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Abstract

We survey in this paper the main differences among three
variants of an intramolecular model for gene assembly: the gen-
eral, the simple, and the elementary models. We present all of
them in terms of sorting signed permutations and compare their
behavior with respect to: (i) completeness, (ii) confluence (with
the notion defined in three different setups), (iii) decidability, (iv)
characterization of the sortable permutations in each model, (v)
sequential complexity, and (vi) experimental validation.
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1 Introduction

Gene assembly in ciliates has been subject of intense research in the
last few years, both regarding the molecular details driving it, as well
as the theoretical implications of some mathematical models proposed
for it, see [7, 10, 25, 17, 16, 26, 1, 20].

Ciliates form an ancient and rich group of eukaryotes. There are
about 8000 species of ciliates currently known. Two characteristics
which are common for all ciliates distinguish them from other groups
of unicellular eukaryotes. First, they all have “cilia”, organs used for
motility and for feeding. Second, they all have two types of nuclei
presented in each organism. Almost all RNA-transcriptions happen in
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macronuclei (somatic nuclei) during the life of a ciliate. The DNA-
molecules in the micronuclei (germline nuclei) seem to remain silent
until the sexual reproduction begins (see [24]).

The genetical information is stored in different ways on micro- and
macronuclear molecules. The macronuclear genes are contiguous se-
quences of nucleotides. The micronuclear genes however, are split
into coding blocks (called MDSs), shuffled and separated by noncoding
blocks (called IESs). This shuffling and inversion of MDSs is espe-
cially visible in a species of ciliates called stichotrichs. Macronuclear
molecules are known to be the shortest DNA in Nature, ranging in the
Sterkiella nova organisms between 200bp and 3700bp with an average
of 2200 bp in length (see [11, 5, 6, 23, 24, 27]). Macronuclear molecules
consist mainly of coding sequences. On the other hand, coding se-
quences occupy as little as 2 – 5 % of the micronuclear molecules of the
length about 107 bp (in Sterkiella nova, see [5, 23]).

At some point during sexual reproduction, ciliates destroy all
macronuclei and develop new ones from the micronuclei. In the pro-
cess they must excise non-coding sequences and assemble correctly all
coding blocks of the micronuclear genes. This process is called gene
assembly. For a brief introduction to the biology of ciliates, especially
to the gene assembly process we refer to [7].

Two molecular models have been proposed for gene assembly in
ciliates. The intermolecular model [17, 16] and the intramolecular
model [10, 25] suggest splicing of gene fragments via short nucleotide
sequences called pointers. Each pointer at the end of an MDS re-
peats at the beginning of the MDS which follows it in the assembled
gene. Recent results [1, 20] suggest that some template molecules may
assist the correct alignment of the recombining molecules. The inter-
molecular model suggests that two molecules may participate in the
recombination, while the intramolecular model considers folding and
recombination within a single molecule.

We focus in this paper on the intramolecular model (called in the
sequel the general model) and on two of its variants: the simple model,
introduced in [15] and the elementary model, introduced in [14].

The general model consists of three molecular operations, ld, hi,
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ld(i) ld(ii) ld(iii)

hi(i) hi(ii) hi(iii)

dlad(i) dlad(ii) dlad(iii)

Figure 1. Illustration of the ld, hi, dlad molecular operation showing
in each case: (i) the folding, (ii) the recombination, (iii) the result.
Courtesy of Tero Harju.

dlad, see [10, 25]. The three operations are illustrated in Figure 1
where in each case we show the folding of the molecule on itself, the
recombination that takes place and the subsequent result. A charac-
teristic of this model is that all three operations operate on a single
molecule that folds on itself in a specific way. One thus says that the
model is intramolecular.

Note that the three intramolecular operations allow in their gen-
eral formulation that the MDSs participating in an operation may
be located anywhere along the molecule. Arguing on the principle
of parsimony, a simplified model was introduced in [15], asking that
all operations are applied ‘locally’. This simple model consists of the
same three molecular operations as the general model, requiring how-
ever that there is at most one coding block involved in each of the
three operations. This idea was then further developed into two sepa-
rate models, both using the terminology of simple gene assembly . In
the first one, that we will refer to in here as the elementary model ,
introduced in [13, 14], the model was further restricted so that only
micronuclear, but not composite, MDSs could be manipulated by the
molecular operations. Consequently, once two or more micronuclear
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MDSs are combined into a larger composite MDS, they can no longer
be moved along the sequence. The second model, that we will refer
to as the simple model [18], allowed that both micronuclear, as well as
composite MDSs may be manipulated in each of the three molecular
operations.

