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All proper colorings of every colorable

BSTS(15)

Jeremy Mathews, Brett Tolbert

Abstract

A Steiner System, denoted S(t, k, v), is a vertex set X con-
taining v vertices, and a collection of subsets of X of size k, called
blocks, such that every t vertices from X are in exactly one of
the blocks. A Steiner Triple System, or STS, is a special case of
a Steiner System where t = 2, k = 3 and v = 1 or 3 (mod6) [7].
A Bi-Steiner Triple System, or BSTS, is a Steiner Triple System
with the vertices colored in such a way that each block of vertices
receives precisely two colors. Out of the 80 BSTS(15)s, only 23
are colorable [1]. In this paper, using a computer program that
we wrote, we give a complete description of all proper colorings,
all feasible partitions, chromatic polynomial and chromatic spec-
trum of every colorable BSTS(15).

1 Introduction

A hypergraph is a generalized graph where an edge, called a hyperedge,
can contain more than two vertices. A mixed hypergraph contains two
kinds of hyperedges, C-edges and D-edges. A coloring of a mixed
hypergraph is proper if every C-edge has at least two vertices mapped
to the same color while every D-edge has at least two vertices mapped
to different colors [5]. A Steiner Triple System, denoted by STS(v)
where v is the number of vertices, is a special case of a Steiner System
in which its blocks are made up of exactly three vertices and no two
blocks can share a pair of vertices [7]. Here we consider STSs on
15 vertices as bi-hypergraphs, which are mixed hypergraphs such that
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the C family of C-edges and the D family of D-edges coincide, or
equivalently C = D. We call these bi-hypergraphs Bi-Steiner Triple
Systems of order 15 (BSTS(15)) and we consider every block of three
vertices to be both a C-edge and a D-edge. Since each block of a
BSTS(15) contains exactly three vertices, two of those vertices must
be mapped to the same color and the third vertex must be mapped to
a different color to satisfy both the C-edge and D-edge requirements.
Therefore, each block of a BSTS(15) must be mapped to precisely
two colors. The lower chromatic number of a mixed hypergraph is the
minimum number of colors for which there exists a proper coloring,
and it is denoted by χ [5]. The upper chromatic number of a mixed
hypergraph is the maximum number of colors for which there exists
a strict proper coloring, and it is denoted by χ̄ [5]. Of the 80 non-
isomorphic BSTS(15)s, 23 contain BSTS(7) as a subdesign and those
23 BSTS(15)s are colorable [1]. They are numbered in [1] as no. 1−22
and no. 61. For these 23 BSTS(15)s, the upper and lower chromatic
numbers are equal. They all have χ = χ̄ = 4 [2][3]. This means that
all colorable BSTS(15)s are only colorable on exactly four colors. The
chromatic spectrum of a mixed hypergraph is an integer vector, R(H)
whose components are r1, r2, ..., rk, where ri is the number of different
feasible partitions into i color classes [5]. It is known that BSTS(15)s
are only colorable on 4 colors, so ri = 0, when i 6= 4. Only r4 will have
a value other than 0, so we can generalize and say the following:

R(BSTS(15)) = (0, 0, 0, rχ̄, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) [5]

since χ = χ̄ = 4. Using a computer program that we wrote, we
were able to find and display all proper colorings of every colorable
BSTS(15). Also we were able to display all feasible partitions and the
permutations of colors of every BSTS(15), which when multiplied to-
gether gives the number of all proper colorings. In this paper, we show
all proper colorings, all feasible partitions, the chromatic polynomial,
and the chromatic spectrum of all colorable BSTS(15)s.
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2 Method

The chromatic polynomial of a mixed hypergraph is simply a polyno-
mial in λ which gives the number of proper λ-colorings of a colorable
mixed hypergraph, where λ is the number of available colors [5]. If
we let ri(H) denote the number of feasible partitions of the mixed hy-
pergraph into i color classes or sets, and we let λ(i) denote the falling
factorial of λ, then we have the following equality:

P (H,λ) =
∑χ̄(H)

i=χ(H) ri(H)λ(i) [5].

