
Computer Science Journal of Moldova, vol.18, no.2(53), 2010

Membrane Systems Languages Are

Polynomial-Time Parsable

Artiom Alhazov Constantin Ciubotaru Sergiu Ivanov
Yurii Rogozhin

Abstract

The focus of this paper is the family of languages generated
by transitional non-cooperative P systems without further ingre-
dients. This family can also be defined by so-called time yields of
derivation trees of context-free grammars. In this paper we prove
that such languages can be parsed in polynomial time, where the
degree of polynomial may depend on the number of rules and on
the size of the alphabet.

1 Introduction

Membrane computing is a theoretical framework of parallel distributed
multiset processing. It has been introduced by Gheorghe Păun in 1998,
and has been an active research area; see [6] for the comprehensive
bibliography and [4],[3] for a systematic survey. Membrane systems
are also called P systems.

The configurations of membrane systems (with symbol objects) con-
sist of multisets over a finite alphabet, distributed across a tree struc-
ture. Therefore, even such a relatively simple structure as a word (i.e.,
a sequence of symbols) is not explicitly present in the system. To
speak of languages as sets of words, one first needs to represent them
in membrane systems, and there are a few ways to do it.

One of the most elegant ways is to do all the processing by multisets,
and regard the order of sending the objects in the environment as their
order in the output word. In case of ejecting multiple symbols in the

c©2010 by A. Alhazov, C. Ciubotaru, S. Ivanov, Yu. Rogozhin

139

A. Alhazov, C. Ciubotaru, S. Ivanov, Yu. Rogozhin

same step, the output word is formed from any of their permutations.
One can say that this approach also needs an implicit observer, but
at least this observer only inspects the environment and it is, in some
sense, the simplest possible one.

Following [2], in this paper we are interested in the case when the
rules are non-cooperative, i.e., all objects evolve independently. A num-
ber of results have been established in [2]. For instance, it was shown
that one membrane is enough, and a characterization of this family
was given via derivation trees of context-free grammars. Next, three
normal forms were given for the corresponding grammars. It was than
shown that the membrane systems language family lies between regu-
lar and context-sensitive families of languages, and it is incomparable
with linear and with context-free languages. Then, the lower bound
was strengthened to REG•Perm(REG). An example of a considerably
more “difficult” language was given than the lower bound mentioned
above. The membrane systems language family was also shown to be
closed under union, permutations, erasing/renaming morphisms. It
is not closed under intersection, intersection with regular languages,
complement, concatenation or taking the mirror image.

In attempt to lower the known upper bound (semilinear context-
sensitive) of these languages, we show here that the word membership
problem can be solved in polynomial time.

2 Definitions

Consider a finite set V . The set of all words over V is denoted by
V ∗, the concatenation operation is denoted by • (which is written only
when necessary) and the empty word is denoted by λ. Any set L ⊆ V ∗
is called a language. For a word w ∈ V ∗ and a symbol a ∈ V , the
number of occurrences of a in w is written as |w|a. We write w[i] to
denote the i-th symbol of w, 1 ≤ i ≤ |w|. The permutations of a word
w ∈ V ∗ are Perm(w) = {x ∈ V ∗ | |x|a = |w|a∀a ∈ V }. We denote the
set of all permutations of the words in L by Perm(L), and we extend
this notation to families of languages. We use FIN , REG, LIN , CF ,
MAT , CS, RE to denote finite, regular, linear, context-free, matrix

140

Membrane Systems Languages Are Polynomial-Time Parsable

without appearance checking and with erasing rules, context-sensitive
and recursively enumerable families of languages, respectively. The
family of languages generated by extended (tabled) interactionless L
systems is denoted by E(T)0L. Notation SLIN stands for the semi-
linear languages. We denote by P the family of languages recognizable
by Turing machines in polynomial time. For more formal language
preliminaries, we refer the reader to [5].

A multiset over V is a mapping M : V → N; M(a) is mul-
tiplicity of a in M . For V = {a1, · · · , am}, we may write M as{
a

M(a1)
1 , · · · , aM(am)

m

}
, omitting missing elements. The size |M | of a

multiset is
∑m

i=1M(ai). We use the extension of the set notations
to multisets; for instance, M1 ⊆ M2, M1 ∪ M2 and M1 \ M2 mean
M1(a) ≤ M2(a), M1(a) + M2(a) and max(M1(a) −M2(a), 0) for the
multiplicities of all symbols a, respectively. Multisets in membrane
computing are typically represented by strings; in this paper we use
the set notations described above, to be able to distinguish between
multisets and strings.

