
Computer Science Journal of Moldova, vol.18, no.1(52), 2010

A flexible navigation mechanism for complex

data models

Oleg Burlaca

Abstract

The paper presents a way to build flexible navigation tools
over a big dataset of well structured data models. The mecha-
nism is underpinned by a search engine that is used to slice and
dice the database. By applying a series of consecutive groupings,
the result of a search query can be organized in a hierarchical
structure and browsed using traditional user interface controls.

1 Introduction

Building successful user interfaces (UI) requires a good understanding
of the end user needs. As the data model of an application evolves
with the addition of new objects and relationships, it’s hard to create a
sustainable UI because of the user’s ever changing requirements. To al-
leviate the issue we should devote more time to the initial development
phase: the software architecture. Nevertheless, it’s not always possible
to encompass all aspects at the beginning. Moreover, the requirements
may change at a later stage when the software is already delivered and
launched.

The approach presented in [1] works well for websites due to sim-
ple data models that were used. As the number of entities in a model
increase, there is a need to quickly seek a desired object basing on
different criteria. It may happen that the user knows the chain of in-
terrelated objects that are connected to the object he is looking for, and
would like to easily spot it by ”jumping” from one object to another.

©2010 by O. Burlaca

3



O. Burlaca

Any information system that deals with a vast amount of data
should feature a search engine. Our idea is to leverage the search
engine and build the navigation system on the fly. In the next section
we introduce the data model we used for our application. Then we
discuss the search engine implementation, and finally we present the
idea of a ”navigation widget” that is powered by the search engine.

2 The Data Model

The Events Data Model elaborated by HURIDOCS [2] is depicted in
Figure 1.

Figure 1. Events Data Model.

An Event is a complex thing, it is comprised of several entities: in-
tervention, information and act. Acts are further comprised of victims,
perpetrators. Trying to build an interface for editing an Event seems to
be a tedious task and it might happen that due to the diverse number
of sub-entities (interventions, acts) and complementary tasks (adding
a new person or uploading a file), it might get cumbersome and a hard
nut to crack for simple users. The proposed solution is to work with
only one entity at a time and provide a suitable ”contextual skeleton”

4



A flexible navigation mechanism for complex data models

for the user. In other words, we try to split a complex problem into
smaller, but simpler ones, thus applying the divide and conquer design
paradigm. (See [3] for an in depth discussion about the UI part).

By looking at the model in Figure 1, one can notice that if to
exclude the person entity, the remaining structure has only 1 to Many
relationships, i.e.: An event has many intervention, information and
act entities. An act has many involvement entities. It allows us to
display an event as a tree. In Figure 2 one can see the ”Death Threats
Against Monsignor Alvaro Ramazzini” event with all its acts, victims,
perpetrators, information and other entities. We can think about this
tree as a ”contextual skeleton”: the user will be able to edit a single
entity from the tree, but he will always know to which parent entities
it belongs (is it a victim or a perpetrator and to which act and event
it belongs).

Figure 2. A hierarchical representation of an Event.

Let’s assume that the data entry aspect is solved [3] and we have

5



O. Burlaca

a quite big database of such events (some real world databases have
more than 20,000 events). We need a mechanism to easily browse
this dataset, but we can’t know beforehand how a user might want to
browse the collection. In the next section we describe a search engine
that will power our navigation mechanism: imagine that you’ll be able
to browse events in different ways: by date (an entity attribute), by
type of act (a relationship), by method of violence, etc.

3 The Search Engine

There are different types of entities in the system, thus creating a search
query will start by selecting what kind of entities to return (Events,
Acts, Information). But it doesn’t mean that it will be impossible to
search for one type of entity and have attributes of another type in
search results. For example, it will be possible to search for acts and
display the Event.Title. Because of the 1 to Many nature of the event
data model (an event has many acts, an act has many involvements, but
an act CAN’T belong to many events), one can uniquely identify the
parent entity. It means that if there are Involvements in search results,
one can also display Act.TypeOfAct and Event.Title. Conversely, one
can’t search for Events and display Act.TypeOfAct in search resutls,
because an event has Many acts.