However minor the difference between the frameworks of the simple
and the elementary models may seem, it does have a great impact on
the characteristics of each model. We survey in this paper the main
known results on the simple and elementary gene assembly, comparing
them also with the corresponding properties of the general model with
respect to: (i) completeness, (ii) confluence (with the notion defined
in three different setups), (iii) decidability, (iv) characterization of the
sortable permutations in each model, (v) sequential complexity, and
(vi) experimental validation. For this, we introduce in this paper a
permutation-based presentation of the general model. We discuss in
particular the question of model validation and consider the assembly
of all currently known ciliate gene patterns, see [4]. We also present
several open problems in this area.

The results in this paper have been previously published in [8, 14,
18, 19] using non-uniform (and even conflicting) terminology and no-
tation. In here we give the topic a uniform presentation, fix the termi-
nology and discuss in some details differences among the three models
of interest.

2 Mathematical preliminaries

For a finite alphabet A = {a1, . . . , an}, we denote by A∗ the free monoid
generated by A and call any element of A∗ a word. For any v ∈ A∗, we
denote dom(v) = {a ∈ A | a occurs in v}.

Let A = {a1, . . . , an}, where A ∩ A = ∅. For p, q ∈ A ∪ A, we
say that p, q have the same signature if either p, q ∈ A, or p, q ∈ A
and we say that they have different signatures otherwise. For any
u ∈ (A ∪ A)∗, u = x1 . . . xk, with xi ∈ A ∪ A, for all 1 ≤ i ≤ k, we
denote ‖u‖ = ‖x1‖ . . . ‖xk‖, where ‖a‖ = ‖a‖ = a, for all a ∈ A. We
also denote u = xk . . . x1, where a = a, for all a ∈ A. We say, that u
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is uniformly signed, if either xi ∈ A for all 1 ≤ i ≤ k, or xi ∈ A for all
1 ≤ i ≤ k.

For strings u, v over Σ, we say that u is a substring of v, denoted
by u ≤ v, if v = xuy, for some strings x, y. We say that u is a
subsequence of v, denoted by u ≤s v, if u = a1a2 . . . am, ai ∈ Σ∪Σ and
v = v0a1v1a2v2 . . . amvm, for some strings vi, 0 ≤ i ≤ m, over Σ.

A permutation π over A is a bijection π : A → A. Fixing the
order relation (a1, a2, . . . , am) over A, we often denote π as the word
π(a1) . . . π(am) ∈ A∗. A signed permutation over A is a string ψ ∈
(A ∪ A)∗, where ‖ψ‖ is a permutation over A. We say that a signed
permutation π is (circularly) sorted if it is of either of the following
forms:

(i) π = akak+1 . . . ana1 . . . ak−1, for some k ≥ 1. In this case, we say
that π is an orthodox sorted permutation.

(ii) π = ak−1 . . . a1 an . . . ak+1 ak, for some k ≥ 1. In this case, we say
that π is an inverted sorted permutation.

In both cases, if k = 1, then we say that π is a linear sorted permutation;
otherwise, we say that it is circular.

A sorted block in the signed permutation π is a substring of π either
of the form aiai+1 . . . aj , or of the form aj . . . ai+1 ai, 1 ≤ i ≤ j ≤
n, where ai−1ai, ai ai−1, ajaj+1, aj+1 aj are not substrings of π. By
S(π) we denote the total number of sorted blocks in π. Clearly, the
permutation is cyclically sorted if we have S(π) ≤ 2.

The notion of structure of a permutation will be useful in the paper.
To define it, we first introduce the morphism ξi : (A∪A)∗ → (A∪A)∗,
for any 1 ≤ i ≤ |A|:

ξi(aj) =





λ if j = i;
aj if j < i;
aj−1 if j > i;

where aj ∈ A ∪A.
Consider the mapping σi : (A ∪ A)∗ → (A ∪ A)∗, where for any

string u ∈ (A ∪A)∗, σi(u) is defined as follows:
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(a) σi(u) = u, if aiai+1 � u, with ai, ai+1 ∈ A, or ai+1 ai � u, with
ai, ai+1 ∈ A, and

(b) σi(u) = ξi(u) otherwise.

Then, the structure of a string is the mapping σ : (A ∪ A)∗ →
(A ∪ A)∗, such that σ(u) = (σ1 ◦ σ2 ◦ . . . ◦ σ|A|−1 ◦ σ|A|)(u). Note
that the structure of a sorted permutation π is either σ(π) = a1, or
σ(π) = a2a1, where a1, a2 ∈ A, or σ(π) = a1a2, where a1, a2 ∈ A.

