertions are performed:

w1axbw2 =⇒ins w1axXibw2 =⇒ins w1aDixXibw2,

and then x is deleted:

w1aDixXibw2 =⇒del w1aDiXibw2.

At this moment symbols Xi and Di are deleted:

w1aDiXibw2 =⇒del w1aDiw2 =⇒del w1abw2.

Hence, every derivation in an insertion-deletion system having the size
(1, 1, 1; 1, 1, 1) can be carried out in a system of size (1, 1, 2; 1, 1, 0). On
the other hand, we observe that once being inserted, the nonterminals
Xi, Di can be erased only by the rules shown above. Moreover, if
they are not deleted, then no symbol can be inserted at the right of
a or at the left of b. The rule (Di, x, λ) can delete at most one x as
the pair Dix is followed by Xib and b 6= x. Thus, there is a one-to-
one correspondence between the original and the new systems, which
implies that the theorem statement holds.

In a similar way the results from Table 2 are obtained. We remark
that last three results are counterparts of the first three results, where
the sizes for insertion and deletion are interchanged. However, in gen-
eral, systems where insertion parameters are 1, 1, 0 are simpler than
systems having deletion parameters 1, 1, 0. This is due to the fact that
it is easier to control a repeated insertion of symbols by using deletion
than a repeated deletion of symbols by using insertion. In the latter
case, special “barrier” symbols shall be inserted in order to delimit
exactly one symbol to be deleted.
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Table 2. Computationally complete one-sided insertion-deletion sys-
tems

Size Ref. Size Ref.
(1,1,2;1,1,0) [20] (1,1,0;1,1,2) [26]
(2,0,2;1,1,0) [20] (1,1,0;2,0,2) [26]
(2,0,1;2,0,0) [20] (2,0,0;2,0,1) [26]
(1,2,0;1,0,2) [21]

5.2 Non-completeness results

In what follows we show that there are classes of one-sided insertion-
deletion systems that are not computationally complete.

We start with the following result.

Theorem 5.3. REG \ INS1,0
1 DEL1,1

1 6= ∅.

Sketch of Proof. Consider the regular language L = {(ba)+}. We claim
that there is no insertion-deletion system ID of size (1,1,0;1,1,1) such
that L(ID) = L. We can suppose that ID is in normal form.

Let wf ∈ (ba)+ be a word generated by ID. Now consider an
arbitrary ba block of wf (wf = βbaγ, β, γ ∈ (ba)∗) and take its letter
a. Since there are no rules deleting terminal symbols in ID this letter
is either inserted by an insertion rule or it was a part of an axiom. We
may omit the latter case by taking a derivation that produces a string
that is long enough. Now suppose that this letter was inserted using a
rule (z, a, λ) ∈ I, z ∈ V :

w =⇒∗ w1zw2 =⇒ w1zaw2 =⇒∗ βbaγ = wf . (1)

This means that:
w1z =⇒∗ βb
aw2 =⇒∗ aγ

(2)

Now we remark that symbol a might be inserted twice:
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w =⇒∗ w1zw2 =⇒ w1zaw2 =⇒ w1zaaw2. (3)

From (3) and (2) we obtain:

w =⇒∗ w1zaaw2 =⇒∗ βbaaγ

which is a contradiction.

In way similar to Theorem 5.3 it is possible to show several non-
completeness results for one-sided insertion-deletion systems. Table 3
summarizes these results. We remark that systems having smaller pa-
rameters, like systems of size (1, 1, 0; 1, 1, 0) are also not complete.

Table 3. Computationally non-complete one-sided insertion-deletion
systems

Size Witness language Reference
(1,1,0;1,1,1) (ba)+ [20]
(1,1,1;1,1,0) anbn, n ≥ 0 [26]
(1,1,0;2,0,0) (ba)+ [19]
(2,0,0;1,1,0) (ba)+ [19]

Moreover, in the case of systems of size (1, 1, 0; 1, 1, 0) it is possible
to show that the language generated by such insertion-deletion systems
is a particular subclass of the family of context-free languages.