2.1 Transitional P systems

A membrane system is defined by a construct

Π = (O,µ,w1, · · · , wm, R1, · · · , Rm, i0), where
O is a finite set of objects,
µ is a hierarchical structure of membranes,
wi is the initial multiset in region i, 1 ≤ i ≤ m,
Ri is the set of rules of region i, 1 ≤ i ≤ m,
i0 is the output region.

The membranes are bijectively labeled by 1, · · · ,m, the interior of each
membrane defines a region; the environment is referred to as region 0.
When languages are considered, i0 = 0 is assumed.

The rules of a membrane system have the form u → v, where u is
a non-empty multiset over O and v is a multiset over (O × Tar). The
target indications from Tar = {here, out} ∪ {inj | 1 ≤ j ≤ m} are

141

A. Alhazov, C. Ciubotaru, S. Ivanov, Yu. Rogozhin

written as a subscript, and target here is typically omitted. In case of
non-cooperative rules, u is a multiset of size 1.

The rules are applied in maximally parallel way: no further rule
should be applicable to the idle objects. In case of non-cooperative
systems, the concept of maximal parallelism is the same as in L systems:
all objects evolve by the associated rules in the corresponding regions
(except objects a in regions i such that Ri does not contain any rule
a → u, but these objects do not contribute to the result). The choice
of rules is non-deterministic.

A configuration of a P system is a construct which contains the
information about the hierarchical structure of membranes as well as
the contents of every membrane at a definite moment of time. The
process of applying all rules which are applicable in the current config-
uration and thus obtaining a new configuration is called a transition.
A sequence of transitions is called a computation. The computation
halts when such a configuration is reached that no rules are applicable.
The result of a (halting) computation is the sequence of objects sent
to the environment (all the permutations of the symbols sent out in
the same time are considered). The language L(Π) generated by a P
system Π is the union of the results of all computations. The family
of languages generated by non-cooperative transitional P systems with
at most m membranes is denoted by LOPm(ncoo, tar). If the number
of membranes is not bounded, m is replaced by ∗ or omitted. If the
target indications of the form inj are not used, tar is replaced by out.

Example 1 To illustrate the concept of generating languages, consider
the following P system:

Π = ({a, b, c}, [1]1, {a
2},
{
{a} → ∅, {a} → {a, bout, c

2
out}

}
, 0).

Each of the two symbols a has a non-deterministic choice whether to be
erased or to reproduce itself while sending a copy of b and two copies of
c into the environment. Therefore, the contents of region 1 can remain
a2 for an arbitrary number m ≥ 0 of steps, and after that at least
one copy of a is erased. The other copy of a can reproduce itself for
another n ≥ 0 steps before being erased. Each of the first m steps, two

142

Membrane Systems Languages Are Polynomial-Time Parsable

a

bcc

bcc

bcc

bcc

a

bcc

bcc

bcc

a

bcc

bcc

a

λ

a

a

λ

bcc

bcc

bcc

bcc

⇒

⇒

⇒

⇒

.

Result

Perm(bccbcc)•

Perm(bcc)•

Perm(bcc).

Figure 1. An example of a computation of a P system from Example
1. The lines are only used to hint how the rules are applied.

copies of b and four copies of c are sent out, while in each of the next
n steps, only one copy of b and two copies of c are ejected. Therefore,
L(Π) = (Perm(bccbcc))∗(Perm(bcc))∗.

3 Parsability

We first recall a few existing results.

Lemma 1 Random access machines can be simulated by Turing ma-
chines with polynomial slowdown.

This result will lead to a much simpler proof of the main result.

Lemma 2 [2] LOP∗(ncoo, tar) = LOP1(ncoo, out).

This result means one membrane is enough. Such membrane systems
only have one working region, and the destination of the objects in
right hand side of the rules may only be here and out.

Lemma 3 [2] Any non-cooperative P system can be transformed into
an equivalent one such that all objects evolve by some rules (objects not
participating in left-hand side of any rule are never produced).

143

A. Alhazov, C. Ciubotaru, S. Ivanov, Yu. Rogozhin

This condition implies that the system only halts if there are no ob-
jects inside the system. Hence, the evolution of any object inside the
system eventually leads to some number (possibly zero) of objects in
the environment.