To construct the chromatic polynomial for each colorable BSTS(15)s,
we need to alter the above equation to specify for BSTS(15)s. If we
let a colorable BSTS(15) be our H, the chromatic polynomial will give
the number of proper λ-colorings of that colorable BSTS(15), where
λ ≥ 4 since 4 colors are required for a proper λ-coloring of a colorable
BSTS(15). So we adjust the fundamental equality of mixed hyper-
graph coloring accordingly to accommodate the BSTS(15)s. First,
[2, 3] showed that χ = χ̄ = 4 in all colorable BSTS(15)s; there-
fore,

∑χ̄(H)
i=χ(H) is not needed. We simply say that i = 4 so now

rχ(H) = rχ̄(H) = r4(H). Therefore, these adjustments yield the fol-
lowing:

P (BSTS(15), λ) = r4(BSTS(15))λ(i).

We also know that BSTS(15)s are colorable if and only if they
contain BSTS(7) as a subsystem or subdesign [4]. There are 21 fea-
sible partitions in BSTS(7) [6, 8] and there are four cases of (7, 3, 1)-
subdesigns in various colorable BSTS(15)s. A (7, 3, 1)-subdesign is
a subsystem on 7 vertices where each block contains 3 vertices and
each vertex appears precisely once with every other vertex in a block.
BSTS(7) is the same as the finite projective plane of order 2, called the
Fano Plane [7]. In all 23 cases of colorable BSTS(15)s, there exist(s):
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1. 1 case in which a colorable BSTS(15) has 15 (7,3,1)-subdesigns,

2. 1 case in which a colorable BSTS(15) has 7 (7,3,1)-subdesigns,

3. 5 cases in which a colorable BSTS(15) has 3 (7,3,1)-subdesigns,
and

4. 16 cases in which a colorable BSTS(15) has 1 (7,3,1)-subdesign.

[1]

This covers all colorable BSTS(15)s. Let the number of (7, 3, 1)-
subdesigns in a BSTS(15) be denoted by s. The number of feasible
partitions in a particular colorable BSTS(15) is equal to the number
of feasible partitions in BSTS(7) which is 21 using three colors, times
the number of (7, 3, 1)-subdesigns in the BSTS(15), or equivalently,
r4 = 21s. We will show this in the next section. Now we can write the
fundamental equality of colorable BSTS(15)s as the following:

Proposition 1. The number of proper λ-colorings of a colorable
BSTS(15) is a polynomial with the following form:

P (BSTS(15), λ) = 21s(λ(4)).

Now we will look at all colorable BSTS(15)s and arrive at each of
their minimum number of proper colorings, their number of feasible
partitions, and their chromatic spectrums.

3 Theorem and Proof

Theorem 1. When λ = 4, the minimum number of proper colorings,
the number of feasible partitions, and the minimum number of permu-
tations of each partition of each colorable BSTS(15) can be obtained
by the following equality:

P (BSTS(15), 4) = 21s(4!)
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Proof. Let s denote the number of (7, 3, 1)-subdesigns in a particular
colorable BSTS(15). It is known that the number of feasible parti-
tions of BSTS(7) is 21 [6]. By an exhaustive search of all possible
colorings using a program that we wrote and by applying the splitting-
contraction algorithm [8] as defined in [5], the feasible partitions of
BSTS(7) are the following:

The blocks for BSTS(7) are
{1,2,4} {2,3,5} {3,4,6} {4,5,7} {5,6,1} {6,7,2} {7,1,3}

The set of available colors is {0,1,2}
Vertices 1 2 3 4 5 6 7 Vertices 1 2 3 4 5 6 7

