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On computational properties of gene assembly

in ciliates

Vladimir Rogojin

Abstract

Gene assembly in stichotrichous ciliates happening during
sexual reproduction is one of the most involved DNA manipu-
lation processes occurring in biology. This biological process is of
high interest from the computational and mathematical points of
view due to its close analogy with such concepts and notions in
theoretical computer science as permutation and linked list sort-
ing and string rewriting. Studies on computational properties
of gene assembly in ciliates represent a good example of inter-
disciplinary research contributing to both computer science and
biology. We review here a number of general results related both
to the development of different computational methods enhanc-
ing our understanding on the nature of gene assembly, as well as
to the development of new biologically motivated computational
and mathematical models and paradigms. Those paradigms con-
tribute in particular to combinatorics, formal languages and com-
putability theories.

1 Introduction

We survey here a number of major results which address some compu-
tational properties of evolved DNA manipulation process happening in
mating cells of stichotrichous ciliates [57, 27, 37, 59, 66]. Stichotrichous
ciliates belong to Domain Eukaryote, Phylum Ciliophora, Subphylum
Intramacronucleata, Class Spirotrichea, Subclass Stichotrichia [46].

DNA manipulation during gene assembly in stichotrichous ciliates
represents a beautiful example of a computational process happening
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in living organisms. Ciliates belong to one of the oldest and most di-
verse groups of eukaryotic cells [65]. Currently there are known around
8,000 species of ciliates [17]. Two unique features differ ciliates from
other eukaryotes: nuclear dualism and possession of hairlike structures
on their cellular surfaces which are called cilia [17, 58]. Germline
and somatic nuclear functions are split between nuclei of two different
types, called micro- and macronuclei respectively. Micronuclei keep
their genetic data in highly encrypted form: genes are split into frag-
ments separated by non-protein-encoding sequences, those fragments
may be shuffled and some of them could be inverted [8]. In the same
time macronuclear genome is organized in a very compact form: basi-
cally any macronuclear DNA represents one (rarely two) contiguous nu-
cleotide sequences representing genes. Majority of non-stichotrichous
ciliates have simpler organization of their micronuclear genome: gene
fragments are still separated by non-coding sequences but follow in the
orthodox order. When micronuclei get transformed into macronuclei,
all non-coding blocks of DNA are being excised and gene fragments get
spliced together to form contiguous sequences representing genes [57].
In stichotrichs and several other species of ciliates this process is even
more involved due to the necessity to unscramble gene fragments. This
process of gene assembly is especially of interest in stichotrichs from
the computational point of view, since it could be interpreted formally
as a string rewriting and permutation sorting procedure [61, 17].

We present briefly in this article three aspects related to studies of
computational properties of gene assembly in ciliates.

First, we consider a restricted versions of the intramolecular op-
erations of gene assembly (called simple and elementary models)
which take into account only local intramolecular manipulations with
DNA [22, 33, 45]. We describe a number of combinatorial properties
of simple and elementary models, including the structure of gene pat-
terns that can be assembled in these restricted models and form of their
assembly strategies [32, 44, 33, 56, 63].

Secondly, we address several novel computational models based
on gene assembly relying on either contextual molecular recombina-
tions [36] or on non-deterministic sequence matching [4]. We show
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that some variants of the models are Turing complete, while some oth-
ers may be used to solve efficiently (albeit only theoretically) compu-
tationally intractable (in particular, NP-complete) problems. More-
over, we mention the result where it was shown that the concept of
distributed computations from Tissue-like P systems substitutes well
the contextual ingredient of molecular operations in the computational
model when demonstrating the Turing universality of gene assembly in
ciliates [2].

The third aspect, which we investigate in this paper, is related to an
algorithmic approach for studying a graph-theoretical notion of parallel
complexity of the gene assembly in ciliates [30].

2 Biological basics of gene assembly in ciliates

As it was mentioned above, ciliates posses two unique features: all
ciliates have cilia and all of them are in possession of nuclei of two
different types. Cilia represent a complex of moving hair-like organelles
projecting from the cellular surface. The motion of cilia is synchronized
so that they propel efficiently the cell through the aqueous environment
and/or direct nutritious particles (like bacteria, algae or other ciliates)
into the cell’s oral apparatus [17, 58].

Those nuclei that perform germline function in ciliates are called
micronuclei. Micronuclei practically do not participate in RNA tran-
scription and most of the time are passive throughout the life cycle of
a cell. However, when ciliates breed, micronuclei get activated. When
breeding, two ciliate organisms of the same specie exchange their mi-
cronuclear genetical information. On the other hand, almost all RNA
transcription in ciliates is carried on in macronuclei [17, 59].

There is a big difference in the internal organization of micronu-
clear and macronuclear genome. Micronuclear DNA are organized on
chromosomes. Each micronuclear DNA represents very long molecule,
which contains many genes separated by long non-protein-coding
spacer nucleotide sequences. Each gene is broken into some number of
fragments separated from each other by non-protein-coding blocks [8].
In stichotrichs ciliates and several other species gene fragments are
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also shuffled throughout the molecule and some of the fragments are in-
verted [59, 17]. Contrary to micronuclear DNA macronuclear molecules
are short and contain usually one, rarely two contiguous nucleotide
protein-coding sequences [8].

The internal molecular structure of micronuclear genes suits well
for robust preservation of the genetic information for future genera-
tions, while macronuclear gene structure is optimized for rapid RNA
transcription, what should bring an evolutionary advantage for ciliate
organisms [17].

Macronuclei from maternal organisms get disintegrated during sex-
ual reproduction, while some copies of micronuclei from child organ-
isms are being transformed into new macronuclei. During this trans-
formation heavy editing of micronuclear DNA occurs, so that non-
protein-coding sequences (called Internal Eliminated Sequences, IESs)
get eliminated and new macronuclear DNA are being created from the
micronuclear DNA as the result of splicing of micronuclear gene frag-
ments (called Macronuclear Destined Sequences, MDSs). Thus, this
DNA manipulation process is called gene assembly [57]. This process
is particularly complex in stichotrichous ciliates because gene fragments
on the micronuclear DNA are shuffled and some of the fragments are
inverted [8].

The order in which MDSs should be spliced to each other to as-
semble a macronuclear gene is indicated by short nucleotide sequences
(called pointers) placed on the edges of MDSs. Any two MDSs which
stay next to each other in the assembled macronuclear gene share same
pointer on their respective edges. In this way, pointers ”tell” for each
MDS to which other MDSs it should be spliced to. One can think
that MDSs that follow directly one another in the macronuclear DNA
”point” to each other by means of their pointers. Thus, a micronuclear
gene pattern could be interpreted as a linked list data structure, and
the gene assembly process could be seen as a list sorting procedure [61].
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3 Molecular models for gene assembly

Two molecular models for gene assembly that suggest splicing of MDSs
on their common pointers are called intermolecular [39, 42, 43] and in-
tramolecular [20, 21]. As it follows from their names, the intermolecular
model considers interaction and exchange of some pieces of DNA be-
tween several molecules during gene assembly, while the intramolecular
model assumes that all manipulations are being carried on in all DNA
independently from each other.