This class of languages is non-trivial because even a smaller sub-
class, INS1,0

1 DEL0,0
0 , contains non-regular context-free languages, see

Example 5.1.

Theorem 5.4. INS1,0
1 DEL0,0

0 ∩ (CF \REG) 6= ∅.
In [19] it is shown that the effect of deletion rules can be precom-

puted. This gives the following result.

Theorem 5.5. INS1,0
1 DEL1,0

1 ⊂ CF .
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6 Graph-controlled insertion-deletion systems

In previous sections it was shown that there are classes of insertion-
deletion systems that cannot generate RE. Making an analogy to
context-free grammars, a natural extension of insertion-deletion sys-
tems using the graph-controlled or programmed approach can be done.
Such model introduces states (or labels of the program) associated to
every insertion or deletion rule. The transition is performed by apply-
ing corresponding rule and choosing the new state (thus the rule to be
applied) among a specific set of rules. Another definition of this model
in the style of [30] or [5] can be done. This definition supposes that
there are disjoint groups of insertion and deletion rules (correspond-
ing to membranes from [30] or components from [5]). The transition
is performed by firstly choosing and applying one of applicable rules
from the current group and switching to the next group indicated in
the rule description.

6.1 Formal definition

A graph-controlled insertion-deletion system is a construct

Π = (V, T, A, H, I0, If , R) where

• V is a finite alphabet,

• T ⊆ V is the terminal alphabet,

• A ⊆ V ∗ is a finite set of axioms,

• H is a set of labels associated (in a one-to-one manner) to the
rules in R,

• I0 ⊆ H is the set of initial labels,

• If ⊆ H is the set of final labels, and

• R is a finite set of rules of the form l : (r, E) where r is an insertion
or deletion rule over V and E ⊆ H.
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As it is common for graph controlled systems, a configuration of Π
is represented by a pair (w, i), where i is the label of the rule to be
applied and w is the current string. A transition (w, i) V (w′, j) is
performed if there is a rule l : ((u, α, v)t, E) in R such that w =⇒t w′

by the insertion/deletion rule (u, α, v)t, t ∈ {ins, del}, and j ∈ E. The
result of the computation consists of all terminal strings reaching a
final label from an axiom and the initial label, i.e.,

L(Π) = {w ∈ T ∗ | (w′, i0) V∗ (w, if ) for some w′∈ A, i0∈ I0, if ∈ If}.

We will use another rather similar definition for a graph-controlled
insertion-deletion system, thereby assigning groups of rules to compo-
nents of the system:

A graph-controlled insertion-deletion system with k components is
a construct

Π = (k, V, T, A,H, i0, if , R) where

• k is the number of components,

• V, T, A, H are defined as for graph-controlled insertion-deletion
systems,

• i0 ∈ [1..k] is the initial component,

• if ∈ [1..k] is the final component, and

• R is a finite set of rules of the form l : (i, r, j) where r is an
insertion or deletion rule over V and i, j ∈ [1..k].

The set of rules R may be divided into sets Ri assigned to the
components i ∈ [1..k], i.e., Ri = {l : (r, j) | l : (i, r, j) ∈ R}; in a
rule l : (i, r, j), the number j specifies the target component where the
string is sent from component i after the application of the insertion
or deletion rule r. A configuration of Π is represented by a pair (w, i),
where i is the number of the current component (initially i0) and w is
the current string. We also say that w is situated in component i. A
transition (w, i) V (w′, j) is performed as follows: first, a rule l : (r, j)
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from component i (from the set Ri) is chosen in a non-deterministic
way, the rule r is applied, and the string is moved to component j;
hence, the new set from which the next rule to be applied will be chosen
is Rj . More formally, (w, i) V (w′, j) if there is l : ((u, α, v)t, j) ∈ Ri

such that w =⇒t w′ by the rule (u, α, v)t; we also write (w, i) Vl (w′, j)
in this case. The result of the computation consists of all terminal
strings situated in component if reachable from the axiom and the
initial component, i.e.,

