
Computer Science Journal of Moldova, vol.18, no.2(53), 2010

Investigations on Natural Computing

in the Institute of Mathematics and

Computer Science

Artiom Alhazov Elena Boian Liudmila Burtseva
Constantin Ciubotaru Svetlana Cojocaru
Alexandru Colesnicov Valentina Demidova

Sergiu Ivanov Veaceslav Macari Galina Magariu
Ludmila Malahova Vladimir Rogojin Yurii Rogozhin

Tatiana Tofan Sergey Verlan Tatiana Verlan

Abstract

We describe the investigations on natural computing in the
Institute of Mathematics and Computer Science of the Academy
of Sciences of Moldova during last fifteen years. Most of these in-
vestigations are inspired by results and ideas belonging to Corre-
sponding Member of the Romanian Academy Gheorghe Păun.

1 Introduction

In this paper we present a short overview of investigations on natural
computing carried out in the Institute of Mathematics and Computer
Science of Academy of Sciences of Moldova during last fifteen years.

Exactly fifteen yeas ago one of the authors of this paper, Prof. Yurii
Rogozhin has started his study in the scope of natural computing. His
studies and studies of his colleagues in the Institute were inspired by
scientific activity of Corresponding Member of the Romanian Academy
Gheorghe Păun.

c©2010 by A.Alhazov, E.Boian, L.Burtseva, C.Ciubotaru, S.Cojocaru,

A.Colesnicov, V.Demidova, S.Ivanov, V.Macari, G.Magariu, L.Malahova,

V.Rogojin, Yu.Rogozhin, T.Tofan, S.Verlan, T.Verlan

101

A.Alhazov et al. . . .

This overview includes investigations at the Institute on DNA com-
puting, membrane computing, insertion-deletion systems and other
models of biocomputing. The most of results obtained by scientists
of the Institute of Mathematics and Computer Science were presented
at different international workshops and conferences on natural com-
puting and published in prestigious international journals. Three PhD
theses and one Habilitation thesis were defended since 2004 and their
results are reflected in this volume of the journal.

2 DNA Computing

2.1 Test Tubes Systems

Molecular computers have been attracting many people from chemistry,
biology and computer science. A major break through was a concrete
molecular computer by Adleman [1] that could solve instances of the
travelling-salesman-problem.

In a remarkable paper T. Head [59] draw the connections between
molecular computers and formal language theory. The molecules from
biology are replaced by words over a finite alphabet and the chemical
reactions are replaced by the splicing operation. An H system specifies
a set of rules used to perform splicing and a set of initial words or
axioms. A splicing rule may be applicable to two molecules. It breaks
both molecules at fixed locations, defined by the splicing rule, and
recombines the initial string of one broken molecule with the final string
of the other one. The computation is done by applying iteratively the
rules to the set of words until no more new words can be generated.
This corresponds to a bio-chemical experiment where we have enzymes
(splicing rules) and initial molecules (axioms) which are put together
in a tube and we wait until the reaction stops.

T. Head’s smooth connection to formal language theory brought
this field to the attention of many people from formal language theory.
E.g., Gh. Păun, G. Rozenberg and A. Salomaa [89] asked what classes
of formal languages are derivable by molecular computers depending
on certain classes in formal language theory that the initial molecules

102

Investigations on Natural Computing . . .

and enzymes belong to.
One of such results says that any regular language is derivable

from finitely many initial molecules with finitely many splicing rules.
E. Csuhaj-Varjù, L. Kari, Gh. Păun [47] modified T. Head’s concept
slightly to systems of n test tubes. Here, any test tube is an H-system
with an additional filter. In a single macro-step any test tube generates
new molecules according to its set of starting molecules and its set of
splicing rules. Afterwards, the outcome of all test tubes is poured into
the filters of all test tubes. Those molecules that may pass the filter
of test tubes i, 1 ≤ i ≤ n, form the new starting molecules for the i-th
test tube for the next macro-step.

This new process, filtering results of one test tube into another,
increases the computational capability of molecular computers. Let us
call a system of n test tubes finite if initially any test tube contains
(arbitrarily many) copies of molecules from a finite set of molecules and
possesses only finitely many splicing rules.

It is known [89, 1] that a finite 1-test-tube-system generates only
regular sets of molecules. However, finite 2-test-tube-system may gen-
erate more complicated non-regular sets [47]. C. Ferretti, G. Mauri,
C. Zandron [54] have shown that any recursively enumerable (r.e.) set
of molecules is derivable in a finite 9-test-tube-system (or in a finite
6-test-tube-system if one allows for a rather simple encoding of the
molecules to be generated).

These results have implications for molecular computers as r.e. lan-
guages have many undecidable properties. E.g., the membership prob-
lem is in general not decidable for r.e. languages. This means that
there exists no algorithm A which can tell, when presenting a word w
and an r.e. languages L to A, whether w belongs to L or not. Fur-
ther, there is a fixed language, U , such that there exists no algorithm
A which can tell, when presenting a word w to A, whether w is an
element of U or not.

Thus, a trivial consequence of the result of [54] is that there exists
no algorithm which can compute which molecules may be generated
in a finite 6-test-tube-system. I.e., the results of a finite 6-test-tube-
system cannot be algorithmically predicted in general. We improved

103

A.Alhazov et al. . . .

this result by showing how to generate any r.e. language in a finite
3-test-tube-system [96]. Thus, there is no way to predict the outcome
of the reactions of only three test tubes starting with molecules and
enzymes from finite set of molecules and enzymes.

This question is still open for finite 2-test-tube-systems.

2.2 TVDH Systems

Head splicing systems (H systems) were one of the first theoreti-
cal models of biomolecular computing and they were introduced by
T. Head [59].

Ordinary H systems are not very powerful and a lot of other models
introducing additional control elements were proposed. One of these
well-known models are time-varying distributed H systems (TVDH sys-
tems) introduced by Gh. Păun in [90] as another theoretical model of
biomolecular computing, based on splicing operations.

He started from the biological observation that at each moment
there is a set of active enzymes which behave depending on conditions
of the environment. If the environment (temperature, acidity or other
parameter) changes, then the set of active enzymes also change. In the
proposed model, the set of splicing rules changes periodically. More
exactly, the model contains a set of words, the axioms, and a finite
number of sets of splicing rules, the components. At each step, the
current words are spliced once using the rules of the current compo-
nent, and the result of this splicing forms the set of words for the next
iteration.

We remark that this elimination procedure is very powerful and
it permits to obtain a big computational power. If the elimination
procedure is changed by permitting several splicings to be applied,
then another model similar to TVDH systems is obtained: Enhanced
Time-Varying distributed H systems, see [73, 75, 103, 104].

It is worthy to note that TVDH systems with one component gen-
erate all RE languages. This result highlights the importance of the
elimination and shows that for ordinary H systems only small modifi-
cations are needed in order to pass from regularity to rationality, see

104

Investigations on Natural Computing . . .

also [105].
A study of TVDH systems from a computational point of view may

be found in [102] where TVDH systems for main arithmetic operations
(addition, multiplication, exponentiation and division) and for the Ack-
ermann function were explicitly given. A computer simulator of TVDH
systems was also developed [101].

Moreover, the simple structure of TVDH systems permit to use
these systems as target for universality proofs for systems based on
splicing. For example, in [79] a simulation of the TVDH system
from [78] is done. In [106] there is an example of simulation of TVDH
systems with one component by splicing membrane systems (P sys-
tems) [100].

TVDH systems have a very simple structure and a powerful con-
trol. These features stimulated several articles investigating the com-
putational power of these systems. In [92, 91] Gh. Păun showed that
TVDH systems are computationally complete by constructing a system
having 7 components that simulate any type-0 grammar.

Subsequent articles decreased consequently the number of compo-
nents needed to obtain the computational completeness. This was done
in two ways. In the first case TVDH systems simulating Turing ma-
chines and tag systems were constructed. We remark that in this case
the proof is strictly sequential: only one molecule which encodes the
tape (or the working word) and the state of the machine shall be present
in the system. In 1998 M. Margenstern and Yu. Rogozhin showed first
that TVDH systems with 2 components are able to do universal com-
putations, see [70, 71]. Their proof was based on a simulation of tag
systems [45, 82] and the obtained system is quite complicated. Later,
a proof based on a simulation of Turing machines was proposed [71].

Shortly after that the same authors showed that with 2 components
it is possible to generate all recursively enumerable languages [72, 74].
Such generation was done in the following way. It is known that for
any RE language L = {w1, w2, . . . } there is a Turing machine that,
given an input 01n, n > 0, will compute 01n+1wn. The system that
they constructed behaves in the following way. First, a simulation of
corresponding Turing machine on the input 01n is done. After that

105

A.Alhazov et al. . . .

special rules cut off word wn and the system restarts the simulation
of the Turing machine on the new input 01n+1. In this way any RE
language is generated word by word.