In conclusion, you need to search for the deepest type of entity that
appears in search conditions if you need to display its attributes in
search results. It may sound a bit abstract for now, practical examples
provided in the next section will clarify things.

3.1 Simple search

A simple search query consists of:

a) Type of entity to fetch results from (Events, Acts, Interventions
etc.). We’ll refer to it as ResultEntity.

b) A set of search conditions coupled by logical operators: AND,
OR, AND NOT, OR NOT. A search condition may refer to a

6



A flexible navigation mechanism for complex data models

type of entity (let’s call it EntityX) that is a parent or child for
ResultEntity. This rule is transitive. i.e. the relationship is not
required to be direct, it’s ok if EntityX is a parent of a parent
of ResultEntity or vice versa: EntityX is a child of a child of
ResultEntity.

c) A set of attributes from ResultEntity and all its parent entities
to display in search results.

The search query illustrated in Figure 3 has 2 conditions, the first
one refers to the Event entity and the second refers to the Act entity.

Figure 3. A simple search query.

Following the rule ”you need to search for the deepest type of entity
that appears in search conditions”, the user needs to select the Act en-
tity as ResultEntity if he needs to display the Act.TypeOfAct attribute
in search results. If he selects Events as ResultEntity, the search will
work, but one will not be able to display Act attributes.

You should be aware that search results depend on the ResultEntity,
and sometimes even the correctness (validity) of a query changes. Let’s
see this in practice. Take the example from Figure 3. Suppose we have
two events in the database and we need to display only the title of the
event in search results:

Event1
Title: "threat against somebody"
Acts: no acts

Event2
Title: "a threat to the party leadership"
Act1

7



O. Burlaca

TypeOfAct: Violations of the right to life
InitialDate: 01/05/2008

If ResultEntity = Event, the results will be fetched from the event
collection and one will get both events. If ResultEntity = Act, one
will get results from the act collection. Because Event1 doesn’t have
any acts, it will not be listed at all in the EventAct relationship ta-
ble, thus only Event2 will be in search results. It should be stressed
once again: a search condition is evaluated/performed against the Re-
sultEntity database table. It means that a search condition’s entity
MUST be linked to the ResultEntity.

Let’s examine a situation when the validity of a search query de-
pends on ResultEntity, Figure 4.

Figure 4. A simple search with incompatible search conditions.

If ResultEntity = Event, everything is ok.
If ResultEntity = Act or Incident, then we get into trouble.
Let’s assume ResultEntity = Act. Because an Act is not linked by

a parent/child relationship to an Information entity (see the rule in
point (b) above), we can’t uniquely identify an Information entity for
an Act and vice versa. Technically speaking, the results we get from
the fourth search condition do not contain an Act column, so it is not
possible to join these results with results from other search conditions
(we don’t have a common entity by which to link two results sets).

3.2 Complex search

Imagine that we encapsulate a simple search into a block, we’ll call it
a search block. By applying logical operators (AND, OR, AND NOT,

8



A flexible navigation mechanism for complex data models

OR NOT) we can create a complex search query that consists of several
blocks, see Figure 5.

Figure 5. A complex search query.

Because each block has its own ResultEntity, we need to use the
least common denominator Entity before joining the result sets. The
system can automatically infer it, but as one can see in Figure 6, some-
times the user may need to set it manually.

Figure 6. Normalization of search blocks.

In Figure 6 the ResultEntity is Incident and Involvement corre-
spondingly. The least common denominator is the Act entity, and the
system will determine it automatically. But what if we need to display
only the title of found events? Since the overall ResultEntity of these
two blocks is Act, the search results will contain act entities. Surely, we
can display the event’s title, but the same event will appear many times
because there are many acts per event. Let’s run the search query on
a database that contains just one event:

Event1

9



O. Burlaca

Act1
Incident1

MethodOfViolence = Beating
Victim = PersonX

Involvement1
DegreeOfInvolvement = Planned the act
TypeOfPerpetrator = Police
Perpetrator = PersonY

Act2
Incident2

MethodOfViolence = Wounding
Victim = PersonZ

Involvement2
DegreeOfInvolvement = Directly carried out the act
TypeOfPerpetrator = Paramilitary forces

The first block returns Incident1 and Incident2, the second block
returns Involvement1 and Involvement2. Joining two results sets will
give us Act1 and Act2. So, if we need to display only event attributes in
search results, we’ll get Event1 listed twice. In order to remove dupli-
cates, the user is required to manually select the NormalizationEntity.
In our case, it will be the Event entity.