L(Π) = {w ∈ T ∗ | (w′, i0) V∗ (w, if ) for some w′ ∈ A}.
It is not difficult to see that graph-controlled insertion-deletion sys-

tems with k components are a special case of graph-controlled insertion-
deletion systems. Without going into technical details, we just give the
main ideas how to obtain a graph-controlled insertion-deletion system
from a graph-controlled insertion-deletion system with k components:
for every l : ((u, α, v)t, j) ∈ Ri we take a rule l : (i, (u, α, v)t, Lab(Rj))
into R where Lab(Rj) denotes the set of labels for the rules in Rj ; more-
over, we take I0 = Lab(Ri0) and If = Lab(Rif ). Finally, we remark
that the labels in a graph-controlled insertion-deletion system with k
components may even be omitted, but they are useful for specific proof
constructions. On the other hand, by a standard powerset construc-
tion for the labels (as used for the determinization of non-deterministic
finite automata) we can easily prove the converse inclusion, i.e., that
for any graph-controlled insertion-deletion system we can construct an
equivalent graph-controlled insertion-deletion system with k compo-
nents.

We define the communication graph of a graph-controlled insertion-
deletion system with k components to be the graph with nodes 1, . . . , k
having an edge between node i and j if and only if there exists a rule
l : ((u, α, v)t, j) ∈ Ri. In [30], 5.5, special emphasis is laid on graph-
controlled insertion-deletion systems with k components whose commu-
nication graph has a tree structure, as we observe that the presentation
of graph-controlled insertion-deletion systems with k components given
above in the case of a tree structure is rather similar to the definition
of insertion-deletion P systems as given in [30]; the main differences are
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that in P systems the final component if contains no rules and corre-
sponds with the root of the communication tree; on the other hand, in
graph-controlled insertion-deletion system with k components, each of
the axioms can only be situated in the initial component i0, whereas in
P systems we may situate each axiom in various different components.

Throughout the rest of this section we shall only use the notion
of graph-controlled insertion-deletion systems with k components, as
they are easier to handle and sufficient to establish computational com-
pleteness in the proofs of our main results presented in the succeed-
ing section. By GCIDk(insm,m′

n , delq,q′
p ) we denote the family of lan-

guages L(Π) generated by graph-controlled insertion-deletion systems
with at most k components and insertion and deletion rules of size
at most (n,m,m′; p, q, q′). We replace k by ∗ if k is not fixed. The
letter “G” is replaced by the letter “T” to denote classes whose com-
munication graph has a tree structure. Some results for the families
TCIDk(insm,m′

n , delq,q′
p ) can directly be derived from the results pre-

sented in [19, 30], for the corresponding families of insertion-deletion P
systems ELSPk(insm,m′

n , delq,q′
p ), yet the results we present in the suc-

ceeding section either reduce the number of components for systems
with an underlying tree structure or else take advantage of the arbi-
trary structure of the underlying communication graph thus obtaining
computational completeness for new restricted variants of insertion and
deletion rules.

Example 6.1.

Consider the following graph-controlled insertion-deletion system
Π = (3, T, T, λ, H, 1, 1, R), with T = {a, b, c}, H = {1, 2, 3}
and R = R1 ∪ R2 ∪ R3, where R1 = {1 : ((λ, a, λ)ins, 2)},
R2 ={2 : ((λ, b, λ)ins, 3)}, R3 = {3 : ((λ, c, λ)ins, 1)}.

The system is inserting consecutively a, b and c. Therefore it is
clear that L(Π) = {w ∈ {a, b, c}∗ : |w|a = |w|b = |w|c}, which is
not a context-free language.

We remark that using two nodes, it is possible to similarly gen-
erate the non-regular language L = {w ∈ {a, b}∗ : |w|a = |w|b}.
The communication graph has the form of a tree in this case.
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6.2 Results

We start with the following result from [1].

Theorem 6.2. PsTCID∗(ins0,0
1 , del0,0

1 ) ⊆ PsGCID∗(ins0,0
1 , del0,0

1 ) =
PsMAT .