The same authors obtained in 2001 a very important result: TVDH
systems with one component are universal [77]. The core of the proof
consists in a simulation of tag systems. In the same year they proposed
a system having one component that generates all RE languages [76].
The proof is based on the same ideas that were presented in previous
paragraph.

Another way to show the computational completeness of TVDH
systems consists in simulation of type-0 grammars. This introduces a
parallelism in computations because several evolutions of molecules are
made in the same time. Also this case is more complicated than the
sequential one and needs much more accuracy. Almost all results in
this case are based on “rotate-and-simulate” method.

The article of Gh. Păun [92] is an example of this technique. In
1999 A. Păun showed that it is possible to simulate the work of an ar-
bitrary grammar with 4 components [88]. This result was improved by
M. Margenstern and Yu. Rogozhin who showed that a type-0 grammar
can be simulated with 3 components, see [73].

We improved the above results by showing that it is possible to
generate any recursively enumerable language in a parallel way with 2
components, see [78]. Finally, the final point was reached by showing
that it is possible to generate all recursively enumerable languages in
a parallel way with one component, see [79]. The last result was ob-
tained by using the method of directing molecules, see [104], which is
a modification of the “rotate-and-simulate” method for systems based
on splicing.

3 Membrane (P) Systems

The research area of membrane computing originated as an attempt
to formulate a model of computation motivated by the structure and
functioning of a living cell - more specifically, by the role of mem-
branes in compartmentalization of living cells into protected reactors.

106

Investigations on Natural Computing . . .

Therefore, initial models were based on a cell-like (hence hierarchical)
arrangement of membranes delimiting compartments, where multisets
of chemicals (called objects) evolve according to given evolution rules.
These rules were either modeling chemical reactions and had the form of
(multiset) rewriting rules, or they were inspired by other biological pro-
cesses, such as passing objects through membranes (either in symport
or antiport fashion), and had the form of communication rules. These
initial models were then modified by incorporating various additional
features motivated by considerations rooted in biology, mathematics,
or computer science.

The next important step in the development of research in mem-
brane computing was to also consider other (nonhierarchical) arrange-
ments of membranes. While hierarchical (cell-like) arrangements of
membranes correspond to trees, tissue-like membrane systems con-
sider arbitrary graphs as underlying structures, with membranes placed
in the nodes while edges correspond to communication channels (see
[94, 87]).

3.1 Transitional P Systems

We introduced a new approach to study the family of languages gen-
erated by the transitional membrane systems without cooperation and
without additional ingredients ([28, 29, 30, 31]). The fundamental na-
ture of these basic systems makes it possible to also define the corre-
sponding family of languages in terms of derivation trees of context-free
grammars. We also compare this family to the well-known language
families and discuss its properties.

We considered some theoretical tasks for P systems. In particular,
we considered a new variant of the halting condition in P systems ([20,
55]), i.e., a computation in a P system is already called halting if not for
all membranes a rule is applicable anymore at the same time, whereas
usually a computation is called halting if no rule is applicable anymore
in the whole system. This new variant of partial halting is especially
investigated for several variants of P systems using membrane rules
with permitting contexts and working in different transition modes,

107

A.Alhazov et al. . . .

especially for minimal parallelism.
Both partial halting and minimal parallelism are based on an arbi-

trary set of subsets from the set of rules assigned to the membranes.
We considered the problem of synchronizing the activity of all mem-

branes of a P system ([9, 23]). After pointing at the connection with
a similar problem dealt with in the field of cellular automata where
the problem is called the firing squad synchronization problem, FSSP
for short, we provided two algorithms to solve this problem. One al-
gorithm is non-deterministic and works in 2h + 3 steps, the other one
is deterministic and works in 3h + 3 steps, where h is the height of
the tree describing the membrane structure. We introduced a new
derivation mode for P systems that permits to make a look-ahead on
the next configuration and check for some forbidding conditions on it
[108]. The interesting point is that the software implementation of this
mode needs very small modifications to the standard algorithm of rule
assignment for maximally parallelism. As benefits of this mode some
non-deterministic proofs become deterministic.

As an example we present a generalized communicating P system
that accepts numbers 2n in n steps in a deterministic way. Another
example shows that in the deterministic case this mode is more pow-
erful than the maximally parallel derivation mode. Finally, this mode
gives a natural way to define P systems that may accept or reject a
computation.

3.2 Communication P Systems

Communication P systems [52, 56, 98, 110] are inspired by the idea
of communicating substances through membrane channels of a cell.
Molecules may go in the same direction together – symport – or some
of them may leave while at the same time other molecules enter the
cell – antiport. Communicating objects between membrane regions is a
powerful tool yielding computational completeness with one membrane
using antiport rules or symport rules of size three, i.e. involving three
objects, in the maximally parallel mode. As register machines can be
simulated in a deterministic manner, P systems with antiport rules or

108

Investigations on Natural Computing . . .

symport rules can accept any recursively enumerable set of (vectors of)
natural numbers in a deterministic way.

In tissue P systems, the objects are communicated through chan-
nels between cells. In each transition step we apply only one rule for
each channel, whereas at the level of the whole system we work in the
maximally parallel way. Computational completeness can be obtained
with a rather small number of objects and membranes or cells, in the
case of tissue P systems even with copies of only one object.

The computational power of P systems with antiport rules or sym-
port rules involving copies of only one object remains one of the most
challenging open questions.

The concept of P systems with antiport and/or symport rules can
be generalized to systems using membrane rules evolving multisets of
objects on both sides of the membrane even depending on permitting
contexts (also called promoters) and/or forbidden contexts (also called
inhibitors).

P systems with communication rules can also be used as language
generators – we take the sequences of terminal objects sent out to the
environment as the strings generated by the system. A generalized
communicating P system, or a GCPS for short, corresponds to a graph
where each node, called a cell, contains a multiset of objects which –
by communication – may move between the cells.

The communication rules are rather restricted, any rule identifies
four cells, two input cells and two output cells, such that a pair of
objects from the two input cells moves synchronously to the two output
cells. The form of a communication rule is (a; i)(b; j) → (a; k)(b; l)
where a and b are objects and i, j, k, l are numbers that identify the
input and the output cells. Such a rule means that an object a from
cell i and an object b from cell j move synchronously to cell k and cell l,
respectively. It can easily be seen that these very simple communication
rules can also be interpreted as interaction rules.

Depending on the relation of i, j, k, l, nine restricted variants of
communication rules (modulo symmetry) can be distinguished. (For
example, i 6= j 6= k 6= l is one of these restrictions, called a parallel-
shift rule). When the GCPS has only one type of these restricted

109

A.Alhazov et al. . . .

rules, we speak of generalized communicating P systems with minimal
interaction, a GCPSMI for short.

We considered generalized communicating P systems which use only
one type of the above interaction operations [51]. We proved that in 7
of these cases computational completeness is obtained, i.e., the corre-
sponding GMPCSs are able to determine any recursively enumerable
set of non-negative integers; the only exception determines only finite
singletons of natural numbers.

The constructions in the proofs also demonstrate that this large
expressive power can be obtained by P systems with relatively small
numbers of cells and simple graph architectures. We also proved [52]
that GCPSs still remain computationally complete if they are given
with a singleton alphabet of objects and with one of the restricted
types of rules: parallel-shift, join, presence-move, and chain.

3.3 Polymorphic P systems

We introduced a variant of the multiset rewriting model of P systems
where the rules of every region are defined by the contents of interior
regions, rather than being explicitly specified in the description of the
system [33]. This idea is inspired by the von Neumann’s concept of
“program is data” and also related to the research direction proposed
by Gh. Păun about the cell nucleus.

Membrane computing is a fast growing research field opened by
Gh. Păun in 1998. It presents a formal framework inspired from the
structure and functioning of the living cells.

In this paper we define yet another, relatively powerful, extension
to the model, which allows the system to dynamically change the set
of rules, not limited to some finite prescribed set of candidates. There
are three motives for this extension:

• first, our experience shows that “practical” problems need “more”
computing potential than just computational completeness;

• second, we attempt to import a very important computational

110

Investigations on Natural Computing . . .

ingredient into P systems, this time from the conventional com-
puter science;

• third, this extension correlates with the biological idea that dif-
ferent actions are carried out by different objects, which can be
acted upon as well.

Let us first explain these motives. Most papers of the field belong to
the following categories:

1. introducing different models and variants,

2. studying the computational power of different models depending
on what ingredients are allowed and on the descriptional com-
plexity parameters,

3. studying the computational efficiency of solving intractable prob-
lems (supercomputing potential) depending on the ingredients,

4. using membrane computing to represent and model various pro-
cesses and phenomena, including but not limited to biology,

5. other applications.

There is a surprisingly big gap between the sets of ingredients
needed to fulfill requirements in directions 2, 3, and the sets of ingre-
dients demanded by other applications. For instance, very weak forms
of cooperation between objects are often enough for the computational
completeness, but many “practical” problems cannot be solved in a sat-
isfactory way under the same limitations. This leads to the following
question. What is implicitly required in most “practical” problems?
We will mention just a few of these requirements below.

