
Computer Science Journal of Moldova, vol.18, no.2(53), 2010

Minimal Parallelism and Number of Membrane

Polarizations

Artiom Alhazov

Abstract

It is known that the satisfiability problem (SAT) can be ef-
ficiently solved by a uniform family of P systems with active
membranes with two polarizations working in a maximally par-
allel way. We study P systems with active membranes without
non-elementary membrane division, working in minimally paral-
lel way. The main question we address is what number of po-
larizations is sufficient for an efficient computation depending on
the types of rules used.

In particular, we show that it is enough to have four polar-
izations, sequential evolution rules changing polarizations, polar-
izationless non-elementary membrane division rules and polar-
izationless rules of sending an object out. The same problem is
solved with the standard evolution rules, rules of sending an ob-
ject out and polarizationless non-elementary membrane division
rules, with six polarizations. It is an open question whether these
numbers are optimal.

1 Introduction

Membrane computing with symbol-objects is a biologically inspired
framework of distributed parallel multiset processing; see [11] for an
overwiew and [15] for the comprehensive bibliography. The most ad-
dressed questions are completeness (solving every solvable problem)
and efficiency (solving hard problems in feasible time). We focus on
the latter one.

An interesting class of membrane systems are those with active
membranes (see [10]), where membrane division can be used for solving

c©2010 by A. Alhazov

149

A. Alhazov

computationally hard problems in polynomial time. Let us mention a
few results:

• A semi–uniform solution to SAT using three polarizations and
division for non-elementary membranes, [10].

• A polarizationless solution, [3].

• Using only division for elementary membranes, with three polar-
izations, [12].

• A uniform solution, with elementary membrane division, [13].

• Using only two polarizations, in a uniform way, with elementary
membrane division, [4].

• Computational completeness of P systems with three polariza-
tions and three membranes, [11].

• Using only two polarizations and two membranes, [6].

• Using only one membrane, with two polarizations, [5].

• Polarizationless systems are complete, with no known bound on
the number of membranes, [2].

• Solving SAT in a minimally parallel way, using non-elementary
membrane division (replicating both objects and inner mem-
branes), [7].

• Avoiding polarizations by using rules changing membrane labels.
Using (up to the best author’s knowledge) either cooperative rules
or non-elementary division as above, [9].

Given a P system, a rule and an object, whether this rule is applica-
ble to this object in some membrane might depend on both membrane
label (that usually cannot be changed) and membrane polarization.
Essentially, the number of polarizations is the number of states that
can be encoded directly on the membrane.

150

Minimal Parallelism and Number of Membrane Polarizations

Minimal parallelism provides less synchronization between the ob-
jects, so one might expect the need of a stronger control, i.e., more po-
larizations. It is not difficult to construct the system in such a way that
the rules are global (i.e., the membrane labels are not distinguished),
most likely without adding additional polarizations. In this way the
results dealing with the number of polarizations can be reformulated in
terms of number of membrane labels (in that case, the systems have no
polarizations, but the rules are allowed to modify membrane labels).

This paper is an extended version of [1].

2 Preliminaries

2.1 Solvability by P systems with input

Definition 1 A P system with input is a tuple (Π,Σ, iΠ), where (a)
Π is a P system with working alphabet , with m membranes labelled
with 1, · · · ,m, and initial multisets w1, · · · , wm (over O−Σ) associated
with them; (b) Σ ⊆ O is an (input) alphabet, (c) iΠ is the label of a
distinguished (input) membrane.

The initial configuration of (Π,Σ, iΠ) with an input multiset w over Σ is

(µ,w1, · · · , wiΠ ∪ w, · · · , wm).

We call (Π, Σ, iΠ) a decisional P system with input if there exists two
distinguished objects yes, no ∈ O and for any valid input (see cod
function in the definition below) all its computations send to the envi-
ronment exactly one object, either yes (in this case the computation is
called an accepting one) or no. Moreover, (Π, Σ, iΠ) is called confluent if
for any valid input all its computations halt in the same configuration.

Definition 2 Consider a decision problem X = (IX , θX): IX is the
set of possible instances of X and θX is a boolean function over IX .
We say that X is solvable in polynomial time by a uniform family of P
systems Π = (Π(n))n∈N if the following conditions hold:

151

A. Alhazov

• The family Π is polynomially constructible, i.e., there exists a
deterministic Turing machine constructing the system Π(n) from
n in polynomial time.

• There exists a pair (s, cod) of polynomial-time computable func-
tions mapping every instance u ∈ IX of the problem X into a
natural number and a multiset (over the alphabet of Π(s(u))), re-
spectively. The instance u is to be solved by a system Π(s(u))
with the multiset cod(u) placed in the input membrane, as de-
scribed below.

• The family Π is polynomially bounded with respect to (X, cod, s),
i.e., there exists a polynomial function p(n) such that for each
u ∈ IX every computation of the system Π(s(u)) with input cod(u)
is halting in at most p(s(u)) steps.