However, in terms of the generated language such systems are not
very powerful. Like in the case of context-free insertion-deletion sys-
tems there is no control on the position of insertion. Hence, the lan-
guage L = {a∗b∗} cannot be generated, for insertion strings of any size.
Hence we obtain:

Theorem 6.3. REG\GCID∗(ins0,0
n , del0,0

1 ) 6= ∅, for any n > 0.

However, there are non-context-free languages that can be gener-
ated by such systems (even without deletion). From Example 6.1 we
obtain:

Theorem 6.4. GCID∗(ins0,0
1 , del0,0

0 ) \ CF 6= ∅.
A more general inclusion holds:

Theorem 6.5. [1] GCID∗(ins0,0
n , del0,0

1 ) ⊂ MAT , for any n > 0.

Next theorem shows that graph-controlled insertion-deletion sys-
tems are strictly more powerful than ordinary insertion-deletion sys-
tems of the same size.

Theorem 6.6. [21] TCID5(ins1,0
1 , del1,0

1 ) = RE.

The proof is based on the following idea. Any rule AB → CD of a
type-0 grammar in Kuroda normal form can be simulated in 4 stages:
(1) erasing A, (2) erasing B, (3) inserting D and (4) inserting C. Every
operation can be done by a dedicated component with the help of an
additional symbol that marks the position before A and that is used in
all operations. A typical computation may look as follows:

w1ABw2 V w1PiABw2 V w1PiBw2 V w1Piw2 V
w1PiDw2 V w1PiCDw2 V w1CDw2
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Other rules of the grammar can be simulated in a similar manner.
We leave technical details that can be consulted in [21].

In a similar way it is possible to obtain a characterization of RE
languages by the family TCID5(ins1,0

1 , del0,1
1 ), i.e. with contexts for

insertion and deletion on different sides. Taking also into account the
symmetrical cases we get:

Corollary 6.7. TCID5(ins1,0
1 , del0,1

1 ) = TCID5(ins0,1
1 , del1,0

1 ) =
TCID5(ins0,1

1 , del0,1
1 ) = RE.

Using a similar technique it is possible to prove following theorems
(see [22]).

Theorem 6.8. TCID5(ins1,0
1 , del0,0

2 ) = TCID5(ins0,1
1 , del0,0

2 ) = RE.

Theorem 6.9. TCID5(ins0,0
2 , del1,0

1 ) = TCID5(ins0,0
2 , del0,1

1 ) = RE.

However, in some cases graph-controlled insertion-deletion systems
are still not complete.

Theorem 6.10. [22] REG \GCID∗(ins0,0
2 , del0,0

2 ) 6= ∅.

6.3 Graph-controlled insertion-deletion systems with
priorities

A further control can be added to graph-controlled insertion-deletion
systems by introducing a priority of deletion over insertion, i.e., if
deletion and insertion rules are applicable, then one of deletion rules
will be chosen. This condition can also be viewed as a particular case of
the graph-controlled insertion-deletion systems if the latter have rules
with appearance checking. We denote by TCIDk(insm,m′

n < delq,q′
p )

the families of languages generated by corresponding classes.
Using priorities it is possible to further decrease the length of con-

texts needed for computational completeness. It is quite astonishing
that insertion-deletion systems that insert or delete one symbol in a
context-free manner can generate PsRE. In case of general communi-
cation graph this is particularly easy to see: jumping to an instruction
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of a register machine corresponds to switching to the associated com-
ponent, and the entire construction is a composition of graphs shown in
Fig. 1. The decrement instruction works correctly because of priority
of deletion over insertion. A configuration (p, x1, · · · , xn) of a register
machine is encoded by strings Perm(pAx1

1 · · ·Axn
n ).

/.-,()*+
p

((λ,Ak,λ)ins,q)//

((λ,Ak,λ)ins,r)
²²

/.-,()*+
q

/.-,()*+
r

/.-,()*+
p

((λ,Ak,λ)del,q)//

((λ,N,λ)ins,p′)
²²

/.-,()*+
q

/.-,()*+
p′
((λ,N,λ)del,r) ///.-,()*+

r

Figure 1. Simulating (p, Ak+, q, r)(left) and (p,Ak−, q, r) (right).