A) Determinism or at least confluence. Clearly, the end user wants
to obtain the answer to the specified problem in a single run of a
system instead of examining infinitely many computations. This
is a strong constraint, e.g., catalytic P systems and P systems
with minimal symport/antiport are universal, while in the deter-
ministic case non-universality is published for the first ones and

111

A.Alhazov et al. . . .

claimed for the latter ones. Informally speaking, less computa-
tional power is needed to just compute the result than it is to
also enforce choice-free behavior of the system.

B) Input/output. Most of the universality results are formulated as
generating languages or accepting sets of vectors, or in an even
more restricted setup. There is no need to deal with input in
the first case, and in the latter case the final configuration itself
is irrelevant (except yes or no in case of the efficiency research).
On the other side, both input and output are critical for most
applications.

C) Representation. Clearly, any kind of discrete information can be
encoded in a single integer in some consistent way. However, a
much more transparent data representation is typically required;
even the intermediate configurations in a computation are ex-
pected to reflect a state of the object in the problem area.

D) Efficiency. Suppose numbers are represented by multiplicities of
certain objects. The number of steps needed to multiply two num-
bers by plain (cooperative) multiset processing is proportional to
the result. If the multiset processing can be controlled by pro-
moters/inhibitors/priorities, then the number of steps needed for
multiplication is proportional to one of the arguments. However,
many applications would ask for a multiplication to be performed
in a constant number of steps. Similar problems appear for string
processing.

E) Data structures. Membrane computing deals with multisets dis-
tributed over a graph, while conventional computers provide ran-
dom memory access and pointer operations, allowing much more
complex structures to be built.

Some of these implicit requirements originate because the user wants
a solution which is at least as good as the one that can be provided by
conventional computers.

112

Investigations on Natural Computing . . .

We introduced a new feature into the membrane computing. This
time the inspiration is not biological, but rather is from the area of
conventional computing.

Suppose we want to be able to manipulate the rules of the system
during its computation. A number of papers has been written about
this but in most of them the rules are predefined in the description
of the system. The most natural way to manipulate the rules is to
represent them as data, treat this data as rules, and manipulate it
as usual in P systems, in the spirit of von Neumann’s approach. In
membrane systems, the data consists of multisets, so objects should be
treated as description of the rules. Informally, a rule j in a region i
can be represented by the contents of membranes jL and jR inside i.
Changing the contents of regions jL and jR results in the corresponding
change of the rule j. We call such P systems polymorphic, by analogy
with polymorphic or self-modifying computer programs.

At the same time, if a membrane system is an abstraction inspired
by the biological cell, one can view inner regions as an abstraction
inspired by the cell nucleus; their contents correspond to the genes
encoding the enzymes performing the reactions of the system.

The simplicity of the proposed model is that we consider the natural
encoding, i.e., no encoding at all: the multisets describing the rules
are represented by exactly themselves. Therefore, we are addressing
a problem informally stated by Gh. Păun “Where Is the Nucleus?”
by proposing a computational variant based on one simple difference:
the rules are taken from the current configuration rather than from the
description of the P system itself.

3.4 Insertion-Deletion (P) Systems

We considered models of biocomputing based on insertion and deletion
operations of small size [80, 21, 22, 35, 36, 57, 68, 65, 66, 64, 67, 69, 81].
The insertion and the deletion operations originate from the language
theory, where they where introduced mainly with linguistic motivation.
In general form, an insertion operation means adding a substring to
a given string in a specified (left and right) context, while a deletion

113

A.Alhazov et al. . . .

operation means removing a substring of a given string from a specified
(left and right) context. A finite set of insertion-deletion rules, together
with a set of axioms provide a language generating device: starting from
the set of initial strings and iterating insertion-deletion operations as
defined by the given rules we get a language.

In the last years, the study of these operations has received a new
motivation from molecular computing, because, from the biological
point of view, insertion-deletion operations correspond to mismatched
annealing of DNA sequences. As expected, insertion-deletion systems
are quite powerful, leading to characterizations of recursively enumer-
able languages. This is not quite surprising as the corresponding device
contains two important ingredients needed for the universality: the con-
text dependency and the erasing ability. However, as it was shown in
[80], the context dependency may be replaced by insertion and deletion
of strings of sufficient length, in a context-free manner. If the length
is not sufficient (less than two) then such systems are decidable and a
characterization of them was shown by S.Verlan in [107].

Similar investigations were continued in [5, 4] on insertion-deletion
systems with one-sided contexts, i.e. where the context dependency is
present only from the left (right) side of all insertion and deletion rules.
These articles also give some combinations of rule parameters that lead
to systems, which are not computationally complete. However, if these
systems are combined with the distributed computing framework of P
systems, then their computational power may strictly increase [64, 68].

In [21, 35] we study P systems with context-free insertion and dele-
tion rules of one symbol. We show that this family is strictly included
in MAT, however some non-context-free languages may be generated.
If Parikh vectors are considered, then the corresponding family equals
to PsMAT. When a priority of deletion over insertion is introduced,
PsRE can be characterized, but in terms of language generation such
systems cannot generate a lot of languages because there is no control
on the position of an inserted symbol. If one-sided contextual insertion
or deletion rules are used, then this can be controlled and all recursively
enumerable languages can be generated.

The same result holds if a context-free deletion of two symbols is

114

Investigations on Natural Computing . . .

allowed.

3.5 Splicing (P) Systems

It is known that H systems are not very powerful, so, a lot of other
models introducing additional control elements were proposed. An-
other extension of H systems was done using the framework of P sys-
tems (see [109]). In a formal way, splicing P systems can be considered
like a graph, whose nodes contain sets of strings and sets of splicing
rules. Every rule permits to perform a splicing and to send the result
to some other node. Since splicing P systems generate any recursively
enumerable language, it is clear that there are universal splicing P sys-
tems.

Like for small universal Turing machines, we are interested in such
universal systems that have a small (smallest) number of splicing rules.
A first result was obtained by Yu.Rogozhin and S.Verlan in [97] where
a universal splicing P system with 8 rules was shown. Similar investi-
gations for P systems with symbol-objects were done in [11, 39] and the
latter article constructs a universal antiport P system with 23 rules.

In [38] we provided a new construction for splicing P systems and
proved the remarkable fact that 6 splicing rules are powerful enough for
the universality. In [34] we presented a series of small universal devices
(splicing systems):

• two universal time-varying distributed H systems: of degree 2
with 15 rules and of degree 1 with 17 rules,

• and also three universal splicing test tube systems with 3 or 2
test tubes and 10 rules.

Test tube systems based on splicing, introduced in E. Csuhaj-Varjú et
al. in [47] are symbol processing mechanism with components (test
tubes) working as splicing schemes in the sense of T. Head, and com-
municating through redistribution of the contents of the test tubes via
filters. These systems with finite initial contents of the tubes and finite
sets of splicing rules associated to each component are computation-
ally complete; they characterize the family of recursively enumerable

115

A.Alhazov et al. . . .

languages. The existence of universal test tube distributed systems
was obtained on this basis, hence there is the theoretical possibility to
design universal programmable computers with the structure of such a
system.

Since 1996, a lot of variants of test tube systems have been intro-
duced and studied, using filtering of the strings by patterns. A natural
question is whether or not such systems with other types of filtering
mechanisms, based on techniques widely used in laboratory, can be
defined. We introduced a new variant of test tube systems, length-
separating test tube systems, based on splicing where the communica-
tion of the words among the test tubes is based on filtering by their
lengths, motivated by the gel electrophoresis laboratory technique [50].
However, we remark that filtering by length can also be done by other
methods, like size exclusion chromatography, that permits to separate
molecules depending on their size.

Gel electrophoresis is a technique for separation of molecules which
is widely used in the laboratory. It is usually performed for analytical
purposes at the final stage of the experiment. Its formal counterpart,
the length separation, is a standard tool in DNA computing. For ex-
ample, it is used in the third step of the Adleman’s experiment in
1994. There are also algorithms like in F. Guarnieri et al. [58] based
on the length separation which use it at the end of the computation
in order to confirm or select the result. In Y. Khodor et al. [63], a
method called length-only discrimination based on the generate-and-
search approach but relying on the length of the sequence is presented
and experimentally confirmed.

We use the length separation in another way. We consider a dis-
tributed system and we use the length separation for the communica-
tion between the components of the system. Since such systems work
iteratively, the length separation, used at each step, becomes one of
the main ingredients of the model. In an informal way, our model
corresponds to the following experiment.

Let us suppose that there is a set of test tubes. Each of these
test tubes may transform DNA molecules (cut, ligate, multiply etc).
The tubes are selective and they can do their transformations only

116

Investigations on Natural Computing . . .

on specific molecules (for example, in a tube DNA molecules may be
cut with a specific enzyme, hence only molecules having a correspond-
ing site will be modified). Taking a tube, we may put some amount
of DNA molecules into it. After the transformation, all molecules
from a tube are put in a gel electrophoresis. After the separation,
the gel is cut at some points corresponding to some molecular lengths.
Hence, molecules will be grouped by some length intervals. After that,
molecules are extracted from the gel and distributed among other test
tubes depending on their molecular length interval.