• The family Π is sound with respect to (X, cod, s), i.e., for each
u ∈ IX if there exists an accepting computation of Π(s(u)) with
input cod(u), then θX(u) = 1.

• The family Π is complete with respect to (X, cod, s), i.e., for each
u ∈ IX if θX(u) = 1, then every computation of Π(s(u)) with
input cod(u) is an accepting one.

2.2 P systems with active membranes

Definition 3 A P system with active membranes is a P system with
the working alphabet O, with the set H of membrane labels, with the
set E of polarizations, and with the rules of the following forms:

(a) [a → u]eh for a ∈ O, u ∈ O∗, h ∈ H and e ∈ E. These are object
evolution rules. An object a ∈ O in the region associated with a
membrane with label h and polarization e evolves to a multiset
u ∈ O∗.

(b) a[]eh → [b]e
′

h for a, b ∈ O, h ∈ H and e, e′ ∈ E. These
are send–in communication rules. An object a from the region
immediately outside a membrane with label h and polarization e

152

Minimal Parallelism and Number of Membrane Polarizations

is introduced in this membrane, transformed into b and changing
the polarization of the membrane to e′.

(c) [a]eh → []e
′

h b for a, b ∈ O, h ∈ H and e, e′ ∈ E. These are send–
out communication rules. An object a is sent out from the region
associated with membrane with label h and polarization e to the
region immediately outside, transformed into b and changing the
polarization of the membrane to e′.

(d) [a]eh → a for a, b ∈ O, h ∈ H and e ∈ E. These are dissolution
rules. A membrane with label h and polarization e is dissolved in
reaction with an object a, transformed into b. The skin is never
dissolved.

(e) [a]eh → [b]e
′

h [c]e
′′

h for a, b, c ∈ O, h ∈ H and e, e′, e′′ ∈ E.
These are division rules for elementary membranes. An elemen-
tary membrane can be divided into two membranes with the same
label, possibly with different polarizations, possibly transforming
some objects.

Generally, rules of type (a) are executed in parallel, while at most one
rule out of all rules of types (b), (c), (d), (e) can be applied to the same
membrane in the same step. We also speak about the sequential version

(a′′s) [a]eh → [u]e
′

h for a ∈ O, u ∈ O∗, h ∈ H and e, e′ ∈ E.

of rules (a) (let us use ′′ to indicate that the rule is allowed to
change the polarization of the membrane) and their modifications
(b0), (c0), (d0), (e0), (a′0s), (b′0), (c

′
0), (e

′
0) (here, 0 represents that the

rules neither distinguish polarization nor change it, while ′ means that
the rule is allowed to change membrane label).

2.3 Minimal parallelism

In [8], the minimal parallelism has been formalized as follows (through-
out this paper, each set Rj is associated to a membrane):

153

A. Alhazov

App(Π, C,min) = { R′ ∈ App(Π, C, asyn) | there is no
R′′ ∈ App(Π, C, asyn) such that
(R′′ −R′) ∩Rj 6= ∅ for some j with
R′ ∩Rj = ∅, 1 ≤ j ≤ h }.

We are not going to define all notations used here. In our context,
this definition means that minimally parallel application of rules to
a configuration consists of all applicable multisets R′ that cannot be
extended by a rule corresponding to a membrane for which no rule
appears in R′.

There exist different interpretations of minimal parallelism. For
instance, the original definition of maximal parallelism introduced in
[7] is formalized in [14] and called there base vector minimal parallelism:

App(Π, C,minG) = { R′′′ ∈ App(Π, C, asyn) | there is
R′ ∈ App(Π, C, asyn), such that R′ ⊆ R′′′,
|R′ ∩Rj | ≤ 1 for all j, 1 ≤ j ≤ h, and
there is no R′′ ∈ App(Π, C, asyn) such that
(R′′ −R′) ∩Rj 6= ∅ for some j with
R′ ∩Rj = ∅, 1 ≤ j ≤ h }.

Without discussing all technicalities, we point out that base vector
minimally parallel application of rules consists of all extensions of mul-
tisets R′, which represent maximally parallel choice of sets Rj used
sequentially. Hence, the latter mode is identical to the following:

{ R′′′ ∈ App(Π, C, asyn) | ∃R′ ∈ App(Π, C, seqset), R′ ⊆ R′′′

and 6 ∃R′′ ∈ App(Π, C, seqset) : R′ ⊆ R′′ }, where

App(Π, C, seqset) = { R′ ∈ App(Π, C, asyn) |
|R′ ∩Rj | ≤ 1 for all j, 1 ≤ j ≤ h.

In this way, one can first restrict applicable multisets to those having
at most one rule corresponding to a membrane, then take maximally

154

Minimal Parallelism and Number of Membrane Polarizations

parallel ones from them (i.e., those whose extensions do not belong to
the same restriction), and finally take their unrestricted extensions.