The intermolecular model

The intermolecular model considers three molecular operations [39, 42,
43]:

1. Intramolecular recombination: A block of DNA flanked by oc-
currences of same pointer gets excised in the form of a circular
molecule. As the result, two molecules are produced, one is linear
which contains the remaining nucleotide sequence, and another
is the circular one containing the excised sequence. For details
we refer to Figure 1.

2. Intermolecular recombination: As the inverse of the intramolec-
ular recombination, a circular molecule gets inserted into a linear
molecule if both molecules posses occurrences of the same pointer.
The circular molecule is cut at the site of the occurrence of the
pointer and gets inserted at the location of another occurrence of
the pointer into the linear molecule. See Figure 2.

3. Intermolecular recombination: Two linear molecules recombine
on their common pointer. As the result, two molecules inter-
change their tails starting on the common pointer. Note, that
this operation is self-reversible, i.e., if applied on its resulting
molecules on the same pointer, the initial two molecules can be
obtained. See Figure 3.
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Figure 1. Intramolecular recombination. (a) Initial molecule: a pointer
is in direct repeat. (b) Folding: the molecule folds forming a loop so
that occurrences of the pointer get next to each other. (c) The result:
A part of the molecule flanked by the occurrences of the pointer gets
excised in the form of a circular molecule.

The intramolecular model

The intramolecular model considers three operations, called ld, hi and
dlad [20, 21]:

1. Loop, direct-repeat excision, ld: This operation is applicable to a
molecule having either an IES flanked by repeating occurrences of
a pointer (called simple ld) or having a block containing all MDSs
flanked by occurrences of a pointer, and this pointer occurs twice
with the same orientation. The molecule folds forming a loop,
so that occurrences of the pointer get next to each other. Then
the recombination happens, and as the result the block flanked
by occurrences of the pointer gets excised as a circular molecule,
see Figure 4. Note, that this operation resembles the intramolec-
ular recombination from the intermolecular model, except that
its simple version does not excise DNA blocks containing any
MDS. During gene assembly this operation is used to get rid of
non-coding blocks.

2. Hairpin, inverted-repeat excision/reinsertion, hi: This opera-
tion is applicable to a molecule having two occurrences of the
same pointer with opposite orientations. The molecule folds form-
ing a hairpin loop, so that both occurrences of the pointer are
brought next to each other and have the same spacial orienta-
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Figure 2. Intermolecular recombination. The inverse of the in-
tramolecular recombination (a) Initial molecules: a circular and a lin-
ear molecule having occurrences of the same pointer (b) Result: the
circular molecule gets inserted into the linear molecule at the site of
occurrences of the pointer.

Figure 3. Intermolecular recombination. (a) Initially two linear
molecules with occurrences of the same pointer. (b) Result: molecules
exchange their tails starting at occurrences of the pointer.

tion. Then the recombination is possible, and as the result, piece
of the molecule flanked by occurrences of the pointer in the in-
verted repeat is inverted, see Figure 5. This operation is used
throughout the assembly process in order to restore the proper
orientation of MDSs.

3. Double loop, alternating direct-repeat excision-reinsertion, dlad:
This operation can be applied when the molecule has two point-
ers occurring in an overlapping direct repeat. I.e., when block
flanked by occurrences of the same orientation of a pointer over-
laps with the block flanked by occurrences of the same orientation
of the other pointer. The molecule folds forming a double loop
so that occurrences of both pointers get next to each other so
that the recombination be possible. In the result of this recombi-
nation, non-overlapping parts of blocks flanked by their pointers
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exchange their places, see Figure 6. This operation is used in the
assembly in order to sort MDSs in proper order.

Figure 4. Simple loop recombination [64]. (a) Initial molecule: an IES
flanked by occurrences of pointer p. (b) Loop-folding, alignment of
occurrences of pointer p. (c) Recombination by pointer p. (d) Result:
the IES is excised in the form of circular molecule, MDS A and MDS
B are spliced on the common pointer p in the linear molecule. One
occurrence of p is present in the linear molecule and one occurrence
of p is present in the circular molecule, but neither of them acts as a
pointer.

Note, that contrary to the intermolecular model, the intramolecular
operations are not reversible. Application of any of ld, hi or dlad
reduces the number of MDSs by gluing two or more MDSs on their
common pointers into bigger composite MDSs. A pointer is considered
to stop acting as a pointer, when its occurrence gets either inside of an
composed IES or of an composed MDS.
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Figure 5. Hairpin recombination [64]. (a) Initial molecule: one oc-
currence of p in an orthodox orientation and another in the inverted
orientation. (b) Hairpin-folding, alignment of occurrences of pointer p.
(c) Recombination by pointer p. (d) Resulting molecule: the orienta-
tion of PART B is changed, the rest of the molecule is not affected.
As a result of the inversion of PART B MDSs having pointer p are
spliced together. Occurrences of p and their orientations are retained,
but neither of the occurrences acts as a pointer.

Simple and elementary intramolecular models

The intramolecular operations allow in their general formulation that
DNA blocks participating in the recombination may contain any num-
ber of MDSs. However, arguing on the principle of parsimony, simple
intramolecular operations were introduced in [22] suggesting that all
the recombinations are applied ”locally”. Simple operations follow the
same folding and recombination events as the operations in the general
intramolecular model, however, blocks of DNA that are being inverted
or relocated may contain exactly one MDS. Even further simplification
of the intramolecular operations led to so called elementary operations,
where only the micronuclear (non-composite) MDSs are allowed to be
inverted/relocated [33]. I.e., as soon as two MDSs are combined into
a composite MDS, this MDS cannot be rearranged by the elementary
operations.
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Figure 6. Double-loop recombination [64]. (a) Initial molecule: blocks
flanked by occurrences of pointers p and q respectively overlap, their
common nucleotide sequence is PART C. (b) The molecule forms a
double-loop folding so that occurrences of p and q get aligned for the
recombination. (c) Recombination by pointers p and q. (d) Result-
ing molecule: PART B and PART D exchange places. As a result of
the translocation of PART B and PART D MDSs having pointer p are
spliced together, and MDSs having pointer q are spliced together. Oc-
currences of p and q remain in the molecule, but none of them act as a
pointer.

Template-guided recombination models

Since nucleotide sequences representing pointers are very short (from
2 to 20 base-pairs) and may occur also in the middle of MDSs and
IESs [6], there is a need for some kind of guiding mechanism which
”helps” ciliates to identify correctly MDSs and to align ”real” occur-
rences of the pointers next to each other and splice ”real” MDSs in the
right order. The template-guided recombination models suggest such
mechanism [7, 60]. These models rely on the concept of templates -
macronuclear DNA or RNA remained from maternal organisms. The
presence of those molecules in the newly formed macronuclei and their
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critical role for gene assembly have been shown experimentally [49].
The template-guided recombination represents triple-splicing, where
two recombining molecules (or different parts of the same molecule)
get aligned next to each other and recombine with the help of the
template molecule which being as a product of an earlier equivalent
recombination, shows the way the alignment and the recombination
should be done [7, 60].