Lemma 4 ([2]) Any non-cooperative P system can be transformed into
an equivalent one such that the initial contents is w1 = {S}, and

• S does not appear in the right-hand side of any rule, and

• R1 has no erasing rules, except possibly {S} → ∅.

This result means that no object can be erased, except the axiom which
may only be erased immediately.

We now proceed to the main result.

Theorem 1 LOP∗(ncoo, tar) ⊆ P.

Proof. The proof consists of three parts. First, a few known results
are used to simplify the statement of the theorem. Second, a finite-
state automaton (with transitions labeled by multisets of terminals) of
polynomial size is constructed. Third, acceptance problem is reduced
to a search problem in a graph of a polynomial size.

Thanks to Lemma 1, the rest of the proof can be explained at the
level of random access machines.

Due to Lemma 2, we assume that an arbitrary membrane system
language L is given by a one-membrane system Π = ([1]1, O,w1, R1).

It is known from Lemma 3 that the condition specified in it does not
restrict the generality. Hence, from now we assume that every object
A inside the system corresponds to at least one rule that rewrites A.

Without restricting generality, we also assume the normal form
specified in Lemma 4. In this case, it is clear that if w ∈ Tn, then
during any computation of Π generating w, the number of objects in-
side the system can never exceed max(n, 1).

We now build a finite automaton A = (Q,Σ, q0, δ, F) such that any
word w′ ∈ T≤n is accepted by A if and only if w′ ∈ L(Π). Accepting
by an automaton with transitions labeled by multisets is understood as

144

Membrane Systems Languages Are Polynomial-Time Parsable

follows: a transition labeled by a multiset of weight k can be followed if
the multiset composed of the next k input symbols equals the transition
label; in this case these input symbols are read.

We define Q as the set of multisets of at most max(n, 1) objects, Σ
as the set of multisets of at most n objects, q0 is the singleton multiset
{S}, and F = {∅}. It only remains to define the transition mapping δ of
A. We say that q′ ∈ δ(q, s) if [1 q]1 ⇒ [1 q

′]1s. It is known (see, e.g.,
[1]) that computing all transitions from a configuration with k objects
takes polynomial time with respect to k; here, k ≤ max(n, 1) (and the
degree of such a polynomial does not exceed |R1|), and, moreover, the
number of configurations reachable in one step is also polynomial.

Notice that |Q| is polynomial with respect to n (and the degree of
such a polynomial does not exceed |O|+1).1 Hence, building A from n
and Π can be done in polynomial time, and, moreover, the size of the
description of A is also polynomial. Of course, it is sufficient to only
examine the reachable states of A.

Running each transition q′ ∈ δ(q, s) of A on w can be actually
done in time O(|s|); however, there are two problems. Firstly, A is
non-deterministic, and secondly, A may have transitions labeled by
an empty multiset, and removing empty multiset transitions or non-
determinism might need too much time or space, or even increase its
size too much. Instead, we reduce parsing by A to a graph reachability
problem.

Consider a graph Γ = (V,U), where V = {0, · · · , n} × Q and U
consists of such transitions ((i, q), (j, q′)) that i ≤ j and q′ ∈ δ(q, s),
where s equals the multiset consisting of w[i+ 1], · · · , w[j].

Finally, w ∈ L = Lt(G) if and only if w ∈ L(A), and w ∈ L(A) if
and only if there is a path from (0, q0) to (n, e) in Γ. Note: alternatively,
search in A incrementally by prefixes of w. �

1Indeed, multisets of size ≤ n over O bijectively correspond to multisets of size
exactly n over O ∪ {λ}. Let |O| = m. Moreover, multisets of size n over O ∪ {λ}
correspond to n-combinations of m+1 possible elements with repetition. For n > 0,
their number is |Q| =

(
n+m

n

)
≤ nm+1.

145

A. Alhazov, C. Ciubotaru, S. Ivanov, Yu. Rogozhin

It is known from [2] that membrane systems language family is in-
cluded in the family of context-sensitive languages, see also Lemma 4.
In [2] one also claims that membrane systems language family is semi-
linear. No formal proof is given, but there is an almost immediate
observation that such language is letter-equivalent to that generated
by the context-free language with the same rules (languages are letter-
equivalent if for every word in one of them there is a word in the other
one with the same multiplicities of all symbols; indeed, the difference
is only in the order of output). Semilinearity thus follows from Parikh
theorem. By Theorem 1, we improve the upper bound:

Corollary 1 LOP∗(ncoo, tar) ⊆ CS ∩ SLIN ∩P.