Luckily, the constructions presented in this paper work equally well
for both definitions of minimal parallelism. Indeed, they do not use
rules of type (b) or its modifications; hence, in one step a membrane
reacts only with objects in the associated region. This means that
selection of rules for each membrane is done independently, so differ-
ent membranes do not compete for objects and the system behaves
identically in both modes.

Hence, we can simply follow the basic idea introduced already in
[7]: for every membrane, at least one rule - if possible - has to be used.

The following remarks describe applicability, maximal applicability
and applying rules, respectively.

• The rules of type (a) may be applied in parallel. At one step, a
membrane can be the subject of only one rule of types (a′0s), (a

′′
s)

and (b), (c), (d), (e) with their modifications.

• In one step, one object of a membrane can be used by only one
rule (non-deterministically chosen), but for every membrane
at least one object that can evolve by one rule of any form,
must evolve (no rules associated to a membrane are applied only
if none are applicable for the objects that do not evolve).

• If at the same time a membrane is divided by a rule of type (e)
and there are objects in this membrane which evolve by means of
rules of type (a), then we suppose that first the evolution rules of
type (a) are used, and then the division is produced. Of course,
this process takes only one step.

3 Using Rules (a′′s)

The three size parameters of the SAT problem are the number m of
clauses, the number n of variables and the total number l of occurrences
of variables in clauses (clearly, l ≤ mn: without restricting generality,

155

A. Alhazov

we could assume that no variable appears in the same clause more than
once, with or without negation).

Theorem 1 A uniform family of confluent P systems with rules
(a′′s), (c0), (e0) working in minimally parallel way can solve SAT with
four polarizations in O(l(m + n)) number of steps.

Proof. The main idea of the construction is to implement a maximally
parallel step sequentially. For this, a “control” object will be changing
the polarization, and then an input object or a clause object will be
restoring it. Since the input is encoded in l objects, changing and
restoring polarization will happen for l times, the counting is done by
the “control” object.

Consider a propositional formula in the conjunctive normal form:

β = C1 ∨ · · · ∨ Cm,

Ci = yi,1 ∧ · · · ∧ yi,li , 1 ≤ i ≤ m, where
yi,k ∈ {xj ,¬xj | 1 ≤ j ≤ n}, 1 ≤ i ≤ m, 1 ≤ k ≤ li,

l =
m∑

i=1

li.

Let us encode the instance of β in the alphabet Σ(〈n,m, l〉) by mul-
tisets X, X ′ of the clause-variable pairs such that the variable appears
in the clause without negation, with negation or neither:

Σ(〈n,m, l〉) = {vj,i,1,s | 1 ≤ j ≤ m, 1 ≤ i ≤ n, 1 ≤ s ≤ 2},
X = {(vj,i,1,1, 1) | xi ∈ {yj,k | 1 ≤ k ≤ lj},

1 ≤ j ≤ m, 1 ≤ i ≤ n},
X ′ = {(vj,i,1,2, 1) | ¬xi ∈ {yj,k | 1 ≤ k ≤ lj},

1 ≤ j ≤ m, 1 ≤ i ≤ n}.

We construct the following P system:

Π(〈n,m, l〉) = (O, H,E, [[]02[]03]01, w1, w2, w3, R), with
O = {vj,i,k,s | 1 ≤ j ≤ m, 1 ≤ i ≤ n,

156

Minimal Parallelism and Number of Membrane Polarizations

1 ≤ k ≤ m + n + 1, 1 ≤ s ≤ 4}
∪ {di,k | 1 ≤ i ≤ m + n + 1, 1 ≤ k ≤ 2l}
∪ {ti,k, fi,k | 1 ≤ i ≤ n, 1 ≤ k ≤ l}
∪ {di | 1 ≤ i ≤ m + n + 1} ∪ {S, Z, yes, no}
∪ {zk | 1 ≤ k ≤ (4l + 3)n + m(4l + 1) + 2}

w1 = λ, w2 = d1, w3 = z0, H = {1, 2, 3}, E = {0, 1, 2, 3},

and the rules are listed below. The computation consists of three stages.

1. Producing 2n membranes with label 2, corresponding to the pos-
sible assignments of variables x1, · · · , xn and selecting clauses that
are satisfied for every assignment (groups A and C of rules).

2. Checking for all assignments whether all clauses are satisfied
(groups B and D of rules).

3. Generating yes from the positive answer, and sending it to the
environment. Generating no from the timeout (during the first
two stages the number of steps is counted in the object in mem-
brane with label 3) and sending it to the environment if there
was no positive answer (groups E and F of rules).

Stage 1 consists of n cycles and stage 2 consists of m cycles. Each cycle’s
aim is to process all l objects, i.e., each object counts the number of
cycles completed, and in the first stage the clauses are evaluated while
in the second stage the presence of each clause is checked.

