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by Minimal Change in the Right Hand Side
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Abstract

Correcting an inconsistent set of linear inequalities by mini-
mal changes in problem data is a well studied problem and up
to now several algorithms have been developed to do this task.
In this paper, we consider doing the minimal correction using
the l2 norm by changing just the right hand vector. A new for-
mulation of the problem is introduced and its relation with the
normal solution of the alternative system of the original system is
given. Then a generalized Newton algorithm is designed to solve
the new formulation. Extensive computational results using this
algorithm and conjugate gradient method is reported to demon-
strate the advantages and disadvantages of the two algorithms.

Keywords: Linear Inequalities, Convex Optimization, Con-
jugate Gradient Method, Generalized Newton Method, Barrier
Method.

1 Introduction

In this paper we consider the following set of linear inequalities that
are inconsistent:

Ax ≤ b, (1)

where A ∈ Rm×n and b ∈ Rm. In other words, there is no x ∈ Rn for
which (1) is feasible. The inconsistency in system (1) might be due to
the various reasons, such as lack of interaction between different groups
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who are defining the constraints, wrong or inaccurate estimates, error
in data, over optimistic goals, and many others. Correcting system (1)
to a feasible system by minimal changes in its data have been known
for long time and up to now several algorithms have been developed
to do it [1, 2]. A very simple approach to form a feasible system from
(1) is to consider changes just in the right hand side vector b, which is
usually called the resources vector, using l1 norm i.e.,

min
m∑

i=1

|ri|

Ax ≤ b + r. (2)

As we know, this problem is easily convertable to an linear program-
ming (LP) problem which is efficiently solvable by either the Simplex
or Interior Point Methods [3, 5]. It is also worth to note that one may
consider the infinity norm in the objective function which results to:

min ‖r‖∞
Ax ≤ b + r. (3)

This still is equivalent to an LP problem. In the next section we discuss
the minimal correction using the l2 norm. An equivalent formulation of
the problem is given and two efficient algorithms are designed to solve
the new formulation.

2 2-Norm Corrections

The minimal correction using the l2 norm by changing the right hand
side vector is:

min
x,r

1
2
‖r‖2

Ax ≤ b + r. (4)

In the following theorem we show how we compute optimal x and r
values.
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Theorem 2.1. Let x∗ and r∗ be the optimal solution of (4). Then
r∗ = (Ax∗ − b)+, where a+ = max(a, 0) and x∗ is an optimal solution
of

min
x

1
2
‖(Ax− b)+‖2 . (5)

Proof. Let us write (4) as:

min
x

min
r

1
2
‖r‖2

Ax ≤ b + r. (6)

Now for a given x ∈ Rn, let us first consider the inner minimization
problem i.e.,

min
r

1
2
‖r‖2

Ax ≤ b + r. (7)

It is obvious that problem (7) is a convex minimization problem, there-
fore the KKT conditions are necessary and sufficient for optimality and
are given by:

r − λ = 0,

Ax ≤ b + r,

λT (Ax− b− r) = 0,

λ ≥ 0,

where the vector λ denotes the lagrange multipliers. From the first
equation one has r = λ. Now if λi 6= 0 for some i, then from the third
equation (Ax − b)i = ri = λi. However, when λi = 0, from the first
equation one has ri = 0. All these together imply that r = (Ax− b)+.
Therefore, we can write problem (4) as

min
x

1
2
‖(Ax− b)+‖2 .

This completes the proof.
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It is worth mentioning that (5) is the dual of the following opti-
mization problem:

max −bT u− 1
2
‖u‖2

AT u = 0, (8)
u ≥ 0.

In the following corollary we give an optimal solution of (8) using an
optimal solution of (5).

Corollary 2.2. Let x∗ be an optimal solution of problem (5). Then
u∗ = (Ax∗ − b)+ is an optimal solution of (8).

Proof. Let x∗ be an optimal solution of (5). It is obvious that for
u∗ = (Ax∗ − b)+, AT u∗ = 0, which is the optimality condition for (5)
and u ≥ 0. Now we further show that the objective values of (5) and
(8) are equal i.e.,

−bT (Ax∗ − b)+ = ‖(Ax∗ − b)+‖2 .

Since AT (Ax∗−b)+ = 0, therefore, −bT (Ax∗−b)+ = (Ax∗−b)T (Ax∗−
b)+ = (Ax∗ − b)T

+(Ax∗ − b)+ = ‖(Ax∗ − b)+‖2 .

In the sequel we further show that using an optimal solution of (5)
we can construct an optimal solution for

min
1
2
‖u‖2

AT u = 0, (9)
bT u = −ρ,

u ≥ 0,

where ρ is an arbitrary strictly positive parameter.

Remark 2.3. It is worth to note that the constraints of (9) are the
alternative system of (1).
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Corollary 2.4. Let x∗ be an optimal solution of problem (5), then
u∗ = − ρ(Ax∗−b)+

‖(Ax∗−b)+‖2 is the normal solution of

AT u = 0, bT u = −ρ, u ≥ 0

namely a solution of (9).

Proof. The Lagrangian dual of (9) is

max
λ,µ

−1
2
‖(Aλ− bµ)+‖2 + µρ, (10)

where u = (Aλ − bµ)+. At optimality the objective values of (9) and
(10) should be equal. This implies that

‖(Aλ∗ − bµ∗)+‖2 = ρµ∗.

From this we further can deduce that µ > 0, then

µ∗
∥∥∥∥
(

A

(
λ∗

µ∗

)
− b

)

+

∥∥∥∥ = ρ.

By further defining x = λ∗
µ∗ we have µ∗ = ρ

‖(Ax−b)+‖ . Now let x∗ be the
optimal solution of (5) and also let µ∗ = ρ

‖(Ax∗−b)+‖ . This implies that
λ∗ = µ∗x∗. Now for this choice of variables the two objective values are
equal. Thus we have the optimal solutions of both problems.

To solve (5) we use conjugate gradient algorithm and the so called
generalized Newton algorithm that is discussed in the sequel. As it is
obvious, the objective function of (5) is a convex function, but it just
has the first derivative not the second one [6]. However, the generalized
hessian is defined for this function that follows:

∇f(x) = AT (Ax− b)+

and
∇2f(x) = AT DA,

where D is an n×n diagonal matrix for which D(i, i) = 1 when (Ax−
b)i > 0, D(i, i) = 0, when (Ax−b)i < 0, and in [0, 1] when (Ax−b)i = 0.
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Obviously the generalized Hessian is a set and for simplicity in this
article we consider a specific element of this set, namely D(i, i) = 0
when (Ax − b)i = 0. Now the generalized Newton algorithm can be
outlined as follows:

Generