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Registration of Multimodal Medical Images

H. Costin, Cr. Rotariu

Abstract

Medical images are increasingly being used within healthcare
for diagnosis, planning treatment, guiding treatment and mon-
itoring disease progression. Within medical research (e.g. neu-
roscience research) they are used to investigate disease processes
and understand normal development and ageing. Technically,
medical imaging mainly processes missing, ambiguous, comple-
mentary, redundant and distorted data. In this paper, we pro-
pose a set of MR-CT image registration methods by using spatial
models like rigid, affine and projective transformations. The reg-
istered and fused image contains the properties and details of
both MR and CT images and can efficiently be used in clinical
medicine.

Keywords: medical MR/CT imaging, image registration,
linear transformations.

1 Introduction

Image registration (IR) is a fundamental task in computer vision used
to finding either a spatial transformation (e.g., rotation, translation,
etc.) or a correspondence (matching of similar image entities) among
two (or more) images taken under different conditions (at different
times, using different sensors, from different viewpoints, or a combina-
tion of them), with the aim of overlaying such images into a common
one.

IR methods can be classified in two groups according to the nature
of images: voxel -based IR methods (also called intensity-based), where
the whole image is considered for the registration process; and, on the
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other side, feature-based methods, which consider prominent informa-
tion extracted from the images, being a reduced subset of them. The
latter methods take advantage of the lesser amount of information man-
aged in order to overcome the problems when the images present some
looses to deal with, for example, regardless of changes in the geometry
of the images, radiometric conditions, and appearance of noise and oc-
clusion. The features correspond to geometric primitives (points, lines,
surfaces, etc.) which are invariant to the transformation to be consid-
ered between the input images. Moreover, the latter methods perform
faster than the former ones due to the reduced amount of data they
take into account, at the expense of achieving coarse results.

Likewise, IR is the process of finding the optimal spatial trans-
formation (e.g., rigid, similarity, affine, etc.) achieving the best fit-
ting/overlaying between two (or more) different images named scene
and model images (Figure 1). They both are related with the lat-
ter transformation, measured by a similarity metric function. Such
transformation estimation is interpreted into an iterative optimization
procedure in order to properly explore the search space. Two search ap-
proaches have been considered in the IR literature: (i) matching-based,
where the optimization problem is intended to look for a set of cor-
respondences of pairs of those more similar image entities in both the
scene and the model images; (ii) the transformation parameter-based,
where the strategy is to try to directly explore inside each range of the
transformation parameters. Both strategies can be used with either a
voxel-based or a feature-based approach.

2 Medical imaging

Medical imaging is a vital component of a large number of applica-
tions. Such applications occur throughout the clinical track of events,
i.e. not only within clinical diagnostic settings, but prominently so in
the area of planning, consummation, and evaluation of surgical and
radiotherapeutical procedures.

The imaging modalities employed can be divided into two global
categories: anatomical and functional. Anatomical modalities in-
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clude X-ray, CT (computed tomography), MRI (magnetic resonance
imaging), US (ultrasound), and (video) sequences obtained by various
catheter “scopes”, e.g., by laparoscopy or laryngoscopy. Some promi-
nent derivative techniques are so detached from the original modalities
that they appear under a separate name, e.g., MRA (magnetic res-
onance angiography), DSA (digital subtraction angiography, derived
from X-ray), CTA (computed tomography angiography), and Doppler
(derived from US, referring to the Doppler effect measured).

Functional modalities, i.e., depicting primarily information on the
metabolism of the underlying anatomy, include (planar) scintigra-
phy, SPECT (single photon emission computed tomography), PET
(positron emission tomography), which together make up the nuclear
medicine imaging modalities, and fMRI (functional MRI). With a little
imagination, spatially sparse techniques like, EEG (electroencephalog-
raphy), and MEG (magneto-encephalography) can also be named func-
tional imaging techniques.

Since information gained from two images acquired in the clinical
track of events is usually of a complementary nature, proper integration
of useful data obtained from the separate images is often desired. A
first step in this integration process is to bring the modalities involved
into spatial alignment, a procedure referred to as registration. After
registration, a fusion step is required for the integrated display of the
data involved.

A prominent example concerns radiotherapy treatment, where both
CT and MR can be employed. The former is needed to accurately
compute the radiation dose, while the latter is usually better suited
for precise delineation of tumor tissue. This is the main raison for our
approach – to deploy a (semi)automatic procedure for registration of
MR and CT images.

Besides multimodality registration, important application areas ex-
ist in monomodality registration. Examples include treatment verifica-
tion by comparison of pre- and post-intervention images, comparison
of ictal and inter-ictal (during and between seizures) SPECT images,
and growth monitoring, e.g., using time series of MR scans on tumors,
or X-ray time series on specific bones. Because of the high degree of

233



H. Costin, Cr. Rotariu

similarity between these images, solving the registration is usually an
order of magnitude easier than in the multimodality applications.

3 The image registration problem

Different taxonomies have been established to classify the IR methods
presented so far, considering different criteria: the image acquisition
procedure, the search strategy, the type of transformation relating the
images, and so forth.

There is not a universal design for an IR method that could be
applicable to all registration tasks, since various considerations on
the particular application must be taken into account. However, IR
methods usually require the four following components (Figure 1):
two input Images, named as Scene Is = {p1, p2, ..., pn} and Model
Im = {p1, p2, ..., pm}, with pi and pj being image points; a registration
transformation f being a parametric function relating the two images;
a similarity metric function F in order to measure a qualitative value
of closeness or degree of fitting between the transformed scene image,
denoted by f ′(Is), and the model image; and an optimizer which looks
for the optimal transformation, f , inside the defined solution search
space.

Hence, the key idea of the IR process is focused on determining the
unknown parametric transformation that relates both images, by plac-
ing them in a common coordinate system bringing the points as close as
possible. Because of the uncertainty underlying such transformation,
the IR task arises as a nonlinear problem that cannot be solved by a
direct method (e.g., resolution of a simple system of linear equations).
It should be solved by means of an iterative procedure searching for
the optimal estimation of f , following a specific search space optimiza-
tion scheme aiming at minimizing the error of a given similarity metric
of resemblance. Classical local optimizers can be used for this task
although their main drawback is that they usually get trapped in a
local minima solution. The main reasons for such behavior are related
to both the nature of the problem to be tackled and the greedy/local
search features of these methods. So, the interest on the application
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of soft-computing and Artificial Intelligence in general to the IR opti-
mization process has increased in the last decade due to their global
optimization nature.

Figure 1. Image registration optimization process.

According to the nature of images, IR methods can be classified as
voxel -based (or intensity-based) and feature-based. While the former
directly operate with the whole raw images, the latter approaches intro-
duce a previous step: before the application of the registration process,
a reduced subset of the most relevant features are extracted from the
images. Since voxel-based methods can deal with a major amount of
image information, they are often considered as fine-tuning registra-
tion processes, while feature-based methods typically achieve a coarser
approximation due to the reduced data they take into account. One
important drawback of voxel-based approaches relies on the commonly
used rectangular window for the correspondence estimation. If the im-
ages are deformed by complex transformations, this type of window
will not be able to cover the same parts of the transformed scene and
model images. Moreover, if the window contains a smooth image region
without any prominent detail, it will probably be incorrectly matched
to other smooth image region in the model image. Nevertheless, the
principal disadvantage of voxel-based methods comes from situations
where there are changes in illumination during the acquisition of the
scene and the model images. In that case, the similarity metric offers
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unreliable measurements and induces the optimization process to be
trapped in local minima. With the intention of avoiding many of the
drawbacks related to voxel-based methods, the second IR approach is
based on the extraction of prominent geometric primitives (features)
from the images. The proper comparison of feature sets will be possible
using a reliable feature detector that confronts the accurate extraction
of invariant features, that is, regardless of changes in the geometry of
the images, radiometric conditions, and appearance of noise. There are
many different features that can be considered, for example, region fea-
tures, line features, and point features, among which corners are widely
used due to their invariance to the image geometry.

3.1 Transformations

We can classify IR methods according to the registration transforma-
tion model used to relate both the scene and the model images. The
first category of transformation models includes linear transformations,
which preserves the operations of vector addition and scalar multipli-
cation, being a combination of translation, rotation, global scaling, and
shear components. The most common linear transformations are rigid,
similarity, affine, projective, and curved. Linear transformations are
global in nature, thus not being able to model local deformations. The
second category of transformation models includes “elastic” or “non-
rigid” transformations. These transformations allow local warping of
image features, thus providing support for local deformations.

3.2 Similarity metric

One of the most important components of any IR method is the sim-
ilarity metric. This is considered as a function F that measures the
goodness of a given registration solution, that is, of a registration trans-
formation f . The final performance of any IR method will depend on
its accurate estimation. Each solution is evaluated by F applying such
transformation f to one of the two images, usually to the scene image
(f(Is)). Next, the degree of closeness or fitting between the transformed
scene and the model images, Ψ(·) must be determined,
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F (Is, Im, f) = Ψ(f(Is), Im). (1)

There are many approaches trying to estimate such function Ψ(·)
depending on the dimensionality (2D or 3D) and the nature of the
considered images. For example:

(a) voxel-based approach: sum of squared differences, normalized
cross-correlation (i.e., correlation coefficient or phase correlation),
and mutual information;

(b) feature-based approach: feature values-based metrics (i.e., regis-
tration based on the curvature) and distance between correspond-
ing geometric primitives.

It is useful to mention that the F function is affected by both the
discretization of images and the presence of noise, causing worse esti-
mations and favoring the IR method to get trapped in local minima.

3.3 Search space strategies

The IR process performs an iterative exploration to obtain that opti-
mal transformation f (introduced in Figure 1). So, the closer f to the
unknown global optimum, the better the fitting (measured by the sim-
ilarity metric F ) between scene and model. The optimization process
considered to obtain those solutions can be deterministic or stochastic
(either a global or a local one). Although the final registration problem
solution consists of the right values for the parameters which determine
f , we can distinguish two different strategies to solve the problem, each
of them working in a different solution space: (i) the first approach
searches in the matching space to obtain a set of correspondences of
pairs of the most similar image entities in both the scene and the model
images, from which the registration transformation is derived; and (ii)
the second directly makes a search in the space of the f parameters
guided by the F function, called transformation parameters space.

Concerning the CT — MR images registration topic, some valu-
able attempts were made in the past. Some full image content based
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methods using cross-correlation were proposed in [14], using the entire
image, where the CT grey values are remapped in a local linear fash-
ion to improve correspondence with the MR image. In [28] there are
used invasive fiducial markers, which are compared to the segmented
surface registration. Various authors used surface based registrations
in comparisons to other methods. Hemler [17] compared it to a frame
based method, and optimization of the cross-correlation of remapped
grey values. Besides the above mentioned cross-correlation methods,
other full image content based methods were proposed in [6] and used
clustering of the joint histogram to find the optimal transformation.

In recent years, the application of several well-known evolutionary
algorithms (EAs) to the IR optimization process has introduced an out-
standing interest in order to solve those problems due to their global
optimization techniques nature. The first attempts to solve IR using
evolutionary computation [4] can be found in the early eighties, when
Fitzpatrick et al. [16] proposed such approach based on a genetic al-
gorithm for the 2D case and applied it to angiographic images. Since
then, several evolutionary approaches have been proposed to solve the
IR problem [8].

4 Proposed method of MR-CT image registra-
tion using linear transformations

4.1 Spatial Transformation Models

Spatial transformation models play a central role in any medical image
registration procedure. These models impose mathematical constraints
on the types of geometric distortions that can be imposed during the
process of registration. The registration process cannot be accom-
plished without some type of spatial transformation model. A variety
of linear models can be used, ranging from rigid-body transformations
that preserve all internal angles and distances to perspective models
that distort all distances and angles while preserving colinearity. All
linear spatial transformations can be expressed using matrix notation.
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Rigid-Body Model

For medical imaging, the most constrained spatial transformation
model is the rigid-body model. This model asserts that distances and
internal angles within the images cannot be changed during registra-
tion. As the name implies, this model assumes that the object behaves
in the real world as a rigid body, susceptible to global rotations and
translations, but internally immutable. This model is well suited to
objects such as individual bones, which cannot be deformed. To a
reasonable approximation, this model is also applicable to the brain,
which is encased in bones that protect it from forces that might lead
to deformations.

Medical images often consist of voxels that differ in the realworld
distances that they represent along the x-, y-, and z-axes. For exam-
ple, it is common for the slice thickness in magnetic resonance imaging
data to be larger than the size of individual pixels within each slice.
If ignored, these anisotropics in voxel size will clearly lead to appar-
ent violations of the rigid-body model, even for solid structures that
accurately follow the rigid-body assumptions in the real world. Con-
sequently, any implementation of a rigid-body model must explicitly
correct for voxel sizes to ensure that the real-world distances and an-
gles that are being represented do not change.

Two of the parameters that specify a two-dimensional rigid-body
transformation can be viewed as translations along the primary axes,
and the third can be viewed as a pure rotation around the origin.
Although this particular parameterization is not unique, translations
along each axis and rotations around the origin will be referred to here
as elementary transformations.

If a two-dimensional point (x, y) is to be transformed by one of these
elementary transformations to some new point (x′, y′) , the following
equations describe the elementary transformations:

∣∣∣∣
x′

y′

∣∣∣∣ = A×
∣∣∣∣

x
y

∣∣∣∣ + B, where
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x′ = x + p
y′ = y + q

− Translation

x′ = x · cos(θ) + y · sin(θ)
y′ = −x · sin(θ) + y · cos(θ)

− Rotation

The MATLAB programming language provides several routines
that can be used to generate a variety of complex spatial transforma-
tions such as image projections or specialized distortions. These trans-
formations can be particularly useful when trying to register images of
the same structure taken at different times or with different modalities
(e.g., CT scans and MRI images). While MATLAB’s spatial transfor-
mations routines allow any type of transformation, only two types of
transformation are most used: affine transformations and projective
transformations. Affine transformations are defined as transformations
in which straight lines remain straight and parallel lines remain par-
allel, but rectangles may become parallelograms. These transforma-
tions include rotation, scaling, stretching, and shearing. In projective
translations, straight lines still remain straight, but parallel lines often
converge.

Affine Transformations

The MATLAB provides a procedure [29] described below for imple-
menting any affine transformation (Figure 2); however, some of these
transformations are so popular they are supported by separate routines.
These include image resizing, cropping, and rotation.

Image resizing and cropping are both techniques to change the di-
mensions of an image: the latter is interactive using the mouse and
display while the former is under program control.

To change the size of an image, the MATLAB provides the ‘imresize’
command given below.

I_resize = imresize(I, arg or [M N], method),

where I is the original image and I resize is the resized image. If the
second argument is a scalar arg, then it gives a magnification factor,
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a) b)

Figure 2. Affine Transformation: a) Before; b) After

and if it is a vector, [M N], it indicates the desired new dimensions
in vertical and horizontal pixels, M, N. If arg > 1, then the image is
increased (magnified) in size proportionally and if arg < 1, it is reduced
in size (minified). This will change image size proportionally. If the
vector [M N] is used to specify the output size, image proportions can
be modified: the image can be stretched or compressed along a given
dimension. The argument method specifies the type of interpolation to
be used and can be either ‘nearest ’, ‘bilinear ’, or ‘bicubic’, referring to
the three interpolation methods described above. The nearest neighbor
is the default. If image size is reduced, then imresize automatically
applies an anti-aliasing, lowpass filter.

Image cropping is an interactive command:

I_resize = imcrop;

The imcrop routine waits for the user to draw an on-screen cropping
rectangle using the mouse. The current image is resized to include only
the image within the rectangle.

Image rotation is straightforward using the imrotate command:

I_rotate = imrotate(I, deg, method, bbox),

where I is the input image, I rotate is the rotated image, deg is the
degrees of rotation (counterclockwise if positive, and clockwise if neg-
ative), and method describes the interpolation method as in imresize.
The nearest neighbour method is the default even though the other
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methods are preferred except for indexed images. After rotation, the
image will not, in general, fit into the same rectangular boundary as
the original image. In this situation, the rotated image can be cropped
to fit within the original boundaries or the image size can be increased
to fit the rotated image. Specifying the bbox argument as ‘crop’ will
produce a cropped image having the dimensions of the original image,
while setting bbox to ‘loose’ will produce a larger image that contains
the entire original, unrotated, image. The loose option is the default.
In either case, additional pixels will be required to fit the rotated image
into a rectangular space (except for orthogonal rotations), and imro-
tate pads these with zeros producing a black background to the rotated
image.

General Affine Transformations

In the MATLAB Image Processing Toolbox, both affine and pro-
jective spatial transformations are defined by a Tform structure which
is constructed using one of two routines: the routine maketform uses
parameters supplied by the user to construct the transformation while
cp2tform uses control points, or landmarks, placed on different images
to generate the transformation. Both routines are very flexible and
powerful, but that also means they are quite involved.

The basic calling structure used to implement the spatial transfor-
mation is:

B=imtransform(A,Tform,‘Param1’,value1,‘Param2’,value2,...);

where A and B are the input and output arrays, respectively, and Tform
provides the transformation specifications as generated by maketform
or cp2tform. The additional arguments are optional. The optional
parameters are specified as paired arguments: a string containing the
name of the optional parameter followed by the value. These param-
eters can specify the pixels used from the input image (the default is
the entire image), permit change in pixel size, specify how to fill any
extra background pixels generated by the transformation, and specify
the size and range of the output array.
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To specify output image range and size, parameters ‘XData’ and
‘YData’ are followed by a two-variable vector that gives the x or y
coordinates of the first and last elements of the output array, B. To
keep the size and range in the output image the same as the input
image, simply specify the horizontal and vertical size of the input array,
i.e.:

[M N] = size(A);
...
B = imtransform(A, Tform, ‘Xdata’, [1 N], ‘Ydata’, [1 M]);

As with the transform specification routines, imtransform uses the
spatial coordinate system. The routine maketform can be used to gen-
erate the spatial transformation descriptor, Tform. There are two alter-
native approaches to specify the transformation, but the most straight-
forward uses simple geometrical objects to define the transformation.
The calling structure is:

Tform = maketform(‘type’, U, X);

where ‘type’ defines the type of transformation and U and X are vectors
that define the specific transformation by defining the input (U) and
output (X) geometries.

While maketform supports a variety of transformation types, in-
cluding custom, user-defined types, affine and projective transforma-
tions.

Only three points are required to define an affine transformation, so,
for this transformation type, U and X define corresponding vertices of
input and output triangles. Specifically, U and X are 3 by 2 matrices
where each 2-column row defines a corresponding vertex that maps
input to output geometry.

Projective Transformations

In projective transformations (Figure 3), straight lines remain
straight but parallel lines may converge. Projective transformations
can be used to give objects perspective.

Projective transformations require four points for definition; hence,
the defining geometrical objects are quadrilaterals.
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a) b)

Figure 3. Projective transformation: a) before; b) after

4.2 Medical Image Registration

As presented, this procedure has become increasingly important in
medical imaging as it is used for merging images acquired using dif-
ferent modalities or for comparing images taken of the same structure
at different points in time or having different resolutions. To achieve
the best alignment, it may be necessary to transform the images using
any or all of the transformations described previously. Image registra-
tion can be quite challenging even when the images are identical or
very similar (as will be the case in the examples and problems given
here).

The difficulty in accurately aligning images that are only moder-
ately similar presents a significant challenge to image registration algo-
rithms, so the task is often aided by a human intervention or the use of
embedded markers for reference. So, the approaches to medical image
registration can be divided into two broad categories: unassisted im-
age registration, where the algorithm generates the alignment without
user intervention, and interactive registration, where a user aids the
registration process.

4.3 Interactive Image Registration

Several strategies may be used to guide the registration process. In the
following example, registration will depend on reference marks pro-
vided by a user. Interactive image registration is well supported by the
MATLAB Image Processing Toolbox and includes a graphically based
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program, cpselect, that automates the process of establishing corre-
sponding reference marks. Under this procedure, the user interactively
identifies a number of corresponding features in the reference and in-
put image, and a transform is constructed from these pairs of reference
points. The program must specify the type of transformation to be per-
formed (affine, projective, etc.), and the minimum number of reference
pairs required will depend on the type of transformation. The num-
ber of reference pairs required is the same as the number of variables
needed to define a transformation: an affine transformation will require
a minimum of three reference points while a projective transformation
requires four points.

Other transformations require only two pairs, while other more
complex transformations may require six or more point pairs. In most
cases, the alignment is improved if more than the minimal number of
point pairs is given.

In the Figure 4 and Figure 5 an alignment requiring the two trans-
formations is presented. It uses the routine cp2tform to produce a
transformation in Tform format, based on point pairs obtained inter-
actively. The cp2tform routine has a large number of options, but the
basic calling structure is:

Tform = cp2tform(input_points, base_points, ‘type’);

where input points is a (m x 2) matrix consisting of x, y coordinates of
the reference points in the input image; base points is a matrix contain-
ing the same information for the reference image. This routine assumes
that the points are entered in the same order, i.e., that corresponding
rows in the two vectors describe corresponding points. The type vari-
able is the same as in maketform and specifies the type of transform
(‘affine’, ‘projective’, etc.).

5 Validation of Registration Accuracy

From the user’s perspective, accuracy is one of the most important
properties of a registration method. In a research setting, relative ac-
curacy may be a basis for selecting one method over another, and in
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Figure 4. The use of MATLAB cp2tform routine

a) b)
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c) d)

e) f)

Figure 5. The image registration: a) Base image (CT); b) Unreg-
istered image (MR); c) Registered image with affine transformation
and 3 points; d) Registered image with projective transformation and
4 points; e) Registered image with projective transformation and 6
points; f) Registered image with projective transformation and 8 points
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a clinical context, knowledge of absolute accuracy may be needed to
make appropriate decisions. If a particular structure is of special inter-
est, the accuracy at this particular location, as distinct from all other
locations, may need to be established. To the extent that accuracy
has substantial regional variations, methods used to report accuracy
need to reflect these variations. Validation of registration accuracy is
generally not an easy task, because the true answers (i.e., a set of gold
standard answers that can serve as a basis for measuring accuracy) are
generally not available. Even when estimated gold standards are avail-
able, it often turns out that uncertainty in the gold standards them-
selves limits the ability to assess true accuracy. In this case, strategies
that at least put limits on the true accuracy are informative. Many
different validation methods have been reported in the literature, and
in most cases it is difficult to compare the accuracy claimed for one
method with the accuracy claimed for another because of methodolog-
ical incompatibilities.

5.1 Validation by Visual Inspection

One of the quickest validation methods to implement is simple visual
inspection of the results. Although this may seem like an informal and
potentially unreliable approach, it is possible that visual inspection
to detect 2-millimeter misregistrations of brain MRI images to brain
CT images quite reliably. Misregistration can be accurately identified
even when one of the images is a low-resolution PET image. Whereas
learning to recognize misregistration of dissimilar images requires some
experience and effort, recognition of errors in similar images is fairly
trivial. In general, if the images look misregistered, they probably are
misregistered, and visual inspection should be used as a routine ongoing
validation approach at every opportunity.

5.2 Estimation of registration accuracy

Residual registration errors after registration can also be estimated by
measuring the coordinate differences along the x and y axes between
a set of well-defined landmarks on CT and MR. The lateral, anterior,
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and posterior boundaries of the skull are well recognized on CT and
MR and can be used as landmarks for estimating x and y coordinate
differences.

6 Conclusions

The primary advantage of MR-CT registration and fusion technology
is the ability to correlate findings from two complementary imaging
modalities in a comprehensive way. As useful application, in radiother-
apy treatment, the CT is needed to accurately compute the radiation
dose, while the MR is usually better suited for a precise delineation of
tumor tissue, a crucial task taking into account the big radiation doses
used in general.

Our study shows that the accuracy obtained by image registration
with spatial and global methods is well suited for image-guided radio-
therapy. Of course, we have to extend our study to more images, both
MR and CT-type.
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