The above process may be iterated and, since all tubes are orga-
nized in a network, some interesting transformations may be done. The
initial DNA molecules are put in some fixed tube, and the transformed
molecules are collected in the output tube. To separate molecules to
be transmitted from one tube to another one, we define different con-
ditions. These conditions are exclusive, namely, each string (molecule)
found in a tube can be forwarded to only one tube. All molecules in
the test tube are communicated to some tube (depending on the un-
derlying graph of the test tube system, might remain at the original
tube). One type of these conditions are variants of communication by
fixed (bounded) length where strings of length equal to (or at most
equal to or at least equal to) a fixed constant are communicated to
another tube. In terms of gel electrophoresis this corresponds to the
cut at some specific points depending on the marker molecules.

Other types of conditions involve molecules of maximal and minimal
size as well as their negations (not maximal and not minimal). From
the gel point of view, this corresponds to the selection of the first
or the last molecule from the gel (the other molecules correspond to
the negation variant). We study the computational power of these
constructs. We show that the length separating test tube systems, even
with very restricted size parameters, are able to simulate the Turing
machines. This result holds in general case as well as for systems only
using communication conditions based on separation of molecules by
maximal (resp. minimal) and not maximal (resp. not minimal) length
and on the ability checking whether the word (the molecule) differs
from the empty word. These results correspond to our expectations,

117

A.Alhazov et al. . . .

due to the nature of the splicing operation.

If we restrict the communication conditions to select molecules with
fixed or bounded length, then the computational power of the corre-
sponding systems is not known. Although using appropriate commu-
nication predicates our construction has the power of the Turing ma-
chines, this does not help in efficiently solving practical problems. For
example, given a particular molecule, can we design a system that will
perform a particular transformation on it? Moreover, this transforma-
tion should be efficient, i.e., it shall be done in the smallest possible
number of steps, involving the smallest number of high-cost operations.
This problem is difficult to solve.

Here we provided a theoretical framework that could be used to de-
scribe and possibly answer the above questions. However, we mainly fo-
cus on the network structure and length filtering; the operation-related
improvements remain to be further investigated.

3.6 Reversibility and P Systems

Membrane computing is a formal framework of distributed parallel
computing. We studied the reversibility and maximal parallelism of
P systems from the computability point of view [32, 24, 25, 37]. The
notions of reversible and strongly reversible systems are considered.

The universality is shown for reversible P systems with either pri-
orities or inhibitors, and a negative conjecture is stated for reversible
P systems without such control. Strongly reversible P systems without
control have shown to only generate sub-finite sets of numbers; this
limitation does not hold if inhibitors are used.

Another concept considered is strong determinism which is a syn-
tactic property, as opposed to the determinism typically considered
in membrane computing. Strongly deterministic P systems without
control only accept sub-regular sets of numbers, while systems with
promoters and inhibitors are universal.

118

Investigations on Natural Computing . . .

3.7 P Systems with Active Membranes

Membrane systems are a convenient framework of describing polynomial-
time solutions to certain intractable problems in a massively parallel
way. Division of membranes makes it possible to create an exponential
space in linear time, suitable for attacking problems in NP and even
in PSPACE. Their solutions by so-called P systems with active mem-
branes have been investigated in a number of papers since 2001, later
focusing on solutions by restricted systems (see, for example, The Ox-
ford Handbook of Membrane Computing, ed. by G. Paun, G. Rozen-
berg, A. Salomaa [87]). The description of rules in P systems with
active membranes involves membranes and objects; the typical types
of rules are object evolution, object communication, membrane disso-
lution, membrane division.

Our goal was to implement methods of P systems with active mem-
branes in computer algebra and particularly, to generalize the ap-
proach from decisional problems to the computational ones, by consid-
ering a #P-complete (pronounced sharp-P complete) problem of com-
puting the permanent of a binary matrix [5, 14].

Commutative and non-commutative Computer Algebra Systems
were analyzed. The systems were analyzed taking into account effi-
ciency, termination of calculations, and some technical details of their
implementation. Existing methods of parallel calculations used with
Computer Algebra Systems were also examined. We studied a series of
problems in the matrix theory (permanent calculation), Grobner base
theory (determination if the algebra has the finite dimension, check-
ing if a given set of polynomials forms the Grobner base of the given
algebra). We used P-lingua system [95] to simulate elaborated algo-
rithms. We found that the said system does not meet all necessities to
simulate monomials manipulations. We proposed to extend it with the
mechanism of rule parameterization.

The domain of Computer Algebra is characterized by problems of
the high calculation complexity. Therefore, the interest in effective
methods of their solution is justified. The results of our research demon-
strate that natural calculations make an effective mechanism to solve

119

A.Alhazov et al. . . .

problems in this domain, in particular, for non-commutative algebras
where the computing processes can be infinite.

Other our goal was to implement methods of P systems with active
membranes in mathematical linguistics.

Solving most problems of natural language processing is based on
using certain linguistic resources, represented by corpora, lexicons, etc.
Usually, these collections of data constitute an enormous volume of in-
formation, so processing them requires much computational resources.
A reasonable approach for obtaining efficient solutions is that based
on applying parallelism; this idea has been promoted already in 1970’s.
Many of the stages of text processing (from tokenization, segmentation,
lematizing to those dealing with natural language understanding) can
be carried out by parallel methods. This justifies the interest to the
methods offered by the biologically inspired models, and by membrane
computing in particular.

However, there are some issues that by their nature do not allow
complete parallelization, yet exactly they are often those “computa-
tional primitives” that are inevitably used during solving major prob-
lems, like the elementary arithmetic operations are always present in
solving difficult computational problems. Among such “primitives” in
the computational linguistics we mention handling of the dictionaries,
e.g., dictionary lookup and dictionary update. Exactly these problems
constitute the subject of our work.

In our approach we speak about dictionary represented by a pre-
fix tree and P systems with active membranes that are a conve-
nient framework of describing computations on trees [17, 16, 46]. In
[13, 15, 41, 42, 43] we formalised inflection process for the Romanian
language using the model of P systems with cooperative string repli-
cation rules, which will make it possible to automatically build the
morphological lexicons as a base for different linguistic applications.

3.8 Networks of Evolutionary Processors

Motivated by some models of massively parallel computer architec-
tures (see [53] and [60]), networks of language processors have been

120

Investigations on Natural Computing . . .

introduced in 1997 by E. Csuhaj-Varjú and A. Salomaa [48]. Such a
network can be considered as a graph where the nodes are sets of pro-
ductions and at any moment of time a language is associated with a
node. In a derivation step, any node derives from its language all pos-
sible words as its new language. In a communication step, any node
sends those words to other nodes that satisfy an output condition given
as a regular language, and any node takes those words sent by the other
nodes that satisfy an input condition also given by a regular language.
The language generated by a network of language processors consists
of all (terminal) words which occur in the languages associated with a
given node.

Inspired by biological processes, J. Castellanos, C. Mart́ın-Vide,
V. Mitrana and J. Sempere introduced in [44] a special type of networks
of language processors which are called networks with evolutionary
processors because the allowed productions model the point mutation
known from biology. The sets of productions have to be substitutions
of one letter by another letter or insertions of letters or deletion of
letters; the nodes are then called substitution node or insertion node
or deletion node, respectively.

It was shown by A. Alhazov et al. in [3] that networks of evolution-
ary processors are universal in that sense that they can generate any re-
cursively enumerable language and that networks with three nodes are
sufficient to get all recursively enumerable languages. The proof uses
one node of each type (and intersection with a monoid). Therefore it
is a natural question to study the power of networks with evolutionary
processors where the nodes have only two types, i. e.,

(i) networks with deletion nodes and substitution nodes (but without
insertion nodes),

(ii) networks with insertion nodes and substitution nodes (but with-
out deletion nodes), and

(iii) networks with deletion nodes and insertion nodes (but without
substitution nodes).

We investigated the power of such systems and studied the number

121

A.Alhazov et al. . . .

of nodes sufficient to generate all languages which can be obtained by
networks of the type under consideration. We prove that networks of
type (i) and (ii) produce only finite and context-sensitive languages,
respectively. Every finite, context-sensitive or recursively enumerable
language can be generated by a network of type (i) with one node, by
a network of type (ii) with two nodes or by a network of type (iii) with
two nodes, respectively [19].

Particularly interesting variants of these devices are the so-called
hybrid networks of evolutionary processors (HNEPs), where each lan-
guage processor performs only one of the above operations on a certain
position of the words in that node. Furthermore, the filters are de-
fined by some variants of random-context conditions, i.e., they check
the presence/absence of certain symbols in the words. These constructs
can be considered both language generating and accepting devices, i.e.,
generating HNEPs (GHNEPs) and accepting HNEPS (AHNEPs).

