
Computer Science Journal of Moldova, vol.18, no.1(52), 2010

Determining best-case and worst-case times of

unknown paths in time workflow nets

Inga Camerzan

Abstract

In this paper we present a method aimed for determining best-
case and worst-case times between two arbitrary states in a time
workflow net. The method uses a discrete subset of the state
space of the time workflow net and archives the results, which
are integers.

1 Introduction

Time workflow nets (TWN) were developed to provide a suitable
method to model, simulate, and analyze the behavior of time depen-
dent systems, business processes. Best-case execution times (BCET)
and worst-case execution times (WCET) are a necessary step in the
development and validation process for hard real-time systems. Real-
time systems need to satisfy stringent timing constraints, induced by
the systems aims. We consider time workflow nets, those only which
allow the modelling of time delay and deadlines for the execution of
activities in the workflow process. This paper will mainly focus on
modelling the control flow perspective. Thus the perspective workflow
process definitions are formulated in order to specify which tasks need
to be executed and in what order. If a worst-case input for the task
were known, then there are reliable guarantees that processes always
terminate. However the worst-case input is not known and it is hard
to be determined.

In a workflow management system there is a delay beetween the
moment when an activity becomes enabled and the moment when the

c©2010 by I. Camerzan

59

I. Camerzan

activity is executed for a certain resource. For each transition t in the
time workflow net there is a static interval [at, bt] associated to it. The
times at, bt are relative to the moment at which t was last enabled.
Assuming that t was last enabled at the global time τ , then t may fire
only during the interval [at + τ, bt + τ] and must fire the latest at the
time bt + τ . This is a method of incorporating time into Petri Nets,
introduced by Merlin [7] and studied in [1, 2, 8, 9, 10].

One of the most important problems, in the above mentioned nets,
is to determine the deadlines for a sequence of system processes, i.e.,
to compare the longest duration of a transition sequence with a given
limit. Such considerations are important for determining the best-case
execution times and the worst-case execution times.

As a rule, the method used to estimate execution times bounds
in practice consist in measuring the end-to-end execution time of the
task for a subset of the possible executions, called test cases. This
determines the minimal observed and the maximal observed execution
times. Generally speaking, through these methods we are able to obtain
an overestimation of the BCET and underestimation of the WCET,
therefore we cannot consider them safe. Our aim is to propose an
algorithm able to estimate the execution times in a safe way.

This paper is organized as follows: In Section 2 we introduce the
basic notions and definitions for time workflow nets; In Section 3 we
present the reachability graph of the time workflow nets, which can
be used for computing the shortest and the longest path between two
arbitrary states in the TWN; In the last section the algorithm for exe-
cution times estimation is proposed. The way it functions is illustrated
by an example.

2 Basic notions and definitions

Definition 2.1 A Petri net PN =(P, T, F, W) is a Workflow net iff:

1. PN has two additional places i and o, ”start” place i, ”destina-
tion” place o.

60

Determining best-case and worst-case times of . . .

2. If we add a transition t* to PN which connects o with i then the
resulting Petri net is strongly connected.

There are distinct methods of incorporating time in Petri nets: as-
sociating time delay to transition, associating time delay to places,
associating time delay with arcs, associating time delays or time in-
tervals to different types of objects of the net, associating stochastic
time. Further we consider only Petri nets [5] which have deterministic
time associated to transitions, in the form of time intervals, defined by
Merlin [7] in 1972 and studied in [1, 2, 8, 9, 10].

We define a time workflow net in following way:

Definition 2.2 A Time workflow net is a tuple Σ=(P, T, F, W, I)
where PN=(P, T, F, W) is the workflow net (also called skeleton net),
I: T→ Q+

0 × Q+
0 is a time function which associates timed intervals

with transitions and I1(t) ≤ I2(t), where I(t) = (I1(t), I2(t)), for each
transition t∈T.

A global clock is associated with the time workflow net, which be-
gins to work as soon as the first token appears in the net. After time
association, the workflow net will work in the following way: from the
moment when a transition t is enabled, the tokens from the input loca-
tions are stored for I2(t)− I1(t) time units, and after this time elapses
the transition fires putting tokens in their output places. For transi-
tions in conflict, the first transition that fires is the one which has the
latest time interval smaller.

For the definition of a state and of a change of state of a net we
will follow [3, 6]:

Definition 2.3 Let Σ=(P, T, F, W, I) be a time workflow net and J:
T→ Q+

0 ∪ {]}. S=(m, J) is the state of the net Σ iff:

1. m is a marking in skeleton net,

2. if t ∈T and t− ≤ m, then J(t) ≤ I2(t),

3. if t ∈T and t− 6≤ m, then J(t) =],

61

I. Camerzan

where t−(p) = W (p, t) is arc weight from place p to transition t.