In the first template-guided recombination model proposed in [60]
a double-stranded DNA serves as a template. This DNA is assumed to
be a copy of the assembled gene from the parental macronucleus. In
this model, the template DNA is placed in-between recombining DNA.
As the result of the recombination, one double stranded DNA whose
nucleotide sequence contains the left part of one of the recombining
molecules and the right part of the other of the recombining molecules
and which matches the template is obtained. During this recombina-
tion, the recombining molecules and the template molecule exchange
some of their physical parts, thus the resulting DNA contains some
parts of the template, and the template is reconstructed to its original
form, so that it could be reused for other recombinations. Also, the
right part of the first of the recombining molecules and the left part
of the second of the recombining molecules that do not much the tem-
plate get excised. In this template-guided recombination model the
parts of the recombining molecules that do not match the template are
not spliced together after the recombination, what contradicts both the
intermolecular and the intramolecular models.

A modification of the template-guided model from above was sug-
gested in [7]. Instead of double-stranded DNA either a single- or
double-stranded RNA serves as the template. During the recombi-
nation, the spacial position of the double-stranded template is ”above”
the recombining molecules contrary to the previous model. No physical
parts of the template get incorporated inside the resulting molecules.
Parts of the recombining molecules that do not match the template are
also spliced together.
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4 Formalizing gene assembly

As we have mentioned above, gene assembly process can be inter-
preted from the computational point of view as a permutation sorting
or string (or multiset of strings) rewriting process. We concentrate
in this manuscript on the intramolecular model. Hereby, we present
briefly here several formalisms for the intramolecular model at differ-
ent levels of abstraction. We start from the permutation-based formal-
ism [33], then we continue with MDS-descriptors [20, 21], after that
we switch to double occurrence strings [18, 23] and contextual string
rewriting rules [41, 47, 51], and finally we present graph-based formal-
ization [18, 23] for the intramolecular model.

Gene assembly as sorting of permutations

The most suitable formalism to handle simple and elementary in-
tramolecular operations is through rewriting rules for signed permu-
tations [33, 45]. A given gene pattern could be represented by a signed
permutation which indicates the order and orientation of its micronu-
clear MDSs. The gene assembly process itself could be interpreted as
a sorting of the signed permutation.

We formalize here only the elementary intramolecular model. As
the elementary operations rearrange only micronuclear MDSs, this
leads to the following formalization of elementary operations:

Definition 1 1. For each p ≥ 1, ehp is defined as follows:

ehp(xp(p + 1)z) = xp(p + 1)z,

ehp(xp(p + 1)z) = xp(p + 1)z,

ehp(x(p + 1)pz) = x(p + 1)pz,

ehp(x(p + 1)pz) = x(p + 1)pz,

where x, z are signed strings over Πn. We denote Eh = {ehp |
1 ≤ p ≤ n}.

182



On computational properties of gene assembly in ciliates

2. For each p, 2 ≤ p ≤ n− 1, edp is defined as follows:

edp(xpy(p− 1)(p + 1)z) = xy(p− 1)p(p + 1)z,

edp(x(p− 1)(p + 1)ypz) = x(p− 1)p(p + 1)yz,

edp(xpy(p + 1) (p− 1)z) = xy(p + 1) p(p− 1)z,

edp(x(p + 1) (p− 1)ypz) = x(p + 1) p (p− 1)yz,

where x, y, z are signed strings over Πn. We denote Ed = {edp |
1 < p < n}.

Since the permutation-based formalism captures only the MDS in-
version and relocation events throughout the gene assembly, LD oper-
ation is not being formalized because it neither inverts, nor relocates
MDSs [64].

Example 1 [33]

(i) Permutation π1 = 45 6 1 2 3 is sortable and a sorting composition is
(eh4 ◦eh5 ◦eh2 ◦eh1)(π1) = 4 5 6 1 2 3. Permutation π′1 = 45 6 1 2 3
is unsortable. Indeed, only eh4◦eh5 is applicable to π′1, but it does
not sort it.

(ii) There exist permutations with several sorting compositions, even
leading to different (cyclically) sorted permutations. One such
permutation is π2 = 24 1 3. Indeed, ed2(π2) = 4 1 2 3. At the
same time, ed3(π2) = 2 3 4 1.

(iii) There are permutations having both sorting compositions and
non-sorting compositions leading to unsortable permutations. If
π3 = 2 4 1 3 5, then ed3(π3) = 2 3 4 1 5 is a unsortable permuta-
tion. However, π3 can be sorted, e.g., by the following composi-
tion: (ed4 ◦ ed2)(π3) = 1 2 3 4 5.

(iv) Applying a cyclic shift to a permutation may render it unsortable.
Indeed, permutation 2 1 3 is sortable, while 3 2 1 is not.
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Gene assembly as MDS descriptor rewriting process

Here we represent a gene pattern through its sequence of MDSs.
Each MDS we represent through its incoming and outgoing pointers
(opening and closing pointers respectively), as well as through the se-
quence of pointers incorporated in the MDS on which micronuclear
MDSs spliced to form this composite MDS [20, 21, 4]. Formally, let
ΣP = {p1, p2, . . . , pn} be the set of pointers, and b, e ∈ ΣP be so called
begin and end markers (denoting opening sequence of very first MDS
and closing sequence of very last MDS respectively). Then we represent
an MDS by a triple M = (p, u, q), where p ∈ ΣP ∪ {b}, q ∈ ΣP ∪ {e}
are called active pointers and u ∈ Σ∗P is called the content. It is said,
that p is an incoming and q is an outgoing pointer of M . The length of
M is denoted as |M | = |puq|. We denote the set of all MDSs over ΣP

as ΣM = {(p, u, q)|p ∈ ΣP ∪ {b}, q ∈ ΣP ∪ {e}, u ∈ Σ∗P }. The inversion
of MDS M = (p, u, q) we denote as M = (q, u, p) and set of inverted
MDSs as ΣM = {M |M ∈ ΣM}.

The gene pattern we represent by its MDS descriptor – a sequence
of MDSs and their orientations. Formally, an MDS descriptor is a
string over alphabet ΣM ∪ ΣM .

Note, that the assembled gene is represented by any of the com-
posite MDSs (b, p1p2 . . . pn, e) and (e, pn . . . p2p1, b). In this way, a gene
assembly process may be interpreted as an MDS descriptor rewriting
process that leads to any of the two MDSs from above.

The intramolecular operations we formalize on MDS descriptors as
follows:

1. ld operation on pointer p is formalized as ldp:

ψ1(q, u, p)ψ2(p, v, r)ψ3 ⇒ldp ψ1(q, upv, r)ψ3

2. hi operation on pointer p is formalized as hip:

• ψ1(p, u, q)ψ2(p, v, r)ψ3 →hip ψ1ψ2(q, u p v, r)ψ3;

• ψ1(q, u, p)ψ2(r, v, p)ψ3 →hip ψ1(q, upv, r)ψ2ψ3;

3. dlad operation on pointers p and q is formalized as dladp,q:
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• ψ1(p, u1, r1)ψ2(q, u2, r2)ψ3(r3, u3, p)ψ4(r4, u4, q)ψ5 ⇒dladp,q

ψ1ψ4(r4, u4qu2, r2)ψ3(r3, u3pu1, r1)ψ2ψ5;

• ψ1(p, u1, r1)ψ2(r2, u2, q)ψ3(r3, u3, p)ψ4(q, u4, r4)ψ5 ⇒dladp,q

ψ1ψ4ψ3(r3, u3pu1, r1)ψ2(r2, u2qu4, r4)ψ5;

• ψ1(r1, u1, p)ψ2(q, u2, r2)ψ3(p, u3, r3)ψ4(r4, u4, q)ψ5 ⇒dladp,q

ψ1(r1, u1pu3, r3)ψ4(r4, u4qu2, r2)ψ3ψ2ψ5;

• ψ1(r1, u1, p)ψ2(r2, u2, q)ψ3(p, u3, r3)ψ4(q, u4, r4)ψ5 ⇒dladp,q

ψ1(r1, u1pu3, r3)ψ4ψ3ψ2(r2, u2qu4, r4)ψ5;

• ψ1(p, u1, r1)ψ2(q, u2, p)ψ4(r4, u4, q)ψ5 ⇒dladp,q

ψ1ψ4(r4, u4qu2pu1, r1)ψ2ψ5;

• ψ1(p, u1, q)ψ3(r3, u3, p)ψ4(q, u4, r4)ψ5 ⇒dladp,q

ψ1ψ4ψ3(r3, u3pu1qu4, r4)ψ5;

• ψ1(r1, u1, p)ψ2(q, u2, r2)ψ3(p, u3, q)ψ5 ⇒dladp,q

ψ1(r1, u1pu3qu2, r2)ψ3ψ2ψ5;

For more details on this formalism we refer to [20, 21, 4].

Example 2 [64]
Let us consider a micronuclear gene pattern of the actin I gene from

Stylonychia lemnae. Its MDS descriptor is

δ = (3, 4)(4, 5)(5, 6)(7, 8)(3, 2)(b, 2)(6, 7)(8, e).

Composition Φ = ld5 ◦ ld4 ◦ hi7 ◦ hi2 ◦ hi3 ◦ dlad6,8 reduces δ to MDS
(b, 234567, e). Indeed,

δ′ = dlad6,8(δ) =(3, 4)(4, 5)(5, 6, 7)(3, 2)(b, 2)(7, 8, e)
δ′′ = hi3(δ′) =(7, 6, 5)(5, 4)(4, 3, 2)(b, 2)(7, 8, e)

δ′′′ = hi2(δ
′′) =(7, 6, 5)(5, 4)(4, 32, b)(7, e)

δiv = hi7(δ
′′′) =(b, 23, 4)(4, 5)(5, 67, e)

δv = ld4(δiv) =(b, 234, 5)(5, 67, e)

δvi = ld5(δv) =(b, 234567, e)
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Gene assembly by contextual intramolecular operations
on double occurrence strings

If we abstract from the information about MDSs and concentrate only
on pointers occurrences in a gene pattern, then we obtain a string based
formalism, where each letter and its sign represent an occurrence of a
pointer and its orientation [23]. If we follow the idea that pointer
alignment during gene assembly is context-guided, then we may come
to the similar concept of contextual intramolecular operations [36].

Formally, set of templates may be represented by so-called splicing
scheme which is a set of splicing relations. A splicing rule is represented
by a pair of triplets (α, p, β) ∼ (α′, p, β′) which means that the recom-
bination at pointer p is possible if and only if, one of its occurrences is
flanked by sequences α and β and another of its occurrences is flanked
by α′ and β′.

The contextual ld on pointer p is formalized as delp: delp(xpupy) =
xpy with respect to splicing scheme R if and only if there is a splicing
relation (α, p, β) ∼ (α′, p, β′) in R such that x = x′α, u = βu′ = u′′α′

and y = β′y′.
The contextual dlad on pointers p and q is formalized as trlp,q:

trlp,q(xpuqypvqz) = xpvqypuqz with respect to splicing scheme R if and
only if there are splicing relations (α, p, β) ∼ (α′, p, β′) and (γ, q, δ) ∼
(γ′, q, δ′) in R such that x = x′α, uqy = βu′ = u′′α′, vqz = β′v′,
xpu = x′′γ, ypv = βy′ = y′′γ′ and z = δ′z′.

Formalizing contextual hi is beyond our scope in this manuscript.
For non-contextual formalizations of ld, hi and dlad we refer to [18,

23].

Gene assembly as graph reduction process

If we abstract from positions of pointers in a gene pattern and concen-
trate only on their overlapping relations, then we obtain graph-based
formalism for gene assembly [18, 23]. We recall that two pointers p
and q overlap if and only if the interval flanked by pointer p overlaps
(but does not include and is not included) with interval delimited by
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pointer q. I.e., we say that p and q overlap if in the gene pattern we
have either scattered subsequence pqpq or qpqp.

Formally, let u be a string representing occurrences of pointers in
a gene pattern. We define for it signed overlap graph G = (V, E, σ) as
follows:

• V = dom(u), i.e., each node p from G corresponds to a pointer p
from u;

• E = {{p, q}|pqpq ≤s u or qpqp ≤s u}, i.e., {p, q} is an undirected
edge in G if and only if pointers p and q overlap in u;

• σ : V → {+,−}, where σ(p) = − if and only if both occurrences
of p have the same sign (i.e., the same orientation) in u.

Operations LD, HI and DLAD are represented on the abstraction
level of signed overlap graphs as follows:

Let G = (V,E, σ) be a signed overlap graph:

• Operation ld on pointer p is formalized as graph reduction oper-
ation gnr: the operation gnr is applicable to a vertex p ∈ V if
σ(p) = − and N(p) = ∅. In this case, gnrp(G) = G− {p}.

• Operation hi on pointer p is formalized as graph reduction op-
eration gpr: the operation gpr is applicable to vertex p ∈ V
if σ(p) = +. In this case, gprp(G) = locp(G) − {p}, where
locp(G) = (V, E, σ′) with σ′(x) = −σ(x) if x is a neighbor of
p, otherwise σ′(x) = σ(x), for all x ∈ V . Here −σ(x) = − if and
only if σ(x) = +.

• Operation dlad on pointers p and q is formalized as graph reduc-
tion operation gdr: The operation gdrp,q is applicable to adjacent
vertices p, q ∈ V if σ(p) = σ(q) = −. In this case, gdrp,q(G) = G′

where G′ = (V \ {p, q}, E′, σ). Here for all pairs of x and y from
V \ {p, q} such that x ∈ NG(p) \ NG(q) and y ∈ NG(q) \ NG(p)
we have edge {x, y} ∈ E′ if and only if x and y are not neighbors
in G. For all other pairs x, y from V \ {p, q} we have {x, y} ∈ E′

if and only if {x, y} ∈ E.
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Example 3 [64]
Here we show how an overlap graph G which represents the mi-

cronuclear gene pattern of the actin I gene from Stylonychia lemnae,
can be reduced to the empty graph:

Step 1: Vertices 6 and 8 are negative and adjacent in G. In this way,
we can apply gdr6,8. The resulting graph gdr6,8(G) is represented
in Figure 7(a);

Step 2: Vertex 3 is positive in gdr6,8(G). Then, we can apply gpr3.
Vertex 7 changes its sign since it is adjacent to 3. Then we obtain
graph represented in Figure 7(b);

Step 3: Vertices 2 and 7 are positive in gpr3(gdr6,8(G)). Then we
can apply gpr2 and gpr7. The resulting graph is represented in
Figure 7(c);

Step 4: Finally, only two negative isolated vertices 4 and 5 remain
in (gpr7◦ ◦gpr2 ◦ gpr3 ◦ gdr6,8)(G). By applying gnr4 and gnr5 we
reduce the graph to the empty one.

5 Complexity of gene assembly

Intuitively, by ”complexity” of gene assembly one can understand the
”effort” needed to assemble a gene. In literature exist several concepts
for the complexity of gene assembly related to types of molecular oper-
ations involved into the process as well as to the order and the manner
in which those operations are applied [64]. In this section we address
such gene assembly complexity related topics as simple [22] and ele-
mentary [33] gene assembly as well as the parallel complexity of gene
assembly [30, 28].

Simple and elementary gene assembly

In its general formulation, intramolecular operations may invert and
translocate blocks of DNA containing any number of MDSs. It has

188



On computational properties of gene assembly in ciliates

(a)

(b) (c) (d)

Figure 7. Graph reduction strategy [64]: (a) Graph G which repre-
sents the micronuclear gene pattern of the actin I gene from Stylony-
chia lemnae, (b) Graph gdr6,8(G), (c) graph gpr3(gdr6,8(G)), (d) graph
(gpr7 ◦ gpr2 ◦ gpr3 ◦ gdr6,8)(G).

been shown that the intramolecular model is complete in a sense that
any given hypothetical micronuclear gene pattern can be assembled to
the macronuclear gene [17]. The restriction from general intramolec-
ular to simple model has one immediate consequence, simple model
is not complete. I.e., there are some hypothetical gene patterns for
which there is no assembly strategy consisting of solely simple oper-
ations which lead to assembled macronuclear gene. However, simple
operations can assemble all currently discovered from ciliates gene pat-
terns [17, 22]. This fact enables the hypothesis that ciliates use simple
operations to assemble their genes. Then it might be interesting to
characterize those gene patterns that can be assembled by simple op-
erations.

There may exist many different intramolecular assembly strategies
applicable to the same micronuclear gene pattern [17]. In general in-
tramolecular model, any assembly strategy applicable to a gene pattern
leads to an assembled gene. However, since simple model is not com-
plete, there are gene patterns for which there is no simple assembly
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strategy leading to the assembled gene. Interestingly, any gene pattern
which can be assembled by simple operations to the macronuclear gene
has only successful simple strategies (i.e., those leading to the macronu-
clear gene) [44]. In this way, characterizing those gene patterns that
can be assembled by simple strategies is straightforward: just try a sim-
ple assembly strategy and see if it assembles successfully a gene pattern
to the macronuclear gene. However, the situation is totaly different for
elementary operations.

The slight difference between the definitions of simple and elemen-
tary operations (elementary hi and dlad invert/relocate blocks of DNA
containing only one non-composite MDS) generates the following im-
portant outcome: a gene pattern may have both successful and un-
successful applicable elementary assembly strategies [33]. This means
that characterization of those gene patterns that can be assembled by
elementary operations is not as straightforward as it is in the case of
simple operations. It may be necessary to try some number of differ-
ent elementary assembly strategies applicable to a gene pattern before
finding a successful one. However, we have found an efficient combina-
torial procedure to decide whether a gene pattern may be assembled
by elementary operations without actually trying any of elementary
assembly strategies [56, 63].

Our decision method is basing on the concept of a dependency graph
associated to a gene pattern [33]. The dependency graph is a directed
graph reflecting the information about the order in which operations
can be used in strategies applicable to the gene pattern as well as about
those operations that are never used in any strategy for this pattern.
In this manuscript we present results addressing gene patterns without
inverted MDSs. For characterization of gene patterns with the inverted
MDSs we refer to [33].

As it was mentioned above, signed permutations is a suitable for-
malism to represent gene patterns when working with elementary oper-
ations. The dependency graph associated to permutation π is defined
as Γπ = (Vπ, Eπ), where Vπ = dom(π) and

Eπ = {(1, 1), (n, n)} ∪ {(i, i)|(i + 1)(i− 1) ≤s π}∪
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∪{(j, i)|(i− 1)j(i + 1) ≤s π}.
Also, we denote the subgraph induced from Γπ by set Tπ,p =

{q|there is a path from q to p in Γπ} as Γπ,p.

Example 4 [64]
Let π = 1 10 3 5 7 12 2 9 4 11 6 13 8. Then

Vπ = dom(π) = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13}

and

Eπ = {
(1, 1)
(10, 2), since 1 10 3 ≤s π

(9, 3), since 2 9 4 ≤s π

(11, 5), since 4 11 6 ≤s π

(13, 7), since 6 13 8 ≤s π

(2, 8), (12, 8) since 12 12 2 9 ≤s π

(9, 9), since 10 8 ≤s π

(4, 10), since 9 4 11 ≤s π

(3, 11), (5, 11), (7, 11), since 10 3 5 7 12 ≤s π

(6, 12), since 11 6 13 ≤s π

(13, 13), since n = 13
}

The corresponding dependency graph Γπ = (Vπ, Eπ) is shown in
Figure 8.

Since we consider here gene patterns without inverted MDSs, all
gene assembly strategies that we address do not use hi operations.
I.e., formally we consider Ed-sortable permutations. For dependency
graph-based characterization of Eh,Ed-sortable permutations we refer
to [33].

Here we present a constructive dependency graph-based character-
ization of Ed-sortable permutations from [56]. We use the notion of
so-called ”forbidden integers” for a permutation, integers on which ed
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?>=<89:;4 // ?>=<89:;10 // ?>=<89:;2 // ?>=<89:;8

?>=<89:;5

²²?>=<89:;3 // ?>=<89:;11

OO

?>=<89:;7oo ?>=<89:;12

OO

?>=<89:;9

OO
­­

?>=<89:;1
­­

?>=<89:;13

OO
®® ?>=<89:;6

OO

Figure 8. The dependency graph Γπ = (Vπ, Eπ) of permutation π =
110 3 5 7 12 2 9 4 11 6 13 8 [64]

operations are never used in any ed-strategy applicable to the permu-
tation. I.e., an integer p from domπ for some unsigned permutation π
we call forbidden if and only if there is no Ed strategy applicable to π
where operation edp is used.