Example 1. Consider a sorted permutation π = 34512. We find its
structure σ(π) as follows:

π5 = σ5(π) = π π2 = σ2(π3) = π3

π4 = σ4(π5) = ξ4(π5) = 3412 π1 = σ1(π2) =
π3 = σ3(π4) = ξ3(π4) = 312 = ξ1(π2) = 21

σ(π) = π1 = 21

3 Gene assembly as a sorting of signed permu-
tations

As discussed in [18, 13, 14], a natural formalization of the simple and
elementary operations is through rewriting rules for signed permuta-
tions. A given gene is represented as a signed permutation by denot-
ing the sequence and the orientation of its MDSs and assembling the
gene is modeled through the sorting of the associated permutation. As
shown in Definitions 1, 2, 3, the formalization of the molecular models
in terms of sorting permutations is somewhat intricate: a high num-
ber of cases needs to be considered. For the general model, a more
concise formalization can be done in terms of signed double occurrence
(also called legal) strings, see [7]. The two main advantages of the le-
gal string framework are: (i) it abstracts from denoting the sequence
of gene blocks to denoting only the sequence of pointers (and in the
process it ignores the two markers); (ii) it models gene assembly as a
process of consecutive pointer removals, based on the observation that
the assembled gene contains no pointers.
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The simple model makes crucial use of the two markers. Con-
sequently, this model can only be formalized through extended legal
strings that denote the pointers, as well as the markers of the gene, as
done in [3]. The resulting model is equivalent with the permutation-
based model for simple operations but more concise for the same rea-
sons (i)-(ii) discussed above.

In the case of the elementary model however, it is crucial that
all pointers and markers are indicated throughout the gene assembly,
rather than being removed as in the (extended) legal string frame-
work. The main reason is that the elementary model distinguishes
between the original (micronuclear) gene blocks and the larger (com-
posite) blocks that are being formed throughout the process of assem-
bly. It is an open problem whether a more concise formalizations may
be introduced also for the elementary model.

In the following we consider a presentation based on signed permu-
tations for all three models. This presentation in the case of the general
model appears to be given here for the first time, although an equivalent
presentation in terms of MDS descriptors was reported before, see [7].
As observed also in the case of simple and elementary operations, it
is a characteristic of permutation-based models for gene assembly that
the ld operation is not explicitly modeled. Instead, it is just assumed
that two consecutive blocks are going to be spliced together in a bigger
composite block at some arbitrary point, independently of the other
operations applied to the permutation.

3.1 Modeling of the general operations

Consider a gene pattern formalized as a signed permutation over al-
phabet Πn = {1, 2, . . . , n}. We formalize the general operations over
signed permutations as follows:
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Definition 1. i. For each 1 ≤ p < n, hip is defined as follows:

hip(xpy(p + 1)z) = xp(p + 1)yz,

hip(xpy(p + 1)z) = xyp(p + 1)z,

hip(x(p + 1)ypz) = xy(p + 1)pz,

hip(x(p + 1)ypz) = x(p + 1)p yz,

where x, y, z are signed strings over Πn. We denote Hi = {hii |
1 ≤ i < n}.

ii. For each 1 ≤ p, q < n, where |p − q| > 1, dladp,q is defined as
follows:

dladp,q(xp′′uq′′vp′wq′z) = xwq′q′′vp′p′′uz,

dladp,q(xp′′uq′vp′wq′′z) = xwvp′p′′uq′q′′z,

dladp,q(xp′uq′′vp′′wq′z) = xp′p′′wq′q′′vuz,

dladp,q(xp′uq′vp′′wq′′z) = xp′p′′wvuq′q′′z,

where p′ = p, p′′ = p+1, or p′ = (p + 1), p′′ = p, and q′ = q, q′′ =
q + 1, or q′ = (q + 1), q′′ = q, and x, u, v, w, z are signed strings
over Πn. In all these cases, we also denote dladq,p = dladp,q.

For each 1 < p < n, we define dladp−1,p and dladp,p−1 as follows:

dladp−1,p(xp′′′up′′wp′z) = xwp′p′′p′′′uz,

dladp−1,p(xp′′vp′wp′′′z) = xwvp′p′′p′′′z,

dladp−1,p(xp′up′′′vp′′z) = xp′p′′p′′′vuz,

where p′ = p − 1, p′′ = p, p′′′ = p + 1, or p′′′ = (p + 1), p′′ = p,
p′ = (p− 1), x, u, v, w, z are signed strings over Πn. We denote
Dlad = {dladi,j | 1 ≤ i, j < n, i 6= j}.

Example 2. Consider the permutation π1 = 2514376. We sort it by
hi and dlad as follows:

hi5(2514376) = 27 34156 hi4(4 7 3 2 156) = 1237456
hi2(27 34156) = 2374156 dlad3,6(1237456) = 1234567
hi1(2374156) = 4 7 3 2 156
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3.2 Modeling of the simple operations

Simple operations are a restriction of the general operations [9, 7]:
they rearrange pieces of DNA containing at most one MDS, be that
micronuclear, or composite.

Definition 2. The molecular model of simple hi and simple dlad can
be formalized as follows.

i. For each 1 ≤ p < n, shp is defined as follows:

shp(xp . . . (p + i)(p + k) . . . (p + i + 1)y) =
= xp . . . (p + i)(p + i + 1) . . . (p + k)y,

shp(x(p + i) . . . p(p + i + 1) . . . (p + k)y) =
= xp . . . (p + i)(p + i + 1) . . . (p + k)y,

shp(x(p + i + 1) . . . (p + k)(p + i) . . . py) =

= x(p + k) . . . (p + i + 1)(p + i) . . . py,

shp(x(p + k) . . . (p + i + 1)p . . . (p + i)y) =

= x(p + k) . . . (p + i + 1)(p + i) . . . py,

where k > i ≥ 0 and x, y are signed strings over Πn. We denote
Sh = {shi | 1 ≤ i ≤ n}.

ii. For each p, 2 ≤ p ≤ n− 1, sdp is defined as follows:

sdp(x p . . . (p + i) y (p− 1) (p + i + 1) z) =
= xy(p− 1)p . . . (p + i)(p + i + 1)z,

sdp(x (p− 1)(p + i + 1)yp . . . (p + i)z) =
= x(p− 1)p . . . (p + i)(p + i + 1)yz,

sdp(x(p + i + 1)(p− 1)y(p + i) . . . pz) =

= x(p + i + 1)(p + i) . . . p(p− 1)yz,

sdp(x(p + i) . . . py(p + i + 1)(p− 1)z) =

= xy(p + i + 1)(p + i) . . . p(p− 1)z,

where i ≥ 0 and x, y, z are signed strings over Πn. We denote
Sd = {sdi, sdi | 1 ≤ i ≤ n}.
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Example 3. Consider the following signed permutation π1 = 54 763 1 2.
It can be sorted by the following composition of simple operations

sh6(π) = 54 7 6 3 1 2, sh4 ◦ sd2 ◦ sh6(π) = 5 4 7 6 3 2 1,
sd2 ◦ sh6(π) = 54 7 6 3 2 1, sd4 ◦ sh4 ◦ sd2 ◦ sh6(π) =

= 7 6 5 4 3 2 1.

3.3 Modeling of the elementary operations

The elementary model is a restriction of the simple model: elementary
intramolecular operations rearrange only micronuclear MDSs. This
leads to the following formalization for elementary operations.

Definition 3. i. For each p ≥ 1, ehp is defined as follows:

ehp(xp(p + 1)z) = xp(p + 1)z,

ehp(xp(p + 1)z) = xp(p + 1)z,

ehp(x(p + 1)pz) = x(p + 1)pz,

ehp(x(p + 1)pz) = x(p + 1)pz,

where x, z are signed strings over Πn. We denote Eh = {ehp |
1 ≤ p ≤ n}.

ii. For each p, 2 ≤ p ≤ n− 1, edp is defined as follows:

edp(xpy(p− 1)(p + 1)z) = xy(p− 1)p(p + 1)z,

edp(x(p− 1)(p + 1)ypz) = x(p− 1)p(p + 1)yz,

edp(xpy(p + 1) (p− 1)z) = xy(p + 1) p(p− 1)z,

edp(x(p + 1) (p− 1)ypz) = x(p + 1) p (p− 1)yz,

where x, y, z are signed strings over Πn. We denote Ed = {edp |
1 < p < n}.

Note that Eh ⊂ Sh ⊂ Hi and Ed ⊂ Sd ⊂ Dlad.

Example 4. Assume the signed permutation π = 315246. It can be
sorted by a composition of elementary operations as follows

ed5(π) = 312456, ed3 ◦ eh1 ◦ ed5(π) = 123456.
eh1 ◦ ed5(π) = 312456,
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3.4 Sorting strategies: terminology

A composition of operations Φ = φk ◦ φk−1 ◦ . . . φ2 ◦ φ1, where all
operations are from either Hi ∪ Dlad, or Sh ∪ Sd, or Eh ∪ Ed is called a
strategy. A composition Φ = φk◦φk−1◦. . . φ2◦φ1 of operations is called
a sorting strategy for π, if Φ(π) is a (circularly) sorted permutation. If
φ ∈ (Hi ∪ Dlad) for all 1 ≤ i ≤ k, we say that Φ is a general sorting
strategy. If φ ∈ (Sh ∪ Sd) for all 1 ≤ i ≤ k, we say that Φ is a
simple sorting strategy. If φ ∈ (Eh ∪ Ed) for all 1 ≤ i ≤ k, we say
that Φ is an elementary sorting strategy. We say that an unsorted
signed permutation π is blocked if no (simple, elementary) operation is
applicable to it. We say that Φ is an unsuccessful strategy for π, if Φ(π)
is blocked. If there are no sorting strategies for π, then we say that π
is an unsortable permutation.

4 Comparison of the three models

In this section we compare the general, simple and elementary in-
tramolecular models for gene assembly by different criteria:

- completeness: whether any gene pattern may be assembled or not;

- confluence, defined in three different ways:

(i) whether there are permutations having both successful and
unsuccessful strategies,

(ii) whether different assembly strategies starting from the same
gene pattern lead to assembled genes with the same struc-
ture,

(iii) if different assembly strategies starting from the same gene
pattern lead to the same assembled gene;

- decidability of assembly: whether it is possible to decide effectively
if a given gene pattern can be assembled or not;
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- characterization of gene patterns that can be assembled (starting
from certain characteristics of a given gene pattern we can con-
clude whether the gene pattern can be assembled);

- sequential complexity is constant: whether all assembly strategies
apply the same number of intramolecular operations;

- model validation: whether it is consistent with biological data.

4.1 Completeness

It was shown in [9, 7] that the general model is complete, i.e., it as-
sembles any gene pattern. The result was proved in terms of MDS-
descriptors. To prove it for signed permutations, one may take two
different approaches.

On one hand, one may observe that the set of signed permuta-
tions and that of MDS descriptors are in an one-to-one correspondence.
Moreover, for a signed permutation π, if ψ(π) is its corresponding MDS
descriptor, then for any operation f ∈ Hi ∪ Dlad, ψ(f(π)) = f(ψ(π)).
The completeness result for signed permutations then follows easily
from the corresponding result for MDS descriptors.

On the other hand, one may give a direct proof of the completeness,
by essentially mimicking the proof in the case of MDS descriptors. The
essential observation in this case is that for any φ ∈ Hi ∪Dlad and any
signed permutation π, the number of sorted blocks of φ(π) is smaller
than that of π (i.e., S(φ(π)) < S(π)). One needs to observe then that
a signed permutation π is sorted if and only if S(π) ≤ 2 and π is
uniformly signed.

Theorem 1. All signed permutations are sortable over Hi ∪ Dlad.

Note however that the simple and the elementary models are not
complete, as shown by the following example.

Example 5. Consider the permutation π = 321. We cannot apply
either eh or sh operations as all pointers have the same signature, and
there is no applicable ed or sd operation either. On the other hand, π
is successful in the general model: dlad1,2(π) = 123.

26



Three models for gene assembly in ciliates: a comparison

4.2 Confluence

We consider the notion of confluence in three different setups, so as to
reflect the success of different assembly strategies, the resulting gene
structure, or the resulting gene pattern. These aspects are discussed
below stressing the differences between the three models for gene as-
sembly.

Consider first the most common notion of confluence, requiring that
the result of all assemblies of a given input is the same. Equivalently, all
strategies for a given signed permutation are confluent. It is easy to see
that neither of the three models for gene assembly is confluent in this
sense. For this, consider the permutation π = 2413. Then dlad2,1(π) =
sd2(π) = ed2(π) = 4123, while dlad2,3(π) = sd3(π) = ed3(π) = 2341.
Note that this observation does not contradict earlier invariant results
of [8, 21], see also [7], where it was proved that the result of all assembly
strategies of a given gene/string is always the same. The difference
comes from considering a so-called boundary ld operation that would be
applied as a last step in both strategies above to yield a circular string
1234 (that may also be denoted as 2341, 3412, or 4123, or even their
inverses). In the permutation-based presentation, we have chosen to
consider only standard linear permutations, rather than circular ones.
The non-confluence result above is a direct consequence of this choice.
We discuss more aspects of this matter in Section 5.

The example above shows that all three models are nondetermin-
istic in the sense that different sorting strategies may lead to different
results. A natural question is then whether a given signed permutation
may have both successful, as well as unsuccessful strategies in any of
the three models. Consider then the following notion of confluence.
We say that the general (simple, elementary, resp.) model is confluent
if there are no signed permutations having both successful and unsuc-
cessful strategies.

It follows from Theorem 1 that the general model is indeed con-
fluent in the sense above. As shown in [18], the simple model is also
confluent. However, the elementary model is not confluent. To see it,
consider the permutation π = 24135. Then ed3(π) = 23415 is a blocked
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permutation, while ed2 ◦ ed4(π) = 12345, a sorted permutation.
It was proved in [8, 21], see also [2], that for any gene pattern, ei-

ther all general assembly strategies assemble it to a linear molecule, or
all of them assemble it to a circular one. Consequently, even though
if the assembly process is non-deterministic, the results of all possible
assemblies of a given gene pattern have the same structure. I.e., the re-
sults of all sorting strategies applicable to a permutation have the same
structure. As such, the same result holds also for all sorting strategies
in the simple and in the elementary models. The question may however
be asked also for the unsuccessful strategies. In this context, we say
that a model for gene assembly is confluent if, for any signed permu-
tation, all its sorting strategies lead to permutations having the same
structure. Based on the considerations above, it follows easily that the
general model is confluent in this sense, while the elementary model
is not (since a permutation may have both successful and unsuccess-
ful elementary strategies). Interestingly, it was proved in [18] that the
simple model is in fact confluent in this sense.

Example 6. Consider permutation π = 623514. There are only two
simple strategies applicable to π: π1 = sd2(π) = 651234 and π2 =
sd4(π) = 623451. These strategies are unsuccessful, and there are no
other simple strategies applicable to π. Permutation π cannot be sorted
by simple operations. Note however, that permutations π1 and π2 have
the same structure σ(π1) = 321 = σ(π2).

The following table captures the behavior of the three models for
gene assembly with respect to the three notions of confluence above.
Interestingly, none of these notions distinguishes the simple and the
general model. One property that does distinguish between the two is
the completeness, valid only for the general model.

4.3 Deciding the sortability problem

For the simple and elementary models, which are not complete, de-
ciding the sortability of a given signed permutation is an interesting
problem. Based on the confluence results in the previous section, it
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Success Same result Same structure
General confluent not confluent confluent
Simple confluent not confluent confluent

Elementary not confluent not confluent not confluent

Table 1. The results of considering confluence with regard to the three
aspects are summarized here.

turns out that the problem is easy for the simple model: for any signed
permutation, either all its sorting strategies are successful, or they are
all unsuccessful. As such, to decide the sortability problem, it is enough
to find an arbitrary strategy (e.g., using a straightforward procedure
having quadratic time complexity) and answer ‘yes’/‘no’, depending on
whether or not that strategy is successful.

For the elementary model the problem of the eh-sortability of a
signed permutation is easy.

Theorem 2 ([14]). The signed permutation π is eh-sortable if and only
if either

(i) ‖π‖ = k(k + 1) . . . n12 . . . (k − 1) and for some 1 ≤ i ≤ k − 1,
k ≤ j ≤ n we have i, j unsigned, or

(ii) ‖π‖ = (k − 1) . . . 21n . . . (k + 1)k, and for some 1 ≤ i ≤ k − 1,
k ≤ j ≤ n we have i, j signed.

The problem of the ed-sortability turns out to be technically more
involved, since a signed permutation may have both successful, and
unsuccessful strategies. A complete characterization of the ed-sortable
signed permutation has been given in [13, 14, 22]. The main notions
used in the result are those of dependency graphs and forbidden ele-
ments. We only present here these notions for unsigned permutation;
in the case of signed permutation, the setup is technically more com-
plex, see [14]. Note also that an efficient decision procedure for the
sortability problem is only known for unsigned permutation, see [22].
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Dependency graphs in the elementary model

Dependency graphs suggest in which order elementary operations
should be used to assemble a given gene pattern. Let π be an un-
signed permutation with dom(π) = {1, 2, . . . , n}. We associate to it a
dependency graph Γπ = (Vπ, Eπ), where Vπ = dom(π), and

Eπ ={(1, 1), (n, n)} ∪ {(i, i)|(i + 1)(i− 1) ≤s π}∪
∪ {(j, i)|(i− 1)j(i + 1) ≤s π}.