In [49] E. Chuhaj-Varjú et al. showed that, for an alphabet V ,
GHNEPs with 27+3 · card(V) nodes are computationally complete. A
significant improvement of the result can be found in [6, 7], where we
proved that GHNEPs with 10 nodes (irrespectively of the size of the
alphabet) obtain the universal power. Recently [8, 18] we improved
this result and showed that any recursively enumerable language can
be generated by a GHNEP having 7 nodes and it can be accepted by an
AHNEP with the same number of nodes. We also show that the fam-
ilies of GHNEPs and AHNEPs with 2 nodes are not computationally
complete. Although the sharpness of the upper bounds is not verified,
we considerably improved the previous results. The gap between uni-
versality and non-universality for GHNEPs now is very small (it is the
same as for the famous PCP problem). In [10] we completed investi-
gation of HNEPs with one node and presented a precise description of
languages generated by them.

We considered new variant of HNEP, so called Obligatory Network
of Evolutionary Processors (OHNEP shortly) [12]. The differences be-
tween HNEP and OHNEP are:

1) in using deletion and substitution operations: a node discards a
string if no operations in node are applicable to string (in HNEP

122

Investigations on Natural Computing . . .

case this string remains in the node),

2) an underlying graph is directed graph (in HNEP case this graph
is undirected).

We underline that both differences are natural.
The first one allows us to have the uniform definitions of the opera-

tions on a string, as opposed to considering two cases as in HNEPs (it
is the set of results of the applications of the operation to all possible
positions; the case when there are no such positions yields the empty
set by definition).

The second difference, that of generalization of the underlying graph
to be directed, is natural from the computational point of view; more-
over, since the loops are typically not considered, it also seems relevant
from the viewpoint of the biological motivation that the communicating
channels are directed.

These differences allow proofing universality of OHNEP with nodes
with only one operation, without input and output filters and using
only insertion operation at the left end and deletion operation at the
right end of a string. This interesting fact stresses the importance of
structure of HNEP in order to reach universality.

On the other hand we can avoid substitution operation. Notice
that this feature of OHNEP to discard a string if this string does not
participate at the operations has counterpart in DNA computing area,
TVDH systems also discard strings if they do not participate at splicing
operations ([73]). A task to find a minimal number of nodes of universal
OHNEP is open. A variant of OHNEP with underlying complete graph
is not considered yet.

An implementation of HNEPs and OHNEPs in mathematical lin-
guistics is also interesting task to investigate. The constructions
demonstrate that distributed architectures of very small size, with uni-
form structure and with components based on very simple language
theoretic operations are sufficient both to generate and to recognize
any recursively enumerable language.

123

A.Alhazov et al. . . .

3.9 Other Models of Natural Computing

A number-conserving cellular automaton (NCCA) is a cellular automa-
ton whose states are integers and whose transition function keeps the
sum of all cells constant throughout its evolution. It can be seen as a
kind of modeling of the physical conservation laws of mass or energy.

We showed a construction method of NCCAs with radius 1/2 [61].
The local transition function is expressed via a single unary function
which can be regarded as “flows” of numbers. In spite of the strong
constraint, we constructed NCCAs with radius 1/2 that simulate any
cellular automata with radius 1/2 or any NCCA with radius 1. We
also consider the state complexity of these non-splitting simulations
(4n2 + 2n + 1 and 8n2 + 12n − 16, respectively). These results also
imply existence of intrinsically universal NCCA with radius 1/2.

A reversible logic element is a primitive from which reversible com-
puting systems can be constructed. A rotary element is a typical 2-
state 4-symbol reversible element with logical universality, and we can
construct reversible Turing machines from it very simply.

There are also many other reversible elements with 1-bit memory.
So far, it is known that all the 14 kinds of non-degenerate 2-state
3-symbol reversible elements can simulate a Fredkin gate, and hence
they are universal. We showed that all these 14 elements can “directly”
simulate a rotary element in a simple and systematic way [84, 85, 86].

Acknowledgments All authors acknowledge the support by the Sci-
ence and Technology Center in Ukraine, project 4032.

References

[1] L.M.Adleman: Molecular computation of solutions of combinato-
rial problems, Science, 226, pp. 1021–1024, 1994.

[2] A.Alhazov: Maximally Parallel Multiset-Rewriting Systems:
Browsing the Configurations. In: M.A. Gutiérrez-Naranjo, A.
Riscos-Núñez, F.J. Romero-Campero, D. Sburlan: RGNC re-

124

Investigations on Natural Computing . . .

port 01/2005, University of Seville, Third Brainstorming Week
on Membrane Computing, Fénix Editora, Sevilla, 2005, pp. 1–10.

[3] A.Alhazov, C.Mart́ın-Vide, Yu.Rogozhin: On the number of
nodes in universal networks of evolutionary processors, Acta Inf.
43 (2006) pp. 331–339.

[4] A.Alhazov: Ciliate Operations without Context in a Membrane
Computing Framework. Romanian Journal of Information Sci-
ence and Technology, vol.10, no.4 (2007), pp. 315–322.

[5] A.Alhazov, L.Burtseva, S.Cojocaru, Y.Rogozhin: Computing so-
lutions of #P-complete problems by P systems with active mem-
branes. In: Proceedings of Ninth Workshop on Membrane Com-
puting (WMC9), Edinburgh, UK, July 28 - 31, 2008, pp. 59–70.

[6] A.Alhazov, E.Csuhaj-Varjú, C.Mart́ın-Vide, Yu.Rogozhin: About
Universal Hybrid Networks of Evolutionary Processors of Small
size. In: Pre-proceedings of the 2nd International Conference on
Language and Automata, Theory and Applications, LATA 2008,
March 13 - 19, 2008, Rovira i Virgili University, Tarragona, Spain.
Technical Report of GRLMC No. 36/08, Universitat Rovira i
Virgili, Tarragona, Spain (2008), pp. 43–54.

[7] A.Alhazov, E.Csuhaj-Varjú, C.Mart́ın-Vide, Y.Rogozhin: About
Universal Hybrid Networks of Evolutionary Processors of Small
Size. Lecture Notes in Computer Science, Springer, 5196, pp.
28–39, 2008.

[8] A.Alhazov, E.Csuhaj-Varjú, C.Mart́ın-Vide, Y.Rogozhin: Com-
putational Completeness of Hybrid Networks of Evolutionary
Processors with Seven Nodes. In: Proceedings of the Workshop
DCFS 2008, Descriptional Complexity of Formal Systems, Char-
lottetown, Prince Edward Island, Canada, July 16-18, 2008.

[9] A.Alhazov, M.Margenstern, S.Verlan: Fast synchronization in
P systems. In: Proceedings of Ninth Workshop on Membrane
Computing (WMC9), Edinburgh, UK, July 28 - 31, 2008, pp.
59–70.

125

A.Alhazov et al. . . .

[10] A.Alhazov, Yu.Rogozhin: About Precise Characterization of Lan-
guages Generated by Hybrid Networks of Evolutionary Processors
with One Node. Computer Science Journal of Moldova, 16, no.3
(48) (2008), pp. 364–376.

[11] A.Alhazov, S.Verlan: Minimization Strategies for Maximally
Parallel Multiset Rewriting Systems. Technical Report of Turku
Centre for Computer Science, Turku, Finland, no. 862, (2008).

[12] A.Alhazov, G. Bel-Enguix, Yu.Rogozhin: Obligatory Hybrid Net-
works of Evolutionary Processors. In: Proc. of the First Interna-
tional Conference on Agents and Artificial Intelligents, ICAART
2009, Porto, Portugal, 19-21 January, 2009, pp. 613–618.

[13] A.Alhazov, E.Boian, S.Cojocaru, Yu.Rogozhin: Modelling Inflec-
tions in Romanian Language by P Systems with String Replica-
tion. In: Proc. of the 10th Workshop on Membrane Computing,
WMC10, Curtea de Arges (Romania), August 24 - 27, 2009, pp.
116–128.

[14] A.Alhazov, L.Burtseva, S.Cojocaru, Yu.Rogozhin: Solving PP-
Complete and #P-Complete Problems by P Systems with Active
Membrane. Lecture Notes in Computer Science, Springer, 5391
(2009), pp. 108–117.

[15] A.Alhazov, E.Boian, S.Cojocaru, Yu.Rogozhin: Modelling Inflec-
tions in Romanian Language by P Systems with String Repli-
cation. Computer Science Journal of Moldova, vol.17, no.2(50),
2009, pp. 160–178.

[16] A.Alhazov, S.Cojocaru, L.Malahova, Yu.Rogozhin: Dictionary
Search and Update by P Systems with String-Objects and Active
Membranes. International Journal of Computers, Communica-
tions and Control, Vol. IV, No. 3 (2009), pp. 206–213.

[17] A.Alhazov, S.Cojocaru, L.Malahova, Yu.Rogozhin: Dictionary
Search and Update by P Systems with String-Objects and Active
Membranes. In: Proc. of the 7th Brainstorming Week on Mem-
brane Computing, Sevilla, Spain, February 2-February 6, 2009.
Universidad de Sevilla, RGNC REPORT 1/2009, pp. 1–8.