We can decide the set of forbidden integers for a permutation π as
follows:

Theorem 1 [56] For a permutation π over Σn and p ∈ Σn, p is
forbidden in π if and only if the subgraph Γπ,p = (Tπ,p, Eπ,p) is cyclic
or q − 1, q ∈ Tπ,p for some q.

By π|U we denote a scattered substring of π containing only the
letters from set U .

Now, we decide the Ed-sortability of a permutation π as follows:

Theorem 2 [56]
Permutation π is sortable if and only if π|F (π) is sorted.

Example 5 [64]
Let π be the permutation from Example 4. By Theorem 1, set

F (π) = {1, 3, 5, 7, 9, 11, 13}, since 1, 9 and 13 are in self-loops, 5 and
11 form a cycle, and edges (9, 3) and (13, 7) belong to Γπ. Clearly
π|F (π) = 1 3 5 7 9 11 13, which is sorted. Thus π is sortable. For in-
stance, composition of ed operations ed8 ◦ ed12 ◦ ed6 ◦ ed2 ◦ ed10 ◦ ed4(π)
sorts π.
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This theorem does not provide any information about those ed
strategies that sort π. The general form of all sorting strategies was
presented in [63].

Parallel gene assembly

By parallel complexity of a gene pattern we understand the minimal
number of parallel steps needed to assemble a gene. Formally, the
parallelism of gene assembly is analyzed by means of the pointer re-
duction system. We say that a set of graph reduction operations may
be applied in parallel to a graph if and only if these operations may
be applied in any order to the graph. It was shown that for an initial
graph the set of reduction operations, but not the order of their ap-
plication determine the resulting graph. All these enables the notion
of parallel reduction of a graph as a sequence of parallel steps leading
to the empty graph [30, 28]. Here a parallel step is a set of opera-
tions applied in parallel. We represent a parallel reduction formally as
Φ = Sk ◦ . . . ◦ S1, where Si is a set of operations applicable in par-
allel to graph Si−1 ◦ . . . ◦ S1(G) and Φ(G) is an empty graph. The
parallel complexity of Φ is k, we denote it as C(Φ) = k. By parallel
complexity of graph G we understand the minimal complexity among
all of its parallel reductions. Formally, the parallel complexity of G is
C(G) = min{C(R) | R is a parallel reduction of G}.

One of the main open questions related to the topic of parallel
gene assembly is whether ”the common finite upper bound for parallel
complexities of all signed overlap graphs exists”. This question was an-
swered only for some particular types of graphs in [28, 31, 30]. The
highest parallel complexity for negative trees is 2, and for positive trees
is 3. The upper bound for arbitrarily signed trees is unknown. The
parallel complexity of negative paths with 2n vertices is 1, and of neg-
ative paths with 2n + 1 vertices is 2. The parallel complexity of any
path with either 3n or 3n + 1 vertices is 2, and of any positive path
with 3n + 2 vertices is 3. Any positive complete bipartite or tripartite
graph has a parallel complexity of at most 3. Upper bounds for parallel
complexities of some other types of graphs are also known.

193



V. Rogojin

Another open problem for the topic of parallel gene assembly is to
find an efficient algorithm to decide the parallel complexity of a signed
graph. Currently, the most optimal known algorithm computing the
parallel complexity of a graph [5] has time complexity

O

(
nn+7/2

cn

)
for c =

e√
2
.

This is an improvement in comparison to the basic brute force algo-
rithm [3] where all applicable parallel strategies are being checked. In
this improved algorithm we are considering parallelization of sequential
graph reduction strategies. Any sequential strategy that we consider is
split into parallel steps in such a manner that the number of parallel
steps is minimal for this strategy. Moreover, we do not consider more
than one sequential strategy having the same parallelization. This
approach enables us to consider instead of many parallel reduction
strategies with the same domain of operations just one of them with
the lowest complexity. Moreover, we have improved also on the parallel
applicability decision procedure. Instead of checking the applicability
of all permutations of operations from a set, we have used another ap-
proach. We based on the fact that a set of operations S is applicable
in parallel to a graph G if and only if for any subset S′ ⊆ S sequence of
operations r ◦ lex(S′) is applicable to G, where r ∈ S \ S′ and lex(S′)
is the lexicographical order of operations from S′. In this way, we have
to check k2k−1 sequences of operations r ◦ lex(S′) to decide the paral-
lel applicability of S. The complexity estimate of the basic algorithm
in [3] grows almost as fast as (nn)2, while the present estimate of the
improved algorithm in [5] grows almost as fast as nn.

6 Computing with gene assembly

In this section we concentrate on the topic of computing by gene assem-
bly in ciliates. Inspired by the celebrated computational experiment of
Adleman with DNA [1], we are interested whether and how we can com-
pute by using evolved DNA manipulation during the gene assembly.
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The research in this direction addresses such formal language-based
topics as computability, hierarchies of classes, language equations, clo-
sure properties, as well as the results on developing methods to solve
computationally hard mathematical problems.

Formal languages-related results

One of the first results concerning the computability of gene assembly
was obtained for the intermolecular model [39]. The concept of contex-
tual recombinations [54] was used to simulate computations by Turing
machines by using intermolecular operations. Basing on contextual
version of intermolecular operations an accepting system was defined:
a multiset of strings is accepted if in result of application of a sequence
of contextual intermolecular operations according to the given splicing
scheme [26] a multiset containing the given axiom word is obtained.

Inspired by this result we have shown in a similar manner the Tur-
ing universality for the contextual intramolecular operations [36]. Since
the intramolecular model operates on a single molecule, we used the
formalism of contextual string rewriting rules representing intramolec-
ular operations. Basing on these contextual string rewriting rules we
have defined an accepting intramolecular recombination system incor-
porating the following ingredients: the splicing scheme, the start word
and the target word. That system accepts all those words which being
concatenated to the start word produce the target word in the result of
a sequence of application of contextual string rewriting rules according
to the given splicing scheme. Formally, an accepting intramolecular
recombination system is denoted as G = (Σ,∼, α0, wt), where (Σ,∼)
is the splicing scheme, α0 is the start word and wt is the target word.
G accepts the following language: L(G) = {w ∈ Σ∗|α0w ⇒∗

R̃
wt}. Ac-

cepting intramolecular recombination systems were proved to be uni-
versal. Instead of using multiple copies of a string as in the case of the
intermolecular model we used concatenation of multiple copies of the
string. For any simulation of a Turing machine we assumed that we
have as many concatenations of copies of the string as needed.