4 An Example

Consider a word w = babbaa and a P system

Π = ([1]1, {S
′, S, a, b}, {S′}, R), where

R = {p : {S′} → {S}, q : {S} → {S2}, r : {S} → {a, b}out}.

Only objects S, S′ are productive inside the system, and only objects
a, b may be sent outside. Since |w| = 6, we only need to examine
multisets over S, S′ of size up to 6 elements (28 in total). However,
out of them only {S′}, {S}, ∅, {S2}, {S4}, {S6} are reachable. The
finite automaton would look as follows (for simplicity of the picture,
we wrote i instead of {ai, bi} as labels):

// WVUTPQRS{S′}

0
��

?>=<89:;76540123∅ WVUTPQRS{S6}6oo

5

uulllllllllllllllllll
4

||yy
yy

yy
yy

yy
3

XX

ONMLHIJK{S}
0

//

1

<<yyyyyyyyyyy WVUTPQRS{S2}
0

//

2

OO

1
XX

WVUTPQRS{S4}
1

<<yyyyyyyyyy3oo

4

bbEEEEEEEEEEE

2
XX

We now check the word w:

• states after reading λ: {S′}, {S}, {S2}, {S4};

146

Membrane Systems Languages Are Polynomial-Time Parsable

• states after reading ba: ∅, {S2}, {S4}, {S6};

• states after reading babbaa: ∅, {S4}. The input is accepted.

5 Conclusions

We have shown that there exists an algorithm deciding the word mem-
bership problem of membrane systems languages in polynomial time
with respect to the length of the word. The degree of such polyno-
mial may depend on the number of rules and on the size of the al-
phabet. Hence, the position of the membrane systems language family
in the language family hierarchy is between REG • Perm(REG) and
CS ∩ SLIN ∩P.

Acknowledgments Artiom Alhazov gratefully acknowledges the
support of the Japan Society for the Promotion of Science and the
Grant-in-Aid for Scientific Research, project 20·08364. All authors
acknowledge the support by the Science and Technology Center in
Ukraine, project 4032.

References

[1] A. Alhazov: Maximally Parallel Multiset-Rewriting Systems:
Browsing the Configurations. In: M.A. Gutiérrez-Naranjo, A.
Riscos-Núñez, F.J. Romero-Campero, D. Sburlan: RGNC re-
port 01/2005, University of Seville, Third Brainstorming Week on
Membrane Computing, Fénix Editora, Sevilla, 2005, 1–10.

[2] A. Alhazov, C. Ciubotaru, Yu. Rogozhin, S. Ivanov: The Fam-
ily of Languages Generated by Non-Cooperative Membrane Sys-
tems. In: M. Gheorghe, Th. Hinze, Gh. Păun: Preproceedings
of the Eleventh Conference on Membrane Computing, CMC11,
Jena, Verlag ProBusiness Berlin, 2010, 37–51, and Lecture Notes
in Computer Science 6501, to appear.

147

A. Alhazov, C. Ciubotaru, S. Ivanov, Yu. Rogozhin

[3] Gh. Păun, G. Rozenberg, A. Salomaa, Eds.: Handbook of Mem-
brane Computing. Oxford University Press, 2010.

[4] Gh. Păun: Membrane Computing. An Introduction, Springer,
2002.

[5] G. Rozenberg, A. Salomaa, Eds.: Handbook of Formal Languages,
vol. 1-3, Springer, 1997.

[6] P systems webpage. http://ppage.psystems.eu/

A. Alhazov1,2, C. Ciubotaru1, S. Ivanov1,3, Received November 1, 2010
Yu. Rogozhin1

1 Institute of Mathematics and Computer Science
Academy of Sciences of Moldova
5 Academiei str., Chişinău, MD-2028, Moldova
E–mail: {artiom, chebotar, sivanov, rogozhin}@math.md
2 FCS, Department of Information Engineering
Graduate School of Engineering
Hiroshima University,
Higashi-Hiroshima 739-8527 Japan

3 Faculty of Computers,
Informatics and Microelectronics,
Technical University of Moldova,
Ştefan cel Mare 168, Chişinău MD-2004 Moldova

148