Intuitively, an edge (j, i) in Γπ shows that in any sorting strategy
for π, the operation edj should be used first, in order for edi to become
applicable. If there is a loop (i, i) in Γπ, then edi cannot be applied
in any strategy applicable to π. We refer to [14] for a proof of these
observations.

Example 7. Consider the unsigned permutation π = 62 8 4 10 7 1 3 5 9.
Its associated dependency graph Γπ = (Vπ, Eπ) is shown in Figure 2.

We have loops (1, 1), (5, 5), (6, 6), (10, 10) in the dependency graph,
and so, the operations ed1, ed5, ed6 and ed10 cannot be applied in any
strategy applicable to G. We have cycle 8 3 8 in Γπ and so, neither oper-
ation ed3, nor operation ed8 can be applied in any strategy applicable to
π. The dependency graph Γπ suggests the following order of operations
to be applied in any sorting strategy of π: ed2 should be applied before
ed7, and ed4 should be applied before ed9. Indeed, for instance, strategy
ed9◦ed4◦ed7◦ed2(π) sorts π: ed9◦ed4◦ed7◦ed2(π) = 6 7 8 9 10 1 2 3 4 5.

Forbidden elements and ed− sortability of unsigned permuta-
tions

For a signed permutation π, we say that p ∈ dom(π) is forbidden in
π if and only if there exists no composition of eh and ed operations
applicable to π with p in the domain of one of them. We denote Uπ the
set of all forbidden elements of π. It was proved in [14] that p ∈ U(π)
if and only if

(i) p is on a cycle of Γπ or
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Figure 2. The dependency graph associated to π = 62 8 4 10 7 1 3 5 9.

(ii) there is a path from q to p in Γπ, for some q on a cycle of Γπ or

(iii) there exists r > 1 such that there are paths from r − 1 to p and
from r to p in Γπ.

The following result gives the ed-sortability of unsigned permuta-
tions.

Theorem 3 ([14]). The unsigned permutation π is ed-sortable if and
only if π|Uπ is sorted.

Finding an efficient method for the eh, ed-sortability of a signed
permutation remains an open problem.

4.4 Characterization of sortable permutations

The following theorem characterizes ed-sortable unsigned permuta-
tions. A similar, albeit technically more involved, characterization
exists also for signed permutations, see [14].

Theorem 4 ([14]). Let π be a unsigned permutation. Then π is Ed-
sortable if and only if there exists a partition {1, 2, . . . , n} = D ∪ U ,
such that the following conditions are satisfied:

(i) π|U is sorted;

(ii) The subgraph induced by D in Gπ is acyclic;
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(iii) If (p, q) ∈ Gπ with q ∈ D, then p ∈ D;

(iv) For any p ∈ D, (p− 1)(p + 1) ≤s π;

(v) For any p ∈ D, (p− 1), (p + 1) ∈ U .

For simple operations we do not have a characterization of sortable
permutations for the moment. For general operations the question is
moot since all signed permutations are sortable.

4.5 Sequential complexity

We focus now on the length of various sorting strategies of a given
signed permutation, where the length is defined as the number of
operations in the strategy. Consider first the general model and let
π1 = 152 436. One can sort it by applying dlad1,5 ◦ hi2, or by applying
hi2 ◦ hi3 ◦ hi1. These two sorting strategies are of different length, and
use a different combination of operations.

Somewhat surprisingly, the situation is different in the simple model
and by consequence, also in the elementary model. It was established
in [19] (using a string-based formalism) that any two sorting strategies
for a given signed permutation have the same assembly length.

Theorem 5 ([19]). Let π be a signed permutation and φ, ψ be two
simple sorting strategies for π. Then φ and ψ have the same sequential
assembly length. Moreover, they have the same number of sh and the
same number of sd operations.

The differences between the general model and the two restricted
models go beyond Theorem 5. E.g., when choosing operations in the
simple model, we may always just choose the first available operation
as the number of operations required in the end remains the same. If
the operations were given different weights or costs, then the general
model may have optimal and sub-optimal sorting strategies. We refer
to [12] for a detailed discussion on various measures of complexity for
gene assembly.
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General Simple Elementary

Completeness complete not complete not complete

Confluence (Success) confluent confluent not confluent

Confluence (Structure) confluent confluent not confluent

Confluence (Result) not confluent not confluent not confluent

Deciding Sortability yes: trivial yes: confluence open for eh + ed

Characterizing trivial open yes
sortable permutations

Sequential Complexity no yes yes
constant

Model Validation valid valid not valid

Table 2. Summary for general, simple and elementary intramolecular
models

4.6 Model validation

A database of known sequences of micronuclear and macronuclear cili-
ate genes can be found in [4]. Based on the completeness result for the
general model, it is clear that all the gene patterns have an assembly
strategy in the general model. As it turns out however, the elementary
model cannot account for the assembly of some of the gene patterns
in [4].