It was shown in [2] that the ”contextual ingredient” of the inter-
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molecular model if substituted by the ”distribution ingredient” does
not decrease the computational power of gene assembly. In [2] there
were introduced tissue P systems with ciliate operations. In general, a
tissue P system is represented by an undirected graph, where multisets
of objects and sets of multiset rewriting (evolution) rules are associated
to each node (called region, or membrane, or cell). Rules define the
evolution of multisets and communication between neighboring regions
through communication channels (the graph edges) [48]. The paradigm
of P systems was motivated from such biological elements as cellular
membranes and membranal structure, biochemical reactions, DNA and
RNA manipulations, transmembrane transportation of chemicals and
other phenomena in cellular biology [52, 53, 48]. We refer to [53, 62] for
the detailed overview on the research topic of P systems. In its generic
definition, P systems posses an abstract nature of their objects and
evolution rules. In tissue P systems with ciliate operations the objects
are strings representing DNA molecules and evolution rules are inter-
molecular operations with transmembrane communication. It is added
to the definition of the intramolecular excision and the intermolecu-
lar insertion, the information about the regions-targets for the excised
circular molecule and the molecule containing non-excised sequences,
as well as the information about regions-sources for the recombining
molecules.

Formally, a tissue P system with ciliate operations is defined as a
tuple Π = (O, C, R, i0), where O is a finite set of symbols, C is a finite
set of regions, R is a finite set of excision/insertion rules and i0 is the
output region. To each region c ∈ C there are associated finite sets
of strings inf(c) presented in infinite number of copies in c and initial
finite multiset of strings cfg(c). The strings can be both linear and
circular and are defined over alphabet O. Each evolution rule from R
has one of the following forms: intramolecular excision rule i →p j/k is
applicable on a string upvpw (or ◦upvpw) in region i ∈ C and produces
strings upw (or ◦upw respectively) and ◦pv in region k; intermolecular
insertion rule j/k →p i is applicable on pair of strings upw (or ◦upw)
in region j and ◦pv in region k and produces string upvpw (or ◦upvpw
respectively) in region i. Here p is a pointer and u, v, w are linear strings
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over O. All rules from R are applied in parallel either synchronously or
non-synchronously and either in maximally parallel or non-maximally
parallel manner (depending on the type of the system). If in result of
application of rules from R the system reaches a state where no rule
from R could be used, then the multiset of words (or the number of
words) in region i0 is considered to be the result of computation of
Π. Registers machines were chosen to be simulated by the tissue P
systems with ciliate operations in order to prove the P systems Turing
universality.

Among other results on gene assembly based on formal languages
we can mention language operations inspired by molecular gene as-
sembly operations and their closure properties as well as solutions of
language equations [9, 12, 13, 24], language operations inspired by the
template-guided DNA recombination [15, 16], generalization of intra-
and intermolecular operations as synchronized insertion/deletion on
linear strings [9], generalized versions of ld and dlad operations and
families of languages defined by closure under those operations [10, 11].

Computing NP-complete problems

We are wondering how we can use gene assembly in order to solve
computationally intractable problems. One of the advantages of gene
assembly over DNA computing from the point of view of the experimen-
tal implementation might be the fact that such actions as amplification
(producing a high number of clones of a DNA molecule) and filtering on
the DNA molecules of interest which should be performed ”manually”
in the lab might be executed by ciliates ”autonomously”.

In this section we survey research results related to the develop-
ment of computational methods for solving NP-complete problems [50]
by means of gene assembly process. Generally, the gene assembly pro-
cess is deterministic and confluent, i.e., starting from a gene pattern
it always assembles the macronuclear gene (or in case of simple in-
tramolecular operations all assembly strategies applicable to the gene
pattern either lead to the assembled gene, or all of the strategies fail).
The basic approach for solving instances of NP-complete problems is in
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checking all the particular solutions for the instance of an NP-complete
problem. In order to implement this approach by means of gene assem-
bly, one has to make the gene assembly process non-deterministic and
non-confluent, i.e., while starting from the same gene pattern different
assembly strategies should produce different resulting molecules. This
is achievable if allowing gene patterns with more than two occurrences
of the same pointer (and even with several copies of the same MDS) [4].
Then, the computational method for solving NP-complete problems is
looking as follows:

1. Encode an instance of the problem as a gene pattern;

2. Let the ciliate amplify the molecule with the encoded instance;

3. Let the gene assembly occur so that all copies of the molecule
get assembled by different assembly strategies corresponding to
different particular solutions to different resulting molecules;

4. Interpret the resulting molecules as the results of the correspond-
ing particular solutions of the instance.

In [4] we have presented a computational method to solve instances
of Hamiltonian Path Problem (HPP) inspired by the famous Adleman’s
experiment with DNA [1]. For a directed graph G = (V,E) with n
vertices and m edges a hamiltonian path in G from vertex p to vertex
q is a noncyclic path from p to q containing all the vertices from G.
The HPP is defined as the problem of deciding whether there exists a
hamiltonian path from p to q.

Adleman has solved a small instance of HPP through an experimen-
tal assay on its DNA encoding. He implemented the following steps by
using biotechnological tools:

Step 1: Generating random paths of the graph;

Step 2: Filtering set of paths generated at Step 1 so that only paths
from p to q remain;

Step 3: Filtering set of paths generated at Step 2 and living only paths
of exactly length n;
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Step 4: Filtering set of paths generated at Step 3 and retaining just
paths containing all the vertices of the graph;

Step 5: The paths remaining after Step 4 are the hamiltonian paths.

The instance of HPP problem was encoded as follows: for each
vertex i of the graph there was designed a short single strand DNA
sequence Oi of length 20 bp. An edge between vertices i and j was
represented by a single strand molecule Oij where the prefix Oij of
length 10 was the suffix of Oi, and the suffix of Oij was the prefix of
Oj . In his experimental asset, Adleman used a number of copies of
molecules Oij for each edge (i, j) ∈ E and a number of copies Oi of
complementary strands to Oi for each vertex i ∈ V .

Then, Step 1 was implemented as follows. All the molecules Oij

were let to splice to the complementary sites at molecules Oi and Oj in
a random way. In this way, two molecules Oij and Ojk were attached
to each other by means of molecule Oj and a double-stranded molecule
representing path ijk from the graph G was produced. In this manner
there were produced double-stranded DNA representing a number of
paths from graph G. It was assumed that there were enough number
of copies of vertex- and edge-representing molecules provided in the
initial assay so that the probability of generating hamiltonian paths
was sufficiently high.

Then, Step 2 was implemented by polymerase chain reaction, Step
3 by gel electrophoresis, and Step 4 was performed by using a biotin
avidin magnetic beads system in order to select molecules containing
nucleotide sequences Oi for all i ∈ V . In this way, in result of the
experiment only the molecules representing hamiltonian paths were
obtained.