126

Investigations on Natural Computing . . .

[18] A.Alhazov, E.Csuhaj-Varjú, C.Mart́ın-Vide, Yu.Rogozhin: On
the size computationally complete hybrid networks of evolutionary
processors. Theoretical Computer Science, Elsevier, 410 (2009),
pp. 3188–3197.

[19] A.Alhazov, J.Dassow, C.Mart́ın-Vide, Yu.Rogozhin, B.Truthe:
On Networks of Evolutionary Processors with Nodes of Two
Types. Fundamenta Informaticae, IOS Press, 91(1) (2009), pp.
1–15.

[20] A.Alhazov, R.Freund, M.Oswald, S.Verlan: Partial Halting and
Minimal Parallelism Based on Arbitrary Rule Partitions. Funda-
menta Informaticae, IOS Press, 91(1) (2009), pp. 17–34.

[21] A.Alhazov, A.Krassovitskiy, Yu.Rogozhin, S.Verlan: P Systems
with Minimal Insertion and Deletion. In: Proc. of the 7th Brain-
storming Week on Membrane Computing, Sevilla, Spain, Febru-
ary 2 - February 6, 2009. Universidad de Sivilla, RGNC REPORT
1/2009, pp. 9–21.

[22] A.Alhazov, A.Krassovitskiy, Yu.Rogozhin, S.Verlan: A Note on
P Systems with Small-Size Insertion and Deletion. In: Proc. of
the 10th Workshop on Membrane Computing, WMC10, Curtea
de Arges (Romania), August 24 - 27, 2009, pp. 534–537.

[23] A.Alhazov, M.Margenstern, S.Verlan: Fast Synchronization in P
Systems. In: D.W. Corne, P. Frisco, Gh. P?un, G. Rozenberg, A.
Salomaa: Membrane Computing - 9th International Workshop,
WMC 2008, Edinburgh, Revised Selected and Invited Papers,
Lecture Notes in Computer Science vol. 5391, Springer, 2009,
pp. 118–128.

[24] A.Alhazov, K.Morita: A Short Note on Reversibility in P Sys-
tems. In: Proc. of the 7th Brainstorming Week on Membrane
Computing, Sevilla, Spain, February 2-February 6, 2009. Univer-
sidad de Sevilla, RGNC REPORT 1/2009, pp. 23–28.

[25] A.Alhazov, K.Morita: On Reversibility and Determinism in P
systems. In: Proc. of the 10th Workshop on Membrane Comput-

127

A.Alhazov et al. . . .

ing, WMC10, Curtea de Arges (Romania), August 24 - 27, 2009,
pp. 129–139.

[26] A.Alhazov, I.Petre, V.Rogojin: The parallel complexity of signed
graphs: decidability results and an improved algorithm. Theoret-
ical Computer Science, 410, Elsevier, (2009, pp. 2308–2315.

[27] A. Alhazov, C.Ciubotaru, Yu.Rogozhin, S.Ivanov: The Family
of Languages Generated by Non-Cooperative Membrane Systems.
In: M. Gheorghe, Th. Hinze, Gh. Păun: Preproceedings of the
Eleventh Conference on Membrane Computing, CMC11, Jena,
Verlag ProBusiness Berlin, 2010, pp. 37–51, and Lecture Notes
in Computer Science 6501, to appear.

[28] A.Alhazov, C.Ciubotaru, Yu.Rogozhin, S.Ivanov: The Membrane
Systems Language Class. LA symposium, RIMS Kôkyûroku Se-
ries vol. 1691, Kyoto University, 2010, pp. 44–50.

[29] A.Alhazov, C.Ciubotaru, Yu.Rogozhin, S.Ivanov: Introduction to
the Membrane Systems Language Class. In: Proceedings of the
3rd International Conference “Telecommunications, Electronics
and Informatics”, ICTEI 2010, vol. II, Chişinău, 2010, pp. 19–
24.

[30] A.Alhazov, C.Ciubotaru, Yu.Rogozhin, S.Ivanov: The Membrane
Systems Language Class. In: Proceedings of the Eighth Brain-
storming Week on Membrane Computing, Sevilla, Spain, Febru-
ary 1-5, 2010, RGNC Report 1/2010, Fenix Editora, Sevilla, 2010,
pp. 23–36.

[31] A.Alhazov, C.Ciubotaru, Y.Rogozhin, S.Ivanov: The family of
Languages Generated by Non-Cooperative Membrane Systems. In:
Proceedings of the Eleventh International Conference on Mem-
brane Computing. Friedrich Schiller University Jena, Germany,
24-27 August, 2010, pp. 37–52.

[32] A.Alhazov, R.Freund, K.Morita: Reversibility and Determinism
in Sequential Multiset Rewriting. Unconventional Computation
2010, Tokyo, Lecture Notes in Computer Science, Springer, vol.
6079, 2010, pp. 21–31.

128

Investigations on Natural Computing . . .

[33] A.Alhazov, S.Ivanov, Y.Rogozhin: Polymorphic P Systems. In:
Proceedings of the Eleventh International Conference on Mem-
brane Computing. Friedrich Schiller University Jena, Germany,
24-27 August, 2010, pp. 53–66.

[34] A.Alhazov, M.Kogler, M.Margenstern, Yu.Rogozhin, S.Verlan:
Small Universal TVDH and Test Tube Systems. International
Journal of Foundations of Computer Science, 2010 (in press).

[35] A.Alhazov, A.Krassovitskiy, Yu.Rogozhin, S.Verlan: P systems
with minimal insertion and deletion. Theoretical Computer Sci-
ence, Elsevier, 2010 (in press).

[36] A.Alhazov, A.Krassovitskiy, Yu.Rogozhin, S.Verlan: Small Size
Insertion and Deletion Systems. In: Mathematics, Computing,
Language, and Life: Frontiers in Mathematical Linguistics and
Language Theory, Vol.2. Scientific Applications of Language
Methods. World Scientific, 2010 (in press).

[37] A.Alhazov, K. Morita: On Reversibility and Determinism in P
Systems. Workshop on Membrane Computing, WMC10, Curtea
de Arges, 2009, Lecture Notes in Computer Science, Springer
5957, 2010, pp. 158–168.

[38] A.Alhazov, Y.Rogozhin, S.Verlan: A Small Universal P Systems.
In: Proceedings of the Eleventh International Conference on
Membrane Computing. Friedrich Schiller University Jena, Ger-
many, 24-27 August, 2010, pp. 67–74.

[39] A.Alhazov, S.Verlan: Minimization Strategies for Maximally
Parallel Multiset Rewriting Systems. arXiv:1009.2706v1 [cs.FL]
14 Sep 2010, http://arxiv.org/abs/1009.2706.

[40] C.H. Bennett, Logical Reversibility of Computation, IBM J. Res.
Develop. 6, pp. 525–532, 1973.

[41] E.Boian, C.Ciubotaru, S.Cojocaru, A.Colesnicov, V.Demidova,
L.Malahov: P-systems application for solution of some problems
in computational linguistics. Proceedings of the International

129

A.Alhazov et al. . . .

Conference ICT+ ”Information and Communication Technolo-
gies - 2009”. May 18-21, 2009, Chisinau, Republic of Moldova.
pp. 30–33, ISBN 978-9975-66-134-8. (in Romanian)

[42] E.Boian, S.Cojocaru, A.Colesnicov, C.Ciubotaru, L.Malahova:
Using the P systems in computer linguistic applications (in Rus-
sian). In: Proceedings of the International Conference ”Hori-
zons of Applied Linguistics and Linguistics Technologies”, Kiev,
Ukraine, 21 - 26 September, 2009. p.53.

[43] E.Boian, S.Cojocaru, V.Macari, G.Magariu, T.Verlan: On simu-
lation of inflection process in Romanian language by P-systems
with string replication. In CD: Proceedings of the ECIT2010 -
6th European Conference on Intelligent Systems and Technolo-
gies. Iasi, Romania, October 07-09, 2010.

[44] J.Castellanos, C.Martń-Vide, V.Mitrana, J.Sempere: Solving
NP-complete problems with networks of evolutionary processors,
In: Proc. IWANN, Lecture Notes in Computer Science 2084,
Springer-Verlag, Berlin, 2001, pp. 621–628.

[45] J.Cocke, M.Minsky: Universality of tag systems with P=2, Jour-
nal of the ACM, 11(1), 1964, pp. 15–20.

[46] S.Cojocaru, E.Boian: Determination of inflexional group using P
systems. Computer Science Journal of Moldova, vol.18, no.1(52),
2010, pp. 70–81.

[47] E.Csuhaj-Varjù, L.Kari, G.Păun, Test Tube distributed system
based on splicing, Computer and AI, 2–3, pp. 211–232, 1996.