In the case of maximal parallelism, a cycle could be performed in
a constant number of (actually, one or two) steps, while the minimal
parallelism cannot guarantee that all objects are processed. The so-
lution used here is the following. A cycle consists of marking (setting
the last index to 3 or 4) all l objects one by one while performing the
necessary operation, and then unmarking (setting the last index to 1 or
2) all of them. Marking or unmarking an object happens in two steps:
the control object changes the polarization from 0 to 1, 2 (to mark) or
to 3 (to unmark), and then one of the objects that has not yet been
(un)marked is processed, resetting the polarization to 0.

157

A. Alhazov

Control objects in membrane 2: select clauses

A1 (for variable i: divide)
[di] → [ti,0] [fi,0] , 1 ≤ i ≤ n

A2 (process and mark all l objects)
[ti,k−1]0 → [ti,k]1, 1 ≤ i ≤ n, 1 ≤ k ≤ l

[fi,k−1]0 → [fi,k]2, 1 ≤ i ≤ n, 1 ≤ k ≤ l

A3 (prepare to unmark objects)
[ti,l]0 → [di,0]0, 1 ≤ i ≤ n

[fi,l]0 → [di,0]0, 1 ≤ i ≤ n

A4 (unmark all l objects)
[di,k−1]0 → [di,k]3, 1 ≤ i ≤ n, 1 ≤ k ≤ l

A5 (switch to the next variable)
[di,l]0 → [di+1]0, 1 ≤ i ≤ n

Control objects in membrane 2: check clauses

B1 (test if clause i is satisfied)
[dn+i]0 → [dn+i,1]2, 1 ≤ i ≤ m

B2 (process and mark the other l − 1 objects)
[dn+i,k−1]0 → [dn+i,k]1, 1 ≤ i ≤ m, 1 ≤ k ≤ l

B3 (unmark all l objects)
[dn+i,l+k−1]0 → [dn+i,l+k]3, 1 ≤ i ≤ m, 1 ≤ k ≤ l

B4 (switch to the next clause)
[dn+i,2l]0 → [dn+i+1]0, 1 ≤ i ≤ m

B5 (send a positive answer)
[dm+n+1] → []S

Input objects in membrane 2: select clauses

158

Minimal Parallelism and Number of Membrane Polarizations

C1 (mark an object)
[vj,i,k,s]p → [vj,i,k+1,s+2]0,
1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ k ≤ m, k 6= m, 1 ≤ s ≤ 2, 1 ≤ p ≤ 2

C2 (a true variable present without negation or a false variable
present with negation satisfies the clause)
[vj,i,i,s]s → [vj,i,i+1,3]0, 1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ s ≤ 2

C3 (a true variable present with negation or a false variable present
without negation does not satisfy the clause)
[vj,i,i,3−s]s → [vj,i,i+1,4]0, 1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ s ≤ 2

C4 (unmark an object)
[vj,i,k,s+2]3 → [vj,i,k,s]0,
1 ≤ i ≤ m, 1 ≤ j ≤ n, 2 ≤ k ≤ m + 1, 1 ≤ s ≤ 2

Input objects in membrane 2: check clauses

D1 (check if the clause is satisfied at least by one variable)
[vj,i,m+j,1]2 → [vj,i,k+1,3]0, 1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ s ≤ 2

D2 (mark an object)
[vj,i,m+k,s]1 → [vj,i,k+1,s+2]0,
1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ k ≤ n, 1 ≤ s ≤ 2

D3 (unmark an object)
[vj,i,m+k,s+2]3 → [vj,i,k,s]0,
1 ≤ i ≤ m, 1 ≤ j ≤ n, 2 ≤ k ≤ n + 1, 1 ≤ s ≤ 2

Control objects in membrane 3

E1 (count)
[zk−1]0 → [zk]0, 1 ≤ k ≤ N = (4l + 3)n + m(4l + 1) + 2

E2 (send time-out object)
[zN] → []Z

Control objects in the skin membrane

159

A. Alhazov

F1 (a positive result generates the answer)
[S]0 → [yes]1

F2 (without the positive answer, the time-out generates the negative
answer)
[Z]0 → [no]0

F3 (send the answer)
[yes] → []yes
[no] → []no

Let us now explain how the system works in more details.
Like the input objects, the control objects keep track of the number

of cycles completed. The control object also remembers whether mark-
ing or unmarking takes place, as well as the number of objects already
(un)marked. Moreover, the control object is responsible to pass the
“right” information to the objects via polarization: in stage 1, 1 if the
variable is true, and 2 if the variable is false; in stage 2, 1 if the clause
is already found, and 2 if the clause is being checked for.

During the first stage, an object vj,i,1,s is transformed into vj,i,n+1,t,
where t = 1 if variable xj satisfies clause Ci, or t = 2 if not. The change
of the last index from s to t happens when the third index is equal to i.
Notice that although only information about what clauses are satisfied
seems to be necessary for checking if β is true for the given assignment
of the variables, the information such as the number of cycles completed
is kept for synchronization purposes, and the other objects are kept so
that their total number remains l. The control object d1 is transformed
into dn+1. Stage 1 takes (4l + 3)n steps.