Partition 1 0 1 2 1 2 2 2 Partition 11 0 1 1 0 2 0 0

Partition 2 0 1 2 0 2 2 2 Partition 12 0 0 0 1 2 0 2

Partition 3 0 0 2 1 2 2 2 Partition 13 0 0 2 1 0 2 0

Partition 4 0 1 2 1 1 1 2 Partition 14 0 0 2 1 0 1 0

Partition 5 0 1 1 1 2 2 1 Partition 15 0 0 1 1 0 2 0

Partition 6 0 1 2 1 1 1 0 Partition 16 0 0 0 1 1 0 2

Partition 7 0 1 0 1 1 1 2 Partition 17 0 0 0 1 2 0 1

Partition 8 0 1 2 0 2 0 0 Partition 18 0 1 0 0 0 1 2

Partition 9 0 1 0 0 0 2 2 Partition 19 0 1 0 0 0 2 1

Partition 10 0 1 2 0 1 0 0 Partition 20 0 1 1 1 2 0 1

Partition 21 0 1 1 1 0 2 1

Therefore, for any number of (7, 3, 1)-subdesigns in a colorable
BSTS(15), the number of the subdesigns times the number of feasible
partitions of the subdesign will equal the number of feasible partitions
of the colorable BSTS(15). In the 4 cases of (7, 3, 1)-subdesigns men-
tioned earlier, the number of proper colorings, the number of feasible
partitions, and the permutations of colors of each partition have been
calculated by a computer program we wrote. The number of proper
colorings, the number of feasible partitions, and the number of permu-
tations of colors of each partition from the program for each of (1− 4)
above are as follows:

1. 7560 proper colorings, 315 feasible partitions, and 24 permuta-
tions of colors of each partition;
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2. 3528 proper colorings, 147 feasible partitions, and 24 permuta-
tions of colors of each partition;

3. 1512 proper colorings, 63 feasible partitions, and 24 permutations
of colors of each partition; and

4. 504 proper colorings, 21 feasible partitions, and 24 permutations
of colors of each partition.

This will also give us the chromatic spectrum. This is a simple
proof by cases:

Case 1. 15(7, 3, 1)-subdesigns

P (BSTS(15), 4) = 21s(4!) = 21(15)(24) = 315(24) = 7560

This shows that the minimum number of proper colorings for BSTS(15)
no. 1 is 7560. It also gives the number of feasible partitions as
21(15) = 315. The vertices of BSTS(7) are mapped to this BSTS(15),
while keeping the same colorings and having the other eight vertices of
this BSTS(15) mapped to the fourth color. The vertices of BSTS(7)
are mapped to the vertices of BSTS(15) no. 1 in the following way:

BSTS(7): 1 2 3 4 5 6 7

BSTS(15): first 21 partitions 1 2 4 3 6 7 5

BSTS(15): second 21 partitions 1 2 8 3 10 11 9

BSTS(15): third 21 partitions 1 2 12 3 14 15 13

BSTS(15): fourth 21 partitions 1 4 8 5 12 13 9

BSTS(15): fifth 21 partitions 1 4 10 5 14 15 11

BSTS(15): sixth 21 partitions 1 6 10 7 12 13 11

BSTS(15): seventh 21 partitions 1 6 8 7 14 15 9

BSTS(15): eighth 21 partitions 2 4 8 6 12 14 10

BSTS(15): ninth 21 partitions 2 4 9 6 13 15 11

BSTS(15): tenth 21 partitions 2 5 9 7 12 14 11

BSTS(15): eleventh 21 partitions 2 5 8 7 13 15 10
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BSTS(15): twelfth 21 partitions 3 4 9 7 13 14 10

BSTS(15): thirteenth 21 partitions 3 4 8 7 12 15 11

BSTS(15): fourteenth 21 partitions 3 5 8 6 13 14 11

BSTS(15): fifteenth 21 partitions 3 5 9 6 12 15 10

Therefore, the above vertices in this BSTS(15) are mapped to the same
colors as in BSTS(7) and the other eight vertices are mapped to the
fourth color. This is minimum because λ = 4 is the minimum number
of available colors needed to properly color any colorable BSTS(15).
This also shows that the number of feasible partitions is equal to the
number of partitions in BSTS(7) multiplied by the number of times
the (7, 3, 1)-subdesign appears in the BSTS(15), which is 21(15) = 315
feasible partitions; therefore, the chromatic spectrum of this BSTS(15)
is:

R(BSTS(15), 4) = (0, 0, 0, 315, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0).