[48] E.Csuhaj-Varjú, A.Salomaa: Networks of parallel language pro-
cessors, In: New Trends in formal Language Theory (Gh. Păun,
A. Salomaa, Eds.), Lecture Notes in Computer Science 1218,
Springer-Verlag, Berlin, 1997, pp. 299–318.

[49] E.Csuhaj-Varjú, C.Mart́ın-Vide, V.Mitrana: Hybrid networks of
evolutionary processors are computationally complete, Acta Inf.
41 (2005), pp. 257–272.

130

Investigations on Natural Computing . . .

[50] E.Csuhaj-Varjú, S.Verlan: On length-separating test tube sys-
tems. Natural computing, Springer, vol.7, no.2, 2008, pp. 167–
181.

[51] E.Csuhaj-Varjú, S.Verlan: Power and Size of Generalized Com-
municating P Systems with Minimal Interaction Rules. In: Proc.
of the 10th Workshop on Membrane Computing, WMC10,
Curtea de Arges (Romania), August 24 - 27, 2009, pp. 547–551.

[52] E.Csuhaj-Varjú, G.Vaszil, S.Verlan: On Generalized Commu-
nicating P Systems with One Symbol. In: Proceedings of the
Eleventh International Conference on Membrane Computing.
Friedrich Schiller University Jena, Germany, 24-27 August, 2010,
pp. 137–154.

[53] S.E.Fahlmann, G.E.Hinton, T.J.Seijnowski: Massively parallel
architectures for AI: NETL, THISTLE and Boltzmann machines,
In: Proc. AAAI National Conf. on AI, William Kaufman, Los Al-
tos, 1983, pp. 109–113.

[54] C.Ferretti, G.Mauri, C.Zandron: Nine Test Tubes Generate any
RE Language, personal communication.

[55] R.Freund, S.Verlan: (Tissue) P systems working in the k-
restricted minimally parallel derivation mode. In: Proceedings of
International Workshop on Computing with Biomolecules, Au-
gust 27th, 2008, Wien, Austria, pp. 43–52.

[56] R.Freund, A.Alhazov, Y.Rogozhin, S.Verlan: Communication P
systems. In: The Oxford Handbook of Membrane Computing, ed.
by Gh.Păun, G.Rozenberg, A.Salomaa, Oxford University Press,
2010.

[57] R.Freund, M.Kogler, Yu.Rogozhin, S.Verlan: Graph-Controlled
Insertion-Deletion Systems. In: Proceedings DCFS 2010. EPTCS
31, 2010, pp. 88–98, doi:10.4204/EPTCS.31.11.

[58] F.Guarnieri, M.Fliss, C.Bacroft: Making DNA add. Science
(1996) 273(12):220–223.

131

A.Alhazov et al. . . .

[59] T.Head Formal Language Theory and DNA: An Analysis of the
Generative Capacity of Specific Recombinant Behaviors, Bulletin
of Mathematical Biology, Vol. 49, No. 6, pp. 737–759, 1987.

[60] W.D.Hillis: The Connection Machine. MIT Press, Cambridge,
1985.

[61] K.Imai, A.Alhazov: On Universality of Radius 1/2 Number-
Conserving Cellular Automata. Unconventional Computation
2010, Tokyo, Lecture Notes in Computer Science, Springer, vol.
6079, 2010, pp. 45–55.

[62] S.Ivanov, V.Macari: CUDA in Simulating P Systems. In: Pro-
ceedings of the 3rd International Conference ”Telecommunica-
tions, Electronics and Informatics” ICTEI 2010, Volume II, pp.
198–201.

[63] Y.Khodor, J.Khodor, T.F.Jr.Knight: Experimental confirmation
of the basic principles of length-only discrimination. In: Jonoska
N, Seeman NC (eds) DNA7. Lecture notes in computer science,
vol 2340. Springer-Verlag, Berlin (2002), pp. 223–230.

[64] A.Krassovitskiy, Y.Rogozhin, S.Verlan: One-sided Insertion and
Deletion: Traditional and P Systems Case. In: Proceedings of In-
ternational Workshop on Computing with Biomolecules, August
27th, 2008, Wien, Austria, pp. 53–64.

[65] A.Krassovitskiy, Y.Rogozhin, S.Verlan: Further results on
insertion-deletion systems with one-sided contexts. In: Pre-
proceedings of the 2nd International Conference on Language
and Automata, Theory and Applications, LATA 2008, March 13
- 19, 2008, Rovira i Virgili University, Tarragona, Spain. Tech-
nical Report of GRLMC No. 36/08, Universitat Rovira i Virgili,
Tarragona, Spain (2008), pp. 347–358.

[66] A.Krassovitskiy, Y.Rogozhin, S.Verlan: Further results on
insertion-deletion systems with one-sided contexts. Lecture Notes
in Computer Science, Springer, 5196, pp. 333–344, 2008.

132

Investigations on Natural Computing . . .

[67] A.Krassovitskiy, Y.Rogozhin, S.Verlan: Computational Power
of P Systems with Small Size Insertion and Deletion Rules. In:
Proc. of the International Workshop on The Complexity of Sim-
ple Programs, University College Park, Ireland, December 6th
and 7th, 2008, pp. 137–148.

[68] A.Krassovitskiy, Yu.Rogozhin, S.Verlan: Computational Power
of P Systems with Small size Insertion and Deletion Rules.
EPTCS 1, 2009, pp. 108–117, doi:10.4204/EPTCS.1.10.

[69] A.Krassovitskiy, Yu.Rogozhin, S.Verlan: Computational power
of insertion-deletion (P) systems with rules of size two. Natural
Computing, Springer, DOI 10.1007/s11047-010-9208-y, 2010 (in
press).

[70] M.Margenstern, Yu.Rogozhin: A Universal Time-Varying Dis-
tributed H-System of Degree 2, Preliminary Proceedings of Forth
International Meeting on DNA Based Computers, June 15-19,
1998, University of Pennsylvania, U.S.A., 1998.

[71] M.Margenstern, Yu.Rogozhin: A Universal Time-Varying Dis-
tributed H System of Degree 2, Biosystems, 52, 1999, pp. 73–80.

[72] M.Margenstern, Yu.Rogozhin: Generating All Recursively Enu-
merable Languages with a Time-Varying Distributed H System of
Degree 2, Technical report, Institut Universitaire de Technologie
de Metz, 1999, Publications du G.I.F.M.

[73] M.Margenstern, Yu.Rogozhin: About time-varying distributed H
systems, DNA Computing: 6th International Workshop on DNA-
Based Computers, DNA 2000, Leiden, The Netherlands, June
13-17, 2000, LNCS, Springer, Revised Papers (A. Condon, G.
Rozenberg, Eds.), 2054 (2000), pp. 53–62.

[74] M.Margenstern, Yu.Rogozhin: Time-Varying Distributed H sys-
tems of Degree 2 Generate All Recursively Enumerable Lan-
guages, in: Where Do Mathematics, Computer Science and Biol-
ogy Meet (C. Martin-Vide, V. Mitrana, Eds.), Kluwer Academic,
Dortrecht, 2000, pp. 399–407.

133

A.Alhazov et al. . . .

[75] M.Margenstern, Yu.Rogozhin: Extended Time-Varying Dis-
tributed H Systems - Universality Result, Proceedings of The
5th World Multi-Conference on Systemics, Cybernetics and In-
formatics, Industrial Systems, SCI 2001, Orlando, Florida USA,
July 22-25, 2001, IX, 2001.

[76] M.Margenstern, Yu.Rogozhin: Time-Varying Distributed H Sys-
tems of Degree 1 Generate All Recursively Enumerable Lan-
guages, In: Words, Semigroups, and Transductions (M. Ito, G.
Păaun, S. Yu, Eds.), World Scientific, Singapore, 2001, ISBN 981-
02-4739-7, pp. 329–340, Festschrift in Honor of Gabriel Thierrin.

[77] M.Margenstern, Yu.Rogozhin: A Universal Time-Varying Dis-
tributed H System of Degree 1., DNA Computing: 7th Interna-
tional Workshop on DNA-Based Computers, DNA7, Tampa, FL,
USA, June 10-13, 2001. Revised Papers (N. Jonoska, N. C. See-
man, Eds.), 2340, Springer Verlag, Berlin, Heidelberg, New York,
2002.

[78] M.Margenstern, Yu.Rogozhin, S.Verlan: Time-Varying Dis-
tributed H Systems of Degree 2 Can Carry Out Parallel Compu-
tations, DNA Computing: 8th International Workshop on DNA-
Based Computers, DNA8, Sapporo, Japan, June 10-13, 2002.
Revised Papers (M. Hagiya, A. Ohuchi, Eds.), 2568 (2002), pp.
326–336.

[79] M.Margenstern, Y.Rogozhin, S.Verlan: Time-varying distributed
H systems with parallel computations: the problem is solved, DNA
Computing: 9th International Workshop on DNA Based Com-
puters, DNA9, Madison, WI, USA, June 1-3, 2003. Revised Pa-
pers (J. Chen, J. Reif, Eds.), 2943, Springer, 2004.