If some clause is not satisfied, then the computation in the corre-
sponding membrane is “stuck” with polarization 2. Otherwise, dur-
ing the second stage an object vj,i,n+1,t is transformed into vj,i,n+m+1,t,
while the control object dn+1 becomes dm+n+1. Stage 2 takes m(4l+1)
steps, plus one extra step to send objects S to skin, if any.

After stage 2 is completed, one copy of S, if any, is transformed into
yes, changing the polarization of the skin membrane. In the same time
yes, if it has been produced, is sent out, object Z comes to the skin

160

Minimal Parallelism and Number of Membrane Polarizations

from region 3. If the polarization of the skin remained 0, Z changes to
no, which is then sent out. Depending on the answer, stage 3 takes 2
or 4 steps. In either case, the result is sent out in the last step of the
computation. ¤

Notice that membrane labels are not indicated in the rules. This
means that the system is organized in such a way that the rules are
global, i.e., the system would work equally well starting with the con-
figuration µ = [w1[w2]01[w3]01]01, the labels were only given for the
simplicity of explanation.

Using the remark in the end of the Introduction, we obtain

Corollary 1 A uniform family of confluent polarizationless P systems
with rules (a′0s), (c0), (e0) working in minimally parallel way can solve
SAT with membrane labels of four kinds.

The statement follows directly from the possibility of rewriting a global
rule [a]e → [u]e

′
of type (a′′s) in a rule [a]e → [u]e′ of type (a′0s)

(which is polarizationless but is able to change the membrane label).

4 Using Rules (a)

An informal idea of this section is to replace rules of type (a′′s) with rules
(a) producing additional objects, and rules (c), sending an additional
object out to change the polarization.

Theorem 2 A uniform family of confluent P systems with rules
(a), (c), (e0) working in minimally parallel way can solve SAT with six
polarizations in O(l(m + n)) number of steps.

Proof. The strategy used in the construction below is similar to
that of the previous theorem. However, since the application of the
evolution rules no longer changes the polarization of the membrane,
the control symbols di,k, ti,k, fi,k no longer “operate” in polarization
0, but rather in polarization that toggles between 0 (for even k) and
5 (for odd k), to prevent multiple applications of evolution rules in a

161

A. Alhazov

row in the same membrane. Moreover, the input objects are actually
allowed to evolve in parallel (and the degree of parallelism is chosen
non-deterministically), but in the end of both halves of a cycle it is
possible to count the number of extra objects produced, to make sure
that all l objects have been processed.

For the same propositional formula

β = C1 ∨ · · · ∨ Cm,

Ci = yi,1 ∧ · · · ∧ yi,li , 1 ≤ i ≤ m, where
yi,k ∈ {xj ,¬xj | 1 ≤ j ≤ n}, 1 ≤ i ≤ m, 1 ≤ k ≤ li,

l =
m∑

i=1

li.

and the same encoding of the instance of β in the alphabet Σ(〈n,m, l〉)
by multisets X, X ′,

Σ(〈n,m, l〉) = {vj,i,1,s | 1 ≤ j ≤ m, 1 ≤ i ≤ n, 1 ≤ s ≤ 2},
X = {(vj,i,1,1, 1) | xi ∈ {yj,k | 1 ≤ k ≤ lj},

1 ≤ j ≤ m, 1 ≤ i ≤ n},
X ′ = {(vj,i,1,2, 1) | ¬xi ∈ {yj,k | 1 ≤ k ≤ lj},

1 ≤ j ≤ m, 1 ≤ i ≤ n}.
we construct the following P system:

Π(〈n,m, l〉) = (O, H, E, [[]02[]03]01, w1, w2, w3, R), with
O = {vj,i,k,s | 1 ≤ j ≤ m, 1 ≤ i ≤ n,

1 ≤ k ≤ m + n + 1, 1 ≤ s ≤ 4}
∪ {di,k | 1 ≤ i ≤ m + n + 1, 1 ≤ k ≤ 2l}
∪ {ti,k, fi,k | 1 ≤ i ≤ n, 1 ≤ k ≤ l}
∪ {di | 1 ≤ i ≤ m + n + 1} ∪ {S,Z, yes, no}
∪ {zk | 1 ≤ k ≤ (4l + 3)n + m(4l + 1) + 2}
∪ {oi,j | 0 ≤ i ≤ 5, 0 ≤ j ≤ 5}

w1 = λ, w2 = d1, w3 = z0,

H = {1, 2, 3}, E = {0, 1, 2, 3, 4, 5},

162

Minimal Parallelism and Number of Membrane Polarizations

and the rules are listed below. The computation stages are the same
as in the previous proof.

1. Producing 2n membranes corresponding to the possible variables
assignments; selecting satisfied clauses (groups A and C).