We understand the notion of state in the following way. Let S =
(m,J) be a state. Each transition t in the net has a watch. The watch
doesn’t work (J(t) =]) at the marking m if t is disabled at m. If t is
enabled at m, then the watch of t shows the time J(t) that has elapsed
since t was last enabled.

Let Σ = (P, T, F,W, I) be a time workflow net. The state S0 :=
(i, J0) with i the initial marking of the time workflow net (the marking

which has a single token in place i) and J0(t)=
{

0, if t− ≤ m,
], if t− 6≤ m

is considered to be the initial state of the time workflow net. The
states in a time workflow net can change due to transition firings or
time elapsing.

Definition 2.4 A transition t is enabled at the state S=(m, J), de-
noted by S →, iff

1. t− ≤ m;

2. I1(t) ≤ J(t).

Thus, a transition is enabled in a time workflow net Σ, if t is enabled
in the skeleton net (the timeless net) and the time specifications are
satisfied, i.e t has been enabled for a sufficient amount of time. The
resulting state is defined as follows:

Definition 2.5 A transition t enabled at the state S=(m, J), will fire
inducing state S′ = (m′, J ′), denoted by S → S′ defined thus:

1. m′ = m + 4t;

2.

J ′(t) =

], t− 6≤ m′,
J(t), t− ≤ m ∧ t− ≤ m′ ∧ Ft ∩ F ′

t = 0,
0, otherwise,

where 4t = W (t, p)−W (p, t).

62

Determining best-case and worst-case times of . . .

The resulting state (m′, J ′) has a marking m′ which results by firing of
transition t in the skeleton net and a time vector J ′. The values of the
vector for the not enabled transitions in the marking are undefined].
If a transition was enabled in the old marking, and it is still enabled in
the new marking, and it is not in conflict with the just fired transition,
then it keeps the values of its local clock J ′(t) = J(t). Otherwise, if a
transition has just become enabled in the new marking, then its local
clock J ′(t) = 0.

Definition 2.6 Let Σ = (P, T, F, W, I) be a time workflow net. The
state S = (m,J) changes into the state S′ = (m′, J ′) by the time dura-
tion τ ∈ Q, denoted by S

τ→ S′ iff m′ = m and the time duration τ is
possible i.e. for any t ∈ T with J(t) 6=], we have J(t)+ τ ≤ I2(t)) and

J ′(t)=
{

J(t) + τ, if t− ≤ m,
], if t− 6≤ m.

The sequence of transitions and time durations σ = τ0, t0, τ1, t1, . . .
τn−1, tn−1 is executable in the net Σ iff there exist the states S0, S

′
0, S1,

S′1, . . . S
′
n−1, Sn so that: S0

τ0→ S′0
t0→ S1, . . . Sn−1

τn−1→ S′n−1

tn−1→ Sn.
That sequence shortly can also be noted by S0[σ〉Sn. The transition-
time sequence σ is called an execution sequence in the net Σ. State S′

is reachable from the state S if there is a transition-time sequence σ so
that S[σ〉S′. RS(Σ, S0) or [S0〉 denotes the set of all reachable states
of a net Σ and RΣ(S) denotes the set of all reachable states from the
state S.

In Figure 1, the initial state is ((1,0,0,0,0,0)(0,],],])). Marking
(1,0,0,0,0,0) is the initial marking of the skeleton net. The time vec-
tor has value 0 corresponding to transition t1 enabled in the initial
marking and the values] for the rest of the transitions which are dis-
abled. Since t1 is enabled at marking i and the time constraints are also
satisfied, transition t1 can fire in the initial state of the net Σ. The re-
sulting state is S0

t1→ S1 = ((0, 1, 1, 0, 0, 0)(], 0, 0,])). The state S1 has
the marking m1 = (0, 1, 1, 0, 0, 0) and the time vector J1 = (], 0, 0,])
with value 0 corresponding to the transitions t2 and t3, enabled in
the marking m1 in the skeleton net, and value] corresponding to the
disabled transitions in the skeleton net. In the case of the time con-

63

I. Camerzan

straints, i.e. in the conditions I1(t2) ≥ J1(t2) and I1(t3) ≥ J1(t3) in
state S1 the transitions t2 and t3 cannot fire. So, state S1 can change
into another state in the net Σ only by time elapsing. For instance,
the following state change is possible in the net Σ: S1