Example 8. Actin I gene in it Sterkiella nova is represented by the
permutation π = 346579218. It is easy to check that there is no ele-
mentary sorting strategy applicable to π. However, we can sort π by
applying the simple sorting strategy

sh1 ◦ sh2 ◦ sd8 ◦ sd5(π) = 9 8 7 6 5 4 3 2 1.

Below we will outline all the available scrambled gene patterns in [4],
together with one simple sorting strategy. Genes that are not scrambled
in their micronuclear form or the ones that have missing MDSs will not
be included.

Actin I, Sterkiella n. : π = 346579218;

sh1 ◦ sh2 ◦ sd8 ◦ sd6(π) = 987654321.
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Actin I, Sterkiella h. : π = 346579 10 218;

sh1 ◦ sh2 ◦ sd8 ◦ sd6(π) = 10 987654321.

Actin I, Stylonychia p. : π = 34657821;

sh1 ◦ sh2 ◦ sd6(π) = 87654321.

α Telomere Binding Protein, Sterkiella n. :

π = 1 3 5 7 9 11 2 4 6 8 10 12 13 14;
sd10 ◦ sd8 ◦ sd6 ◦ sd4◦sd2(π) =

= 1 2 3 4 5 6 7 8 9 10 11 12 13 14.

DNA Polymerase α, Paraurostyla weissei:

π = 44 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8
6 1 2 3 4 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41
43 45 46 47 48

The signed permutation sorting strategy for this gene is just sh1

repeated 40 times.

4.7 Summary

Table 2 summarizes properties of general, simple and elementary mod-
els considered in this paper.

5 Discussion and open problems

There has been significant interest in the last few years in the so-called
simple operations for gene assembly, both for their biological appeal
as a minimal, parsimonious model, but also for the properties of their
mathematical formalization. The term simple has been used in connec-
tion with two different versions of the model. In this survey we review
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these two models and fix the proper terminology. We also compare the
mathematical properties of these two models with those of the general
model.

For reasons detailed already in Section 3 we chose in this paper to
follow a permutation-based presentation, rather than a string-based
one. Indeed, a string-based presentation that would be more con-
cise than the permutation-based one is still missing for the elementary
model. Our choice of using permutations rather than strings has one
direct consequence that we mentioned already in Section 4.2. Rather
than eliminating all pointers as in the legal string and ending up with
linear, or circular strings, we always end up with sorted linear permu-
tations, where the term ‘sorted’ is extended to cover also permutations
such as 3412. We call such a permutation circularly sorted, see Sec-
tion 2. For this reason, a permutation such as 2413 may be sorted to
two seemingly different results: either 2341, or 4123. Clearly, the two
results correspond to the same circular string in the framework of legal
strings. This ambiguity leads nevertheless to some open problems of
independent interest. E.g., given a permutation that may be sorted
circularly, enumerate efficiently all the circularly sorted permutations
it can be sorted to. Similarly, the permutation 213 may be sorted to
either 231 or 213. One may also ask about the properties of those per-
mutations that have sortings both to an unsigned permutation, as well
as to a signed one. The properties of the three models may even be
different in this respect.

There are two currently open problems related to the simple model:
the linear decidability of the sortability problem and computing the
number of sortable permutations of length n. It is however possible
that these two problems are intertwined and an answer to one may at
least partly solve the other.

Decidability. It was shown in [18] that it is possible to decide
whether a permutation is sortable or unsortable in the simple model
by applying available operations in an arbitrary order until the per-
mutation is blocked or sorted. This gives us a quadratic method for
deciding. Our first open problem is related to the optimality of this
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method: is there a procedure to decide in linear time the sortability
problem in the simple model?

For the elementary model, finding an efficient decision procedure
for {eh, ed}-sortability problem is also open.

Sortable permutations of length n. As we pointed out also in
this paper, not all permutations may be sorted using the simple opera-
tions. This differs from the general model which has been shown to be
complete. Thus, an interesting problem is computing how many per-
mutations of length n are sortable in the simple/elementary models. As
a related problem, it should even be interesting to see whether the ra-
tio of sortable signed permutations tends to 0 when n tends to infinity.
Both problems are open also in the case of unsigned permutations.
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