2. Checking whether all clauses are satisfied (groups B and D).

3. Generating the answer and sending it to the environment.
(groups E and F).

Stage 1 consists of n cycles and stage 2 consists of m cycles. Each cycle’s
aim is to process all l objects, i.e., each object counts the number of
cycles completed, and in the first stage the clauses are evaluated while
in the second stage the presence of each clause is checked.

A cycle consists of marking (setting the last index to 3 or 4) all l
objects one by one while performing the necessary operation, and then
unmarking (setting the last index to 1 or 2) all of them. Marking or
unmarking an object generally happens in five steps:

1. the control object produces two “polarization changers”,

2. one of them changes the polarization from 0 or 5 to 1, 2 (to mark)
or to 3 (to unmark),

3. one of the objects that has not yet been (un)marked is processed,
producing a “witness” — yet another “polarization changer”,

4. the “witness” switches the polarization to 4,

5. the second “changer” produced in step 1 of this routine changes
the polarization to 5 or 0.

Notice, however, that “step” 3 might actually take more than one step
(more objects can be (un)marked in parallel, or even in a row, creating
a supply of “witnesses”). Step 4 might actually be executed in parallel
with the last step of “step” 3 (sending out a previous “witness” while
producing more). Finally, “step” 3 might even be skipped if a previous
“witness” is already there. What matters is that the whole (un)marking
routine takes at most 5l steps.

163

A. Alhazov

Changing polarization of membrane 2

O1 (change from i to j)
[oi,j] i → []j o4,5, 0 ≤ i ≤ 5, 0 ≤ j ≤ 5

O2 (“witnesses” of D2 are “compatible” with “witnesses” of D1; this
does not interfere with the rest of the computation)
[o1,4]2 → []4 o4,5

Control objects in membrane 2: select clauses

A1 (for variable i: divide)
[di] → [ti,0] [fi,0] , 1 ≤ i ≤ n

A2 (process and mark all l objects)
[ti,k−1 → ti,ko0,1o4,5]0, 1 ≤ i ≤ n, 1 ≤ k ≤ l, k is odd
[fi,k−1 → fi,ko0,2o4,5]0, 1 ≤ i ≤ n, 1 ≤ k ≤ l, k is odd
[ti,k−1 → ti,ko5,1o4,0]5, 1 ≤ i ≤ n, 1 ≤ k ≤ l, k is even
[fi,k−1 → fi,ko5,2o4,0]5, 1 ≤ i ≤ n, 1 ≤ k ≤ l, k is even

A3 (prepare to unmark objects)
[ti,l → di,0]0, 1 ≤ i ≤ n, if l is even
[fi,l → di,0]0, 1 ≤ i ≤ n, if l is even
[ti,l → di,0o5,0]5, 1 ≤ i ≤ n, if l is odd
[fi,l → di,0o5,0]5, 1 ≤ i ≤ n, if l is odd

A4 (unmark all l objects)
[di,k−1 → di,ko0,3o4,5]0, 1 ≤ i ≤ n, 1 ≤ k ≤ l, k is odd
[di,k−1 → di,ko5,3o4,0]0, 1 ≤ i ≤ n, 1 ≤ k ≤ l, k is even

A5 (switch to the next variable)
[di,l → di+1]0, 1 ≤ i ≤ n, if l is even
[di,l → di+1o5,0]5, 1 ≤ i ≤ n, if l is odd

Control objects in membrane 2: check clauses

B1 (test if clause i is satisfied)
[dn+i → dn+i,1o0,2o4,5]0, 1 ≤ i ≤ m

164

Minimal Parallelism and Number of Membrane Polarizations

B2 (process and mark the other l − 1 objects)
[dn+i,k−1 → dn+i,ko0,1o4,5]0, 1 ≤ i ≤ m, 1 ≤ k ≤ l, k is odd
[dn+i,k−1 → dn+i,ko5,1o4,0]0, 1 ≤ i ≤ m, 1 ≤ k ≤ l, k is even

B3 (unmark all l objects)
[dn+i,l+k−1 → dn+i,l+ko0,3o4,5]0, 1 ≤ i ≤ m, 1 ≤ k ≤ l, l + k is
odd
[dn+i,l+k−1 → dn+i,l+ko5,3o4,0]0, 1 ≤ i ≤ m, 1 ≤ k ≤ l, l + k is
odd

B4 (switch to the next clause)
[dn+i,2l → dn+i+1]0, 1 ≤ i ≤ m

B5 (send a positive answer)
[dm+n+1]0 → []0S

Input objects in membrane 2: select clauses

C1 (mark an object)
[vj,i,k,s → vj,i,k+1,s+2op,4]p,
1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ k ≤ m, k 6= m, 1 ≤ s ≤ 2, 1 ≤ p ≤ 2

C2 (a true variable present without negation or a false variable
present with negation satisfies the clause)
[vj,i,i,s → vj,i,i+1,3os,4]s, 1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ s ≤ 2

C3 (a true variable present with negation or a false variable present
without negation does not satisfy the clause)
[vj,i,i,3−s → vj,i,i+1,4os,4]s, 1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ s ≤ 2