Case 2. 7(7, 3, 1)-subdesigns

P (BSTS(15), 4) = 21s(4!) = 21(7)(24) = 147(24) = 3528

This shows that the minimum number of proper colorings for BSTS(15)
no. 2 is 3528. It also gives the number of feasible partitions as
21(7) = 147. The vertices of BSTS(7) are mapped to this BSTS(15),
while keeping the same colorings and having the other eight vertices of
this BSTS(15) mapped to the fourth color. The vertices of BSTS(7)
are mapped to the vertices of BSTS(15) no. 2 in the following way:

BSTS(7): 1 2 3 4 5 6 7

BSTS(15): first 21 partitions 1 2 4 3 6 7 5

BSTS(15): second 21 partitions 1 2 8 3 10 11 9

BSTS(15): third 21 partitions 1 2 12 3 14 15 13

BSTS(15): fourth 21 partitions 1 4 8 5 12 13 9

BSTS(15): fifth 21 partitions 1 4 10 5 14 15 11

BSTS(15): sixth 21 partitions 1 6 10 7 12 13 11

BSTS(15): seventh 21 partitions 1 6 8 7 14 15 9
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Therefore, the above vertices in this BSTS(15) are mapped to the same
colors as in BSTS(7) and the other eight vertices are mapped to the
fourth color. This is minimum because λ = 4 is the minimum number
of available colors needed to properly color any colorable BSTS(15).
This also shows that the number of feasible partitions is equal to the
number of partitions in BSTS(7) multiplied by the number of times
the (7, 3, 1)-subdesign appears in the BSTS(15), which is 21(7) = 147
feasible partitions; therefore, the chromatic spectrum of this BSTS(15)
is:

R(BSTS(15), 4) = (0, 0, 0, 147, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0).

Case 3. 3(7, 3, 1)-subdesigns

P (BSTS(15), 4) = 21s(4!) = 21(3)(24) = 63(24) = 1512

This shows that the minimum number of proper colorings for
BSTS(15)s no. 3 − 7 is 1512. It also gives the number of feasible
partitions as 21(3) = 63. The vertices of BSTS(7) are mapped to this
BSTS(15), while keeping the same colorings and having the other eight
vertices of this BSTS(15) mapped to the fourth color. The vertices of
BSTS(7) are mapped to the vertices of BSTS(15) no. 3 − 7 in the
following way:

BSTS(7): 1 2 3 4 5 6 7

BSTS(15)s: first 21 partitions 1 2 4 3 6 7 5

BSTS(15)s: second 21 partitions 1 2 8 3 10 11 9

BSTS(15)s: third 21 partitions 1 2 12 3 14 15 13

Therefore, the above vertices in these BSTS(15)s are mapped to the
same colors as in BSTS(7) and the other eight vertices are mapped
to the fourth color. This is minimum because λ = 4 is the mini-
mum number of available colors needed to properly color any colorable
BSTS(15). This also shows that the number of feasible partitions is
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equal to the number of partitions in BSTS(7) multiplied by the num-
ber of times the (7, 3, 1)-subdesign appears in the BSTS(15), which
is 21(3) = 63 feasible partitions; therefore, the chromatic spectrum of
these BSTS(15)s is:

R(BSTS(15), 4) = (0, 0, 0, 63, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0).

Case 4. 1(7, 3, 1)-subdesign

P (BSTS(15), 4) = 21s(4!) = 21(1)(24) = 21(24) = 504

This shows that the minimum number of proper colorings for
BSTS(15)s no. 8 − 22 and no. 61 is 504. It also gives the number of
feasible partitions as 21(1) = 21. The vertices of BSTS(7) are mapped
to these BSTS(15), while keeping the same colorings and having the
other eight vertices of this BSTS(15) mapped to the fourth color. The
vertices of BSTS(7) are mapped to the vertices of BSTS(15) no. 8−22
and no. 61 in the following way:

BSTS(7): 1 2 3 4 5 6 7

BSTS(15)s: 21 partitions 1 2 4 3 6 7 5

Therefore, the above vertices in these BSTS(15)s are mapped to the
same colors as in BSTS(7) and the other eight vertices are mapped
to the fourth color. This is minimum because λ = 4 is the mini-
mum number of available colors needed to properly color any colorable
BSTS(15). This also shows that the number of feasible partitions is
equal to the number of partitions in BSTS(7) multiplied by the num-
ber of times the (7, 3, 1)-subdesign appears in the BSTS(15), which
is 21(1) = 21 feasible partitions; therefore, the chromatic spectrum of
these BSTS(15)s is:

R(BSTS(15), 4) = (0, 0, 0, 21, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0).
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Thus, all cases have been satisfied and all 23 colorable BSTS(15)s have
been covered. Also, the (2v+1) construction as described in [6] follows.