[80] M.Margenstern, Gh.Păun, Yu.Rogozhin, S.Verlan: Context-free
insertion-deletion systems. Theoretical Computer Science, Else-
vier, vol.330, issue 2 (2005), pp. 339–348.

[81] A.Matveevici, Yu.Rogozhin, S.Verlan: Insertion-Deletion Sys-
tems with One-Sided Contexts. Lecture Notes in Computer Sci-
ence, Springer, vol. 4664 (2007), pp. 205–217.

134

Investigations on Natural Computing . . .

[82] M.Minsky: Computations: Finite and Infinite Machines, Pren-
tice Hall, Englewood Cliffts, NJ, 1967.

[83] V.Mitrana, I.Petre, V.Rogojin: Accepting splicing systems. Theo-
retical Computer Science, Elsevier, 411, 25, 2010, pp. 2414–2422.

[84] K.Morita, Ts.Ogiro, A.Alhazov, Ts.Tanizawa: Non-degenerate 2-
State Reversible Logic Elements with Three or More Symbols Are
All Universal. In: Proceedings of 2nd Workshop on Reversible
Computation, July 2nd - 3rd, 2010, Bremen, Germany, pp. 27–
34.

[85] Ts. Ogiro, A. Alhazov, Ts. Tanizawa, K. Morita: Universality
of 2-State 3-Symbol Reversible Logic Elements - A Direct Simu-
lation Method of a Rotary Element. In: Proceedings of the 4th
International Workshop on Natural Computing, Himeji, 2009,
pp. 220–227.

[86] Ts. Ogiro, A. Alhazov, Ts. Tanizawa, K. Morita: Universality of
2-State 3-Symbol Reversible Logic Elements - A Direct Simula-
tion Method of a Rotary Element. Natural Computing, PICT 2,
Springer Japan, part 3, 2010, pp. 252–259.

[87] The Oxford Handbook of Membrane Computing, ed. by Gh.Păun,
G.Rozenberg, A.Salomaa. Oxford University Press, 2010.

[88] A.Păun: On Time-Varying H Systems, Bulletin of EATCS, 67,
February 1999, pp. 157–164.

[89] Gh.Păun, G.Rozenberg, A.Salomaa: Computing by splicing, TCS
168, pp. 321–336, 1996.

[90] Gh.Păun: DNA computing: distributed splicing systems, Struc-
tures in Logic and Computer Science. A Selection of Essays in
Honor of A. Ehrenfeucht (J. Mycielsky, G. Rozenberg, A. Salo-
maa, Eds.), 1261, Springer Verlag, Berlin, Heidelberg, New York,
1997.

[91] Gh.Păun, G.Rozenberg, A.Salomaa: DNA Computing: New
Computing Paradigms, Springer Verlag, Berlin, Heidelberg, New
York, September 1998, ISBN 3-540-64196-3.

135

A.Alhazov et al. . . .

[92] Gh.Păun: DNA computing based on splicing: universality results,
Proceedings of the Second Internetional Colloquium on Univer-
sal Machines and Computations, Metz, France (M. Margenstern,
Ed.), I, IUT de Metz, 1998.

[93] Gh.Păun, G.Rozenberg, A.Salomaa, Eds.:Handbook of Membrane
Computing. Oxford University Press, 2010.

[94] Gh.Păun: Membrane Computing. An Introduction, Springer,
2002.

[95] http : //www.p− lingua.org/wiki/index.php/MainP age

[96] L.Priese, Yu.Rogozhin, M.Margenstern: Finite H-systems with
3 Test Tubes are not Predictable. In: Proceedings of Pacific
Simposium on Biocomputing, 3, Kapalua, Maui, January 1998,
Hawaii, USA (R.Altman, A.Dunker, L.Hanter, T.Klein eds.),
World Sci.Publ., Singapure (1998), pp. 545–556.

[97] Yu.Rogozhin, S.Verlan: On the Rule Complexity of Universal
Tissue P Systems. LNCS, vol. 3850, pp. 356–362, Springer (2006).

[98] Yu.Rogozhin, S.Verlan: New choice for small universal devices:
Symport/Antiport P systems. EPTCS 1, 2009, pp. 235-242,
doi:10.4204/EPTCS.1.23.

[99] G.Rozenberg, A.Salomaa, Eds.:Handbook of Formal Languages,
vol. 1–3, Springer, 1997.

[100] P systems webpage. http://ppage.psystems.eu/

[101] TVDHsim: Time-Varying Distributed H Systems Simulator.
http://lita.sciences.univ-metz.fr/ verlan/

[102] S.Verlan: Calculs Moleculaires: les Syst‘emes Distributes ‘a
Changement de Phase, Master Thesis, Universite de Metz, 2001.

[103] S.Verlan: On Enhanced Time-Varying Distributed H Systems,
Computer Science Journal of Moldova, 10(3), 2002, pp. 263–279,
Kishinev.

136

Investigations on Natural Computing . . .

[104] S.Verlan: A Frontier Result on Enhanced Time-Varying Dis-
tributed H Systems with Parallel Computations, Preproceedings
of DCFS’03, Descriptional Complexity of Formal Systems, Bu-
dapest, Hungary, July 12-14, 2003, 2003.

[105] S.Verlan: Communicating Distributed H Systems with Alternat-
ing Filters, in: Aspects of Molecular Computing. Essays Dedi-
cated to Tom Head on the Occasion of His 70th Birthday (N.
Jonoska, Gh. Păun, G. Rozenberg, Eds.), vol. 2950 of LNCS,
Springer Verlag, Berlin, Heidelberg, New York, 2004, pp. 367–
384.

[106] S.Verlan: Head Systems and Applications to Bio-Informatics,
Ph.D. Thesis, University of Metz, 2004.

[107] S. Verlan: On minimal context-free insertion-deletion systems.
In C. Mereghetti, B. Palano, G. Pighizzini, and D. Wotschke,
editors, Seventh International Workshop on Descriptional Com-
plexity of Formal Systems, June 30 - July 2, 2005 Como, Italy.
Proceedings., 285-292, 2005. Technical repport no. 06-05, Univer-
sity of Milan. In publication in Journal of Automata Languages
and Combinatorics.

[108] S.Verlan: Look-Ahead Evolution for P Systems. In: Proc. of the
10th Workshop on Membrane Computing, WMC10, Curtea de
Arges (Romania), August 24 - 27, 2009, pp. 507–513.

[109] S.Verlan, P.Frisco: Splicing P Systems. In: The Oxford Hand-
book of Membrane Computing, ed. by Gh.Păun, G.Rozenberg,
A.Salomaa, Oxford University Press, 2010.

[110] S.Verlan, Y.Rogozhin: New choice for small universal devices:
Symport/antiport P systems. In: International Workshop on The
Complexity of Simple Programs, University College Park, Ire-
land, December 6th and 7th, 2008, pp. 305–314.

137

A.Alhazov et al. . . .

A. Alhazov1,2, E. Boian1, L. Burtseva1, Received November 1, 2010
C. Ciubotaru1, S. Cojocaru1, A. Colesnicov1,
V. Demidova1, S. Ivanov1,3, V. Macari1,
G. Magariu1, L. Malahova1, V. Rogojin1,4,
Yu. Rogozhin1, T. Tofan1, S. Verlan1,5, T. Verlan1

1 Institute of Mathematics and Computer Science
Academy of Sciences of Moldova
5 Academiei str., Chişinău, MD-2028, Moldova

2 FCS, Department of Information Engineering
Graduate School of Engineering, Hiroshima University
Higashi-Hiroshima 739-8527 Japan

3 Technical University of Moldova, Faculty of Computers,
Informatics and Microelectronics,
Ştefan cel Mare 168, Chişinău MD-2004 Moldova

4 Biomedicum Helsinki,
B524a P.O.Box 63 (Haartmaninkatu 8) 00014
UNIVERSITY OF HELSINKI

5 LACL, Departement Informatique
UFR Sciences et Technologie
Universite Paris XII
61, av. General de Gaulle
94010 Creteil, France

E–mails:
Dr. Artiom Alhazov: artiom@math.md,
Dr. Elena Boian: lena@math.md,
Dr. Liudmila Burtseva: burtseva@math.md,
Dr. Constantin Ciubotaru: chebotar@math.md,
Dr.hab. Svetlana Cojocaru: Svetlana.Cojocaru@math.md,
Dr. Alexandru Colesnicov: kae@math.md,
Valentina Demidova: demidova@math.md,
Sergiu Ivanov: sivanov@math.md,
Veaceslav Macari: vmacari@yandex.ru,
Dr. Galina Magariu: gmagariu@math.md,
Ludmila Malahova: mal@math.md,
Dr. Vladimir Rogojin: vladimir.rogojin@helsinki.fi,
Dr.hab. Yurii Rogozhin: rogozhin@math.md,
Tatiana Tofan: ttofan@math.md,
Dr.hab. Sergey Verlan: verlan@univ-paris12.fr,
Tatiana Verlan: tverlan@math.md

138