C4 (unmark an object)
[vj,i,k,s+2 → vj,i,k,so3,4]3,
1 ≤ i ≤ m, 1 ≤ j ≤ n, 2 ≤ k ≤ m + 1, 1 ≤ s ≤ 2

Input objects in membrane 2: check clauses

D1 (check if the clause is satisfied at least by one variable)
[vj,i,m+j,1 → vj,i,k+1,3o1,4]2, 1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ s ≤ 2

165

A. Alhazov

D2 (mark an object)
[vj,i,m+k,s → vj,i,k+1,s+2o1,4]1,
1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ k ≤ n, 1 ≤ s ≤ 2

D3 (unmark an object)
[vj,i,m+k,s+2 → vj,i,k,so3,4]3,
1 ≤ i ≤ m, 1 ≤ j ≤ n, 2 ≤ k ≤ n + 1, 1 ≤ s ≤ 2

Control objects in membrane 3

E1 (count)
[zk−1 → zk]0, 1 ≤ k ≤ N = (10l + 5)n + m(10l + 1) + 2

E2 (send time-out object)
[zN]0 → []0Z

Control objects in the skin membrane

F1 (the first positive result sends the answer)
[S]0 → []1yes

F2 (without the positive result, the time-out sends the negative an-
swer)
[Z]0 → []0no

Let us now explain how the system works in more details. The control
objects keep track of the number of cycles completed, whether mark-
ing or unmarking takes place, as well as the number of objects already
(un)marked. Moreover, the control object is responsible to pass the
“right” information to the objects via polarization: in stage 1, by gen-
erating o0,1 or o5,1 if the variable is true, and o0,2 or o5,2 if the variable
is false; in stage 2, o0,1 or o5,1 if the clause is already found, and o0,2

or o5,2 if the clause is being checked for.
During the first stage, an object vj,i,1,s is transformed into vj,i,n+1,t,

where t = 1 if variable xj satisfies clause Ci, or t = 2 if not. The change
of the last index from s to t happens when the third index is equal to i.
The control object d1 is transformed into dn+1. Stage 1 takes at most
(10l + 5)n steps (at most (10l + 3)n in the case when l is even).

166

Minimal Parallelism and Number of Membrane Polarizations

If some clause is not satisfied, then the computation in the corre-
sponding membrane is “stuck” with polarization 2. Otherwise, during
the second stage an object vj,i,n+1,t is transformed into vj,i,n+m+1,t,
while the control object dn+1 becomes dm+n+1. Stage 2 takes at most
m(10l + 1) steps, plus one extra step to send objects S to skin, if any.

After stage 2 is completed, one copy of S, if any, is sent out as yes,
changing the polarization of the skin membrane. After this time has
passed, object Z comes to the skin from region 3. If the polarization
of the skin remained 0, Z is sent out as no. ¤

The rules of the system in the proof above are also global, so we can
again obtain the following

Corollary 2 A uniform family of confluent polarizationless P systems
with rules (a), (c′0), (e0) working in minimally parallel way can solve
SAT with membrane labels of six kinds.

5 Conclusions

Since changing membrane polarization controls what rules can be ap-
plied, the number of polarizations corresponds to the number of states
of this control. Moreover, almost the only way the objects of the sys-
tem may interact is via changing membrane polarization. Hence, the
number of polarizations is a complexity measure deserving attention.

For maximal parallelism it has been proved that two polariza-
tions are sufficient for both universality (with one membrane) and
efficiency, while one-polarization systems are still universal (with el-
ementary membrane division and membrane dissolution), but are con-
jectured not to be efficient.

We proved that efficient solutions of computationally hard problems
by P systems with active membranes working in minimally parallel way
can be constructed avoiding both cooperative rules and non-elementary
membrane division, thus improving results from [7], [9]. For this task,
it is enough to have four polarizations, sequential evolution rules chang-
ing polarizations, polarizationless elementary membrane division rules
and polarizationless rules of sending an object out. One can use the

167

A. Alhazov

standard evolution and send-out rules, as well as polarizationless ele-
mentary membrane division rules; in this case, six polarizations suffice.

The first construction is “almost” deterministic: the only choices
the system can make in each cycle is the order in which the input
systems are processed. The second construction exhibits a more asyn-
chronous behaviour of the input objects, which, depending on the cho-
sen degree of parallelism, might speed up obtaining the positive answer,
but less than by 20% 1. In this case, controlling polarizations by evo-
lution is still faster than controlling polarizations by communication.

A number of interesting problems related to minimal parallelism
remain open. For instance, is it possible to decrease the number of
polarizations/labels? Moreover, it presents an interest to study other
computational problems in the minimally-parallel setting, for instance,
the computational power of P systems with one active membrane work-
ing in the minimally parallel way.

Acknowledgements The author gratefully acknowleges the support
of the Japan Society for the Promotion of Science and the Grant-in-
Aid for Scientific Research, project 20·08364. He also acknowledges the
support by the Science and Technology Center in Ukraine, project 4032,
and project TIC2003-09319-C03-01 from Rovira i Virgili University.