4 How the Program Works

This program was designed in C++ and contains several sub-programs
and functions. We created files that were added to the source code
of the program. We also created incidence matrices for each colorable
BSTS(15) as text files in the source code. We added display func-
tions for all relevant data to check our results and to double check the
computer results.

We started by creating headers that would find partitions and col-
lect them not counting different permutations of colors. The main
program calls the incidence matrix that is specified in a subprogram
and displays it along with each block of vertices. The program then
prompts the user to enter the number of colors that are to be used
and then the number of colorings the user wishes to find (first 10 or
first 200 for example, or the user can enter −1 for all colorings). If the
user wants to find all proper colorings, the program runs an exhaustive
search of all possible colorings from a string of all 0s to a string of all
3s. If a coloring is proper, then the coloring is displayed and counted;
and if it is not a proper coloring, then that coloring is skipped. Also,
if the coloring is proper, then that feasible partition is stored. After
all proper colorings have been found and displayed and counted, the
monitor prompts the user to press any key to see the feasible partitions
displayed and counted and the number of colorings of each partition.
All of the different permutations of colors of the partitions that were
stored from the proper colorings are grouped together by the computer
and only the first permutation of colors is displayed. For example,
011222233333333 would be displayed and 122333300000000 would not
be displayed because it is a permutation of the same partition where
vertex 1 is mapped to one color, vertices 2, 3 are mapped to one color,
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vertices 4− 7 are mapped to one color, and vertices 8− 15 are mapped
to one color. When complete, the user can see the BSTS(7) subsys-
tem(s) and its coloring, and the expansion of colors to the remaining
eight vertices. We were able to use this program to check the accuracy
of our hypothesis and our results; and by displaying all of the rele-
vant data on the monitor, we were able to check the accuracy of the
computer results.

5 Concluding Remarks

This paper shows two things: 1. the minimal number of colorings
over all feasible sets of colors, the number of feasible partitions, and
the chromatic polynomial and chromatic spectrum for every colorable
BSTS(15); and 2. that computer science can be an invaluable part
of research in mathematics. Of course, the findings on the number of
proper colorings, the number of feasible partitions, and the number
of permutations of colors of each partition can be generalized for any
number of colors in a set of available colors by the equality in Proposi-
tion 1. It is true that all colorable BSTS(15)s are colorable only with
4 colors, but if you have 5 colors in the set of available colors, then you
can choose to use some subset of colors from 1, 2, 3, 4, 5 such as colors
1, 2, 3, 4, or colors 1, 2, 3, 5, or colors 2, 3, 4, 5, etc. The generalization
would simply be to change λ in the fundamental equality of colorable
BSTS(15)s to whatever number of colors are available in the set of
available colors. If we take the above example of 5 available colors on
the BSTS(15) with 15 (7, 3, 1)-subdesigns, we have:

Example 1. P (BSTS(15), λ) = 21s(λ(4)) = 21(15)(5(4)) = 315(120) =
37, 800

This shows that the number of proper colorings with 5 colors available
to use is 37, 800. This, of course, is not minimum. We still have
21(15) = 315 feasible partitions and (5(4)) = 120 permutations of colors
of each partition. The chromatic spectrum would be:
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R(BSTS(15)) = (0, 0, 0, 315, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

since the number of feasible partitions would not change. There would
simply be more permutations of colors of each partition.

We strongly believe that working with someone in a different field
can help find answers and solutions to problems that have yet to be
solved. We both benefited from working with one another on this
project. When one may have strength in one area but very little de-
velopment in another area, the other can bring balance in the areas
needed. Also, the amount that you learn in the other’s field is incredi-
ble. Working together also gives additional viewpoints and ideas that
one may not think of on his or her own.

This paper leads obviously into the discussion of the 57 uncolorable
BSTS(15)s and their induced and/or partial colorable BSTS(15)s.
How many vertex deletions or edge deletions are needed to obtain an
induced or partial colorable BSTS(15)? Is this result universal for all
uncolorable BSTS(15)s? Much research is still needed in the area of
uncolorable BSTS(15)s.
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