3.7→ S2, where
S2 = ((0, 1, 1, 0, 0, 0)(], 3.7, 3.7,])). We notice that the marking of the
skeleton net remains unchanged, and results in a new time vector J2

with updated time values for the transitions t2 and t3. The time dura-
tion 6.1 is not possible in state S1 because the transition t2, which, if
enabled, must fire in 5 units of time. Now, both t2 and t3 can fire at
state S2. If t2 fires, then we have S2

t2→ S3 = ((0, 0, 1, 1, 0, 0)(],], 3.7,])).
Now, the time duration 1.3 is possible at state S3 and a new state ap-
pears: S3

1.3→ S4 = ((0, 0, 1, 1, 0, 0)(],], 5,])). Thus the state-transition-
times sequence results in: S0

t1→ S1
3.7→ S2

t2→ S3
1.3→ S4. The sequence

t1, 3.7, t2, 1.3 is an execution sequence in the net Σ.

Figure 1. A time workflow net

3 Reachability graph of the time workflow net

The state space of a time workflow net is the set of all reachable states
of the skeleton net, starting from i. Because of the markings, reachable
in the net, this set is discrete, and it may be infinite. On the other hand,
this set may be infinite because of the time of transitions. Thus, the set
of all reachable states for a fix marking is infinite (and densely ordered)
in general. Nevertheless, it is possible to pick up some ”essential” states

64

Determining best-case and worst-case times of . . .

only, so that quantitative and qualitative analysis is possible. In [10]
is shown, that essential states are integer states.

Definition 3.1 The graph RG(Σ, i) is called the reachability graph of
the TWN Σ from initial state i iff its vertices are the reachable integer-
states and its edges are defined by the triples (S, t, S′) and (S, τ, S′),
where S

t→ S′ or S
τ→ S′, respectively.

The reachable integer-states are those states from the state space,
which have clocks that are (of enabled transitions) integers only and can
be reached from the initial state S0 through any number of transition
firings or time durations. The reachability graph of the time workflow
net Σ is the transition relation → restricted to its reachable integer-
states. This graph is finite iff the set of the reachable markings of the
time workflow net is finite. This set is finite, if the set of reachable
markings of the skeleton net is finite.

Using the parametric description of transition sequence [7] minimal
and maximal length of time of the execution sequence can be evaluated.
The maximal and minimal length of time is an integer and it can be
reached by firing in integer-states. Thus, when the TWN is bounded, a
sequence with maximal/minimal length of time can be found for given
source-state and sink-state.

For time workflow net above the reachability graph consists of fol-
lowing reachable integer-states:

m0 = (1, 0, 0, 0, 0, 0), J0 = (0,],],])T , J∗0 = (10,],],])T ,
m1 = (0, 1, 1, 0, 0, 0), J1 = (], 0, 0,])T , J∗1 = (], 2, 2,])T , J∗∗1 =

(], 5, 5,])T ,
m2 = (0, 0, 1, 1, 0, 0), J2 = (],], 2,])T , J∗2 = (],], 3,])T , J∗∗2 =

(],], 6,])T ,
m3 = (0, 0, 0, 1, 1, 0), J3 = (],],], 0)T , J∗3 = (],],], 4)T , J∗∗3 =

(],],], 8)T ,
m4 = (0, 0, 0, 0, 0, 1), J4 = (],],],])T ,
S8 = (m0, J

∗
0), S9 = (m1, J

∗∗
1), S10 = (m2, J

∗∗
2), S11 = (m3, J

∗∗
3),

65

I. Camerzan

(m0, J0)︸ ︷︷ ︸
S0

t1−→ (m1, J1)︸ ︷︷ ︸
S1

2−→ (m1, J
∗
1)︸ ︷︷ ︸

S2

t2−→ (m2, J2)︸ ︷︷ ︸
S3

1−→ (m2, J
∗
2)︸ ︷︷ ︸

S4

t3−→

(m3, J3)︸ ︷︷ ︸
S5

4−→ (m3, J
∗
3)︸ ︷︷ ︸

S6

t4−→ (m4, J4)︸ ︷︷ ︸
S7

Figure 2. Reachability graph

4 Determining BCET and WCET

Methods from graph theory may be applied to determine best-case and
worst-case execution times while constructing the reachability graph.

Determining the best-case execution leads directly to the well-
known problem of the shortest path. Since reachability graph has
nonnegative times only, all common shortest path algorithms are ap-
plicable, e.g. Dijkstra’s algorithm or Bellman-Ford algorithm [4].