In this way, Adleman has demonstrated that in principle one can
use DNA to compute in vitro computationally intractable mathematical
problems. Adleman’s result has motivated our work [4], where we
followed similar principles and have demonstrated (albeit theoretically)
how complex DNA manipulations naturally occurring in living cells
could be used to compute solutions for NP-complete problems.
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We developed several encodings for instances of HPP through artifi-
cial gene patterns, so that the results of gene assembly are the solutions
of the problem, i.e., hamiltonian paths. In this way, the gene assembly
is successful if and only if the problem has a solution (i.e., at least one
hamiltonian path).

We used the formalism of MDS descriptors in order to encode HPP
instances. For a directed graph G = (V,E) we represented each vertex
p ∈ V as a pointer p, and each directed edge (p, q) ∈ E we represented
as an MDS (p, q). A path puq in the graph from vertex p to vertex q
via vertices u we represented as a composite MDS (p, u, q), where u is
a string over V .

Since a graph may contain more than two edges incident to a ver-
tex p, then we may get in our encoding more than two occurrences of
pointer p for the same gene pattern. Gene patterns with any number of
occurrences of pointers yield non-deterministic assembly strategies, fa-
cilitating in this way the possibility to assemble molecules correspond-
ing to many different paths in the graph. Moreover, we relaxed the
conditions under which molecular operation LD could be applied on a
molecule: we allowed LD to excise parts of a molecule which contain
any number of MDSs.

For each of the following subsets of intramolecular operations LD,
HI, DLAD, {LD, DLAD}, {LD, HI, DLAD} we have designed artificial
gene patterns which could be assembled by the respective subsets
of operations to a molecule represented either as (b, p1upn, e) or as
(e, pnup1, b), where in our HPP instance we are interested in hamilto-
nian paths from p1 to pn. Among all the assembled MDSs (b, p1upn, e)
and (e, pnup1, b) we choose those which contain all pointers p ∈ V in
string p1upn and the length of p1upn equals n. I.e., we choose the
assembled MDSs which correspond to hamiltonian paths in G.

The length of the encoding on gene patterns for an instance of HPP
is O(m) for all subsets of intramolecular operations with the exception
of only LD operations. Encoding for LD-only strategies has length
O(mn).

The result we presented here is purely theoretical. In order to
implement this method in a lab, we have to clarify experimentally the
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following questions: will a ciliate accept our artificially designed gene
pattern and can two ciliates assemble our identical gene pattern into
two different macronuclear genes according to our model? Since it was
demonstrated experimentally, that templates guide the gene assembly
process [49], probably we may tweak the gene assembly by designing
our own templates [4].

A slightly different approach to solve computationally intractable
problems was presented in [34, 35]. Computational methods to solve
instances of Boolean satisfiability problem (SAT) were developed for
both of the intramolecular and intermolecular models. Unlike the result
with HPP from above, the formalism of contextual string rewriting
rules was used.

7 Discussion

Initially, the research on the computational nature of gene assembly in
stichotrichous ciliates was aiming at explaining and understanding this
evolved biological DNA manipulation process. A considerable number
of biologically related results were obtained. For instance, model- and
strategy-independent invariant properties were discovered for gene as-
sembly in [19, 55]. Theoretical models and the experimental evidence
were presented for the short pointer identification problem. In partic-
ular, template-based recombination models were considered in [21, 7]
and experimental work was presented in [49] describing the function
of maternal RNA-templates on gene assembly. Virtual knot diagrams
were presented in [7] as a physical representation of the homologous
recombinations of molecule(s) during gene assembly.

Also, the research on computational properties of gene assembly
has a great impact on Computer Science and Discrete Mathemat-
ics. In particular, new computational modeling techniques and com-
puting paradigms, formal language theoretical results were obtained.
Models for gene assembly and models motivated by gene assembly
were introduced in terms of permutations, strings, graphs, formal lan-
guages and linear algebra. For instance, language generating sys-
tems based on gene assembly were introduced [14], non-contextual
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string rewriting rules were presented in [9, 12, 13, 24] and used to
study the closure properties and language equations. The template-
guided recombination-based language operations were explored in [10].
Turing-completeness of both inter- and intramolecular operations was
demonstrated in [25, 36, 38, 39]. The research related to the concept of
parallel gene assembly was launched in [3, 5, 29, 28, 30]. For a recent
detailed survey on the research topics on the computational nature of
gene assembly we refer to [40]. Also, for a review on some recent results
in this area we refer to [64].
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and G. Rozenberg (eds.), Jewels are Forever, Springer, Berlin Hei-
delberg, New York, (1999), pp. 353–363.

[39] Kari, L., and Landweber, L. F., Computational power of gene rear-
rangement. In: E. Winfree and D. K. Gifford (eds.) Proceedings of
DNA Bases Computers, V American Mathematical Society (1999)
207–216.

[40] Brijder, R., Daley, M., Harju, T., Jonoska, N., Petre, I., and Rozen-
berg, G., Computational nature of gene assembly in ciliates. In:
L. Kari, G. Rozenberg (Eds.), Handbook of Natural Computing,
Springer, (2009), to appear.

[41] Kari, L., and Thierrin, G., Contextual insertion/deletions and
computability. Information and Computation, 131, (1996), pp.
47–61.

[42] Landweber, L. F., and Kari, L., The evolution of cellular com-
puting: Nature’s solution to a computational problem. In: Pro-
ceedings of the 4th DIMACS Meeting on DNA-Based Computers,
Philadelphia, PA (1998) pp. 3–15.

206



On computational properties of gene assembly in ciliates

[43] Landweber, L. F., and Kari, L., Universal molecular computation
in ciliates. In: L. F. Landweber and E. Winfree (eds.) Evolution
as Computation, Springer, Berlin Heidelberg New York (2002).

[44] Langille, M., Petre, I., Simple gene assembly is deterministic. Fun-
damenta Informaticae 72, IOS Press, (2006), pp. 1–12.

[45] Langille, M., Petre, I., Rogojin, V., Three models for gene assem-
bly in ciliates: a comparison. Proceedings of BIONETICS 2008, to
appear (2009).

[46] Lynn, D.H., Small, E.B., A Revised Classification of the Phylum
Ciliophora Doflein, 1901. Revista de la Sociedad Mexicana de His-
toria Natural, Mexico, 47, (1997), pp. 65–78.

[47] Marcus, S., Contextual Grammars. Revue Roumaine de Matema-
tique Pures et Appliquees,, 14, (1969), pp. 1525–1534.

[48] Martin-Vide, C., Păun, G., Pazos, J., and Rodriguez-Paton, A.,
Tissue P systems. Theoretical Computer Science, 296(2), pp. 295–
326. DOI: 10.1016/S0304-3975(02)00659-X.

[49] Nowacki, M., Vijayan, V., Zhou, Y., Schotanus, K.,
Doak, T.G., Landweber, L.F., RNA-mediated epigenetic pro-
gramming of a genome-rearrangement pathway. Nature 451,
doi:10.1038/nature06452, (2008) 153–158.

[50] Papadimitriou, C.H., Computational Complexity. Addison-Wesley,
(1994).
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