Remark: since NormalizationEntity applies to a block, it means it
applies to a simple search. As a result, the definition of a simple search
query will be expanded to include the (d) point: NormalizationEntity.

A query that doesn’t have a NormalizationEntity is invalid. In Fig-
ure 7 the first search condition returns Person entities while the second
one returns Events. These are top level entities that miss the par-
ent/child relationship.

3.3 Person roles in search conditions

The following example illustrates how to search for acts that have vic-
tims from one of the specified countries.

The same applies to other entities:

10



A flexible navigation mechanism for complex data models

Figure 7. Invalid search query.

Figure 8. Using person roles in search conditions.

- Intervention.InterveningPary.[PersonAttribute]
- Intervention.Victim.[PersonAttribute]
- Involvement.Perpetrator.[PersonAttribute]
- etc

3.4 Query Infeasibility

The proposed search mechanism is not able to perform all kinds of
searches you might have in mind, but we’ve tried to find a trade off
between ease of use and power. As a last resort, one can write a bunch
of SQL queries and PHP scripts to perform a complex and exotic search
query. Here is an example of an unfeasible query: Show me those
events that have more than 3 acts and where one of the victims is also
a perpetrator.

4 The Navigation Mechanism

Having a powerful search engine capable of querying different types of
entities at the same time and returning fields of different entities in the
same row, we are able to introduce the concept of Navigation Widget.

What if we start grouping the flat list comprised of found rows by
several columns? The output will be a hierarchy, where each level is

11



O. Burlaca

a ”folder” that is actually an entity attribute. Once a complex search
query is created, the user can specify a list of entity attributes used to
group the results and save the query and attribute list as a hierarchical
result container, such container we call Navigation Widget. The user
can create an unlimited number of widgets, and the system will auto-
matically display them as top level folders. Figure 9 illustrates three
widgets: ”By date”, ”By type of act”, ”[Event Widget]”. The second
folder ”By type of act” is a two level navigation widget. Starting from
the third level the system displays the event entities.

Figure 9. Navigation folders in event’s tree.

A small Win32 application was developed that displays a collection
of events along with attributes from child entities (see Figure 10). The
application is available for download from http://openevsys.burlaca.com/.
The user can drag&drop columns on the header and group search re-
sults, and he can group by as many columns as he wishes. The de-
scribed approach depicts the way navigation folders are created. The

12



A flexible navigation mechanism for complex data models

system may have two types of widgets:

- global: the administrator creates a widget that is automati-
cally visible by all other users and they will not be able to mod-
ify/remove it;

- local: a user creates his own widgets that are not visible by
others.

Figure 10. Grouping search results to create navigation folders.

5 Conclusions

Rapid Application Development tools became very flexible and power-
ful nowadays. Nevertheless, a developer has to rethink the User Inter-
face when the underlying data model changes. The approach described
in this paper implies considerable development efforts to implement the
search engine, but the flexibility in managing an ever changing data
model greatly reduces maintenance costs.

13



O. Burlaca

The approach is not universal in a sense that it can’t be applied to
an arbitrary data model, i.e. the search engine implementation may
change.

For future work there are two directions: a) expand search engine
capabilities to process different types of data models b) apply other
paradigms in navigation mechanisms, e.g., the pivot tables concept as
a complement to the hierarchical grouping.

References

[1] O. Burlaca. Generic Interfaces for Managing Web Data. Computer
Science Journal of Moldova, vol. 13, nr. 1(37), 2005. pp. 70–83

[2] HURIDOCS - Human Rights Information and Documentation
Systems, International. http://www.huridocs.org/

[3] OpenEvSys2 prototype. http://openevsys.burlaca.com/

Oleg Burlaca, Received June 16, 2010

O. Burlaca
Institute of Mathematics and Computer Science,
Academy of Sciences of Moldova
Academiei 5, Chişinău MD-2028 Moldova
E–mail: oburlaca@neonet.md

14