For the tree-like communication graph, the proof is more sophisti-
cated and needs a communication graph depicted at Fig. 2. The main
idea is to use a rule ((λ, p, λ)del, p

+
1 ) if p is an increment instruction or

((λ, p, λ)del, p
−
1 ) if p is a decrement instruction and redirect the compu-

tation to corresponding components that simulate only one instruction
of the register machine. This gives:

Theorem 6.11. PsTCID∗(ins0,0
1 < del0,0

1 ) = PsRE.

Although the above theorem shows that corresponding systems are
quite powerful, they cannot generate RE without control on the place
where a symbol is inserted (REG\GCID∗(ins0,0

n < del0,0
1 ) 6= ∅ for any

n > 0, see Theorem 6.3). Once we allow a context in insertion or
deletion rules, they can do it.

Theorem 6.12. TCID∗(ins0,1
1 < del0,0

1 ) = RE.

In a similar way the following result can be obtained.

Theorem 6.13. TCID∗(ins0,0
1 < del1,0

1 ) = RE.

However in this case the proof is more technical and needs addi-
tional components, see [1]. A similar can be done with a context-free
deletion of two symbols.

236



Recent Developments on Insertion-Deletion Systems
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Figure 2. Communication graph for Theorem 6.11. The structures in
the dashed rectangles are repeated for every instruction of the register
machine.

Theorem 6.14. TCID∗(ins0,0
1 < del0,0

2 ) = RE.

We mention that the counterpart of Theorem 6.14 obtained by in-
terchanging parameters of insertion and deletion rules is not true, see
Theorem 6.3.

7 Using only insertion

In this section we consider systems which only use the operation of
insertion, i.e., there are no deletion rules. We shall use the nota-
tion INSm,m′

n in order to denote families of languages generated by
insertion-only systems. It is known that the classes of insertion lan-
guages are incomparable with many known language classes. For exam-
ple, consider a linear language {anban | n ≥ 1}. This language cannot
be generated by any insertion system (see Theorem 6.6 in [32]).

In order to be complete it is possible to use some codings to “inter-
pret” the generated strings. In the literature several types of codings
were considered. It is possible to consider the following languages as a
result for an insertion system I:
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1. h(L(I) ∩R), where h is a morphism and R is a special language
(as considered in [28, 31]), or

2. ϕ(h−1(L(I))), where h is a morphism and ϕ is a weak coding
(considered in [25, 32, 15]).

We mention that both types of codings are rather simple and can be
simulated by a finite state transducer, provided that R is regular. In
some cases R is considered to be the Dyck language.

We start with the following representation of regular languages by
using insertion systems and star languages. We recall that the family
STAR = {A∗ | A ∈ FIN} of star languages is a subfamily of regular
languages.

Theorem 7.1. [31] Any regular language L can be represented in the
form L = h(L′ ∩ R), where h is a weak coding, L′ ∈ INS0,0

2 , and R is
a star language.

Let W represent the family of weak codings. We mention that the
inclusion REG ⊂ W (INS0,0

2 ∩ STAR) is proper, because the Dyck
language is in INS0,0

2 .
A similar characterization of context-free languages by the means

of insertion systems can be done.

Theorem 7.2. [18] A language L is context-free if and only if it can
be represented in the form L = ϕ(h−1(L′)) where L′ ∈ INS1,1

3 , ϕ is a
weak coding and h is a morphism.

We remark that it is important to use a coding:

Theorem 7.3. [32] INS1,1
∗ ⊆ CF.

We present below several characterizations of recursively enumer-
able languages by the means of insertion systems. We start with the
following result.

Theorem 7.4. [15, 27] Each language L ∈ RE can be written as
L = ϕ(h−1(L′)), where ϕ is a weak coding, h is a morphism, and L′ ∈
INS3,3

3 .