Determining worst-case execution is similar to the critical path
problem, sometimes called longest path problem.

The problem can be formulated as follows:
For a given directed weighted graph RG = (V,E), find the lengh l

of a longest path from a source vertex vs to a goal vertex vd so that vd

is contained by most ones as a last vertex.
Actually we mean, that the length l is infinite, if there exists a cycle

reachable starting on vs before passing vd and, otherwise, l is the sum
of the weights of the longest path.

To determine worst-case execution, we propose the following algo-
rithm A1:

1. Remove from the graph RG all edges (vd, vj), i.e. all edges that
are directed from vd.

66

Determining best-case and worst-case times of . . .

2. For each edge (vi, vj) ∈ RG with the weight wi assign a new
weight w−i = −wi. Edges, labeled by transitions names, obtain
the weight 0.

3. Procedure Bellman-Ford (V,E, s) ** s is a source node
for each v ∈ V (RG) do

d[v] ←−∞
p[v] ←− NIL ** p[v] is predecessor node of v

d[s] ←− 0
for i ←− 1 to n− 1 ** n = |V (RG)|

for each edge (u, v) ∈ E(RG) do

if d[u] + w(u, v) < d[v] then

p[v] ←− u

d[v] ←− d[u] + w(u, v)
for each edge (u, v) ∈ E(RG) do

if d[u] + w(u, v) < d[v] then ** check for negative weight
cycles

return FALSE
return TRUE

If algorithm returns false, then l is infinite. Otherwise, l = −d(vd).
The complexity of this algorithm is dominated by the complexity of the
Bellman-Ford algorithm, i.e. it is O(|V | · |E|). A correctness of A1 is
easy to be seen after the removal of all output edges from goal vertex.
No path is possible, which contains goal vertex at another position than
a final vertex. Obviously, the shortest path in the negative weighted
graph corresponds to the longest path in the initial graph.

We computed a worst-case and a best-case execution times with the
help of INA tool [11] for the example from the Figure 1. Our algorithm
identified 11 states. The worst-case execution time of the service from
source node i to target node o is 24 units of time. A maximal path is
i =⇒ p2 =⇒ p4 =⇒ o. The best-case execution time of service from
source node i to target node o is 6 units of time. A minimal path is
i =⇒ p1 =⇒ p3 =⇒ o.

67

I. Camerzan

5 Conclusions

In this paper we presented a new approach aimed at determining best-
case and worst-case times between two states in a TWN in polynomial
time and demonstrated the application of our method for a certain time
workflow net.

References

[1] B. Berthomieu, Modeling and Verification of Time Dependent Sys-
tems Using Time Petri Nets, In Advances of petri Nets 1984, vol
17 , No 3 of IEEE Trans. On Software Eng. 1991, 259–273.

[2] B. Berthomieu, An Enumerative Approach for Analyzing Time, In
Proceedings IFIP 1983, R:E:A:Mason(ed), North-Holland, 1983,
41–47.

[3] I. Camerzan, On soundness for time workflow nets, Computer Sci-
ece Journal of Moldova, volume 15, nr. 1(43), Chisinau, 2007, 74–87.

[4] T.H. Cormen, C.E. Leisserson, R. L. Rivest, C. Stein, Introduction
to Algorithms, second edn. MIT Press, 2001.

[5] T. Jucan, F. Tiplea, Petri Nets – theory and practice, Academia
Romana, Bucuresti, 1999. (in Romanian)

[6] T. Jucan, O. Prisecaru, I. Camerzan, Time Interval Workflow Nets,
Scientific Annals of the ”Al. I. Cuza” University, Computer Science
Section, Tome XV, Iasi, 2005, 77–92.

[7] P. Merlin, A study of the recoverability of computer system, Ph.
D. thesis, Dep. Computing Science, University California, Irvine,
1974.

[8] L. Popova-Zeugmann, On Time Invariance in Time Petri Nets,
In Informatik-Bericht Nr. 36 der Institute pur Informatik der
Humboldt-Univ. Zu Berlin, Oct. 1994

68

Determining best-case and worst-case times of . . .

[9] L. Popova-Zeugmann, On Liveness and Boundness in Time Petri
Nets

[10] L. Popova-Zeugmann, On Parametrical Sequences in Time Petri
Nets, Proceedings of the CSP 97 Workshop, Warsaw(1997), 105–
111.

[11] P.H. Starke, INA – Integrated Net Analyzer, Berlin, 1997.

Inga Camerzan, Received March 4, 2010

State University of Tiraspol
E–mail: caminga2002@yahoo.com

69