References

[1] A. Alhazov: Minimal Parallelism and Number of Membrane Po-
larizations. Preproc. of the Seventh International Workshop on
Membrane Computing, WMC7 (H.J. Hoogeboom, Gh. Păun, G.
Rozenberg, Eds.), Lorentz Center, Leiden, 2006, 74–87.

1The maximal total number of steps needed is slightly over 10l(m+n); the fastest
computation happens if rules C2 are executed in parallel for all input objects, as
well as rules C4, D2, D3, saving lm − 1, lm − 1, ln − 1, ln − 1 steps, respectively.
Their total is 2l(m + n) − 4, which is less than (but assymptotically equal to) 1/5
of the worst time.

168

Minimal Parallelism and Number of Membrane Polarizations

[2] A. Alhazov: P Systems without Multiplicities of Symbol-Objects.
Information Processing Letters 100, 3, 2006, 124–129.

[3] A. Alhazov, L. Pan, Gh. Păun: Trading Polarizations for Labels
in P Systems with Active Membranes. Acta Informaticae 41, 2-3,
2004, 111–144.

[4] A. Alhazov, R. Freund: On the Efficiency of P Systems with
Active Membranes and Two Polarizations. Membrane Comput-
ing, International Workshop, WMC 2004, Milan, Revised Selected
and Invited Papers (G. Mauri, Gh. Păun, M.J. Pérez-Jiménez, G.
Rozenberg, A. Salomaa, Eds.), Lecture Notes in Computer Science
3365, Springer, 2005, 146–160, and Fifth Workshop on Membrane
Computing (WMC5) (G. Mauri, Gh. Păun, C. Zandron, Eds.),
University of Milano-Bicocca, Milan, 2004, 81–94.

[5] A. Alhazov, R. Freund, A. Riscos-Núñez: One and Two Polariza-
tions, Membrane Creation and Objects Complexity in P Systems.
Seventh International Symposium on Symbolic and Numeric Algo-
rithms for Scientific Computing (SYNASC’05), IEEE Computer
Society, 2005, 385–394, and First International Workshop on The-
ory and Application of P Systems, Timişoara, Romania, 2005 (G.
Ciobanu, Gh. Păun, Eds.), 2005, 9–18.

[6] A. Alhazov, R. Freund, Gh. Păun: Computational Complete-
ness of P Systems with Active Membranes and Two Polarizations.
Machines, Computations, and Universality, International Confer-
ence, MCU 2004, Saint Petersburg, Revised Selected Papers (M.
Margenstern, Ed.), Lecture Notes in Computer Science 3354,
Springer, 2005, 82–92.

[7] G. Ciobanu, L. Pan, Gh. Păun, M.J. Pérez-Jiménez: P Systems
with Minimal Parallelism. Theoretical Computer Science 378, 1,
2007, 117–130.

[8] R. Freund, S. Verlan: A Formal Framework for Static (Tissue)
P Systems. Membrane Computing, 8th International Workshop,

169

A. Alhazov

WMC 2007, Thessaloniki, Revised Selected and Invited Papers
(G. Eleftherakis, P. Kefalas, Gh. Păun, G. Rozenberg, A. Salomaa,
Eds.), Lecture Notes in Computer Science 4860, Springer, 2007,
271–284.

[9] T.O. Ishdorj: Power and Efficiency of Minimal Parallelism in Po-
larizationless P Systems. J. Automata, Languages, and Combina-
torics 11, 3, 2006, 299–320.

[10] Gh. Păun: P Systems with Active Membranes: Attacking NP–
Complete Problems. Journal of Automata, Languages and Com-
binatorics 6, 1, 2001, 75–90.

[11] Gh. Păun: Membrane Computing. An Introduction. Springer-
Verlag, Berlin (Natural Computing Series), 2002.

[12] Gh. Păun, Y. Suzuki, H. Tanaka, T. Yokomori: On the Power of
Membrane Division in P systems. Theoretical Computer Science
324, 1, 2004, 61–85.

[13] M.J. Pérez-Jiménez, A. Romero-Jiménez, F. Sancho-Caparrini:
Complexity Classes in Cellular Computing with Membranes. Nat-
ural Computing 2, 3, 2003, 265–285.

[14] S. Verlan: Study of Language-Theoretic Computational Paradigms
Inspired by Biology. Habilitation thesis, Universite Paris Est,
Creteil Val de Marne, France, 2010.

[15] P Systems Webpage, http://ppage.psystems.eu

Artiom Alhazov Received November 1, 2010

Institute of Mathematics and Computer Science,
Academy of Sciences of Moldova
5 Academiei str., Chişinău, MD-2028, Moldova
E–mail: artiom@math.md

FCS, Department of Information Engineering,
Graduate School of Engineering
Hiroshima University,
Higashi-Hiroshima 739-8527 Japan

170