238



Recent Developments on Insertion-Deletion Systems

Sketch. The idea of the proof is to apply “mark and migrate” technique
in order to simulate a type-0 grammar. According to this technique,
symbols that have been rewritten are marked. In the following a special
symbol # called marking symbol will be used. We say that a letter a is
marked in a sentential form waw′ if it is followed by #, i.e., |w′| > 0,
and # is the prefix of w′. For example, in order to simulate a context-
free production A → BC, the string #BC is inserted immediately
at the right of A, assuming that A was not marked before. As soon
as the derivation of the simulated sentential form is completed, every
nonterminal A is marked, and the inverse morphism is applied to the
pairs A#.

In order to simulate context-sensitive productions of the form
AB → CD, the migration of symbols is applied. This means that
if a pair AB that should be used by the production is separated by one
or more marked symbols, then copies of symbol A are inserted to the
right, using the marked symbols as contexts. In this way, the symbol
A can migrate to the right and become adjacent to B. When only
the terminal symbols are unmarked in the resulted sentential form, the
inverse morphism h−1 and the weak coding may be applied in order to
eliminate marking symbols and nonterminals.

Corollary 7.5. [15] Every language L ∈ RE can be represented in
either of the forms L = L′ \ R, L = L′/R′, where L′ ∈ INS3,3

3 , R, R′

are regular languages, and \R, /R′ denote the left and right quotient
with R, R′ respectively.

In a similar way it is possible to obtain a characterization of RE by
replacing the inverse morphism h−1 by the intersection with a regular
language. It is shown in [28] that in order to obtain this character-
ization it is enough to use strictly k−testable languages (denoted by
LOC(k)), which is a strictly subset of the family of regular languages,
for k ≥ 2. We recall that a language L is a strictly k−testable language
over T if there are finite sets Pref, Suf, Int ⊆ T k, and for every w,
w ∈ L if and only if (a) the prefix of w of length k belongs to Pref ,
(b) the suffix of w of length k belongs to Suf , and (c) every proper
subsequence of w of length k belongs to Int.
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Then, the following theorem holds.

Theorem 7.6. [28] Every language L ∈ RE can be represented in the
form h(L′∩R), where h is a projection, L′ ∈ INS3,3

3 , and R ∈ LOC(2).

The next theorem considers a different approach showing that in-
sertion systems with context-free rules are quite powerful. Since the
mark and migrate technique cannot be used in this case, the filtering
of sentential forms that have the “proper structure” is performed by
an intersection with the Dyck language.

Theorem 7.7. [31] Every language L ∈ RE can be represented in the
form L = h(L′ ∩ D), where L′ ∈ INS0,0

3 , h is a projection, and D is
the Dyck language.

Finally, we remark that in the case of graph-controlled insertion
systems it is possible to decrease the sizes of the contexts.

Theorem 7.8. [18] Every language L ∈ RE can be represented in the
form L = ϕ(h−1(L′)), where ϕ is a weak coding, h is a morphism, and
L′ ∈ TCID3(ins2,2

2 del0,0
0 ).

8 Bibliographical remarks

Insertion systems, without using the deletion operation, were first con-
sidered in [8], however the idea of the context adjoining was exploited
long time before by [23]. Context-free insertion systems as a gener-
alization of concatenation were first considered in [9, 10]. A formal
language study of both context-free insertion and deletion operations
was done in [13], however the operations were considered separately.
The articles [7, 11] investigate the power of the insertion and deletion
operations. Both operations were first considered together in [16] and
related formal language investigations can be found in several places;
we mention only [25] and [29]. The biological motivation of insertion-
deletion operations leaded to their study in the framework of molecular
computing, see, for example, [6], [14], [32], [35]. An interesting study
of the deletion operation can be found in [7].
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The universality of context-free insertion-deletion systems of size
(2, 0, 0; 3, 0, 0) and (3, 0, 0; 2, 0, 0) was shown in [24], while the opti-
mality of this result was shown in [37]. The last article suggested to
consider the sizes of each context as a complexity measure and not the
maximum as it was done before. One-sided insertion-deletion systems
were firstly considered in [26] and the graph-controlled variant in [21].
Graph-controlled insertion-deletion systems with priorities were intro-
duced in [1].

Other variants of the insertion operation and different control mech-
anisms can be found in [13, 12, 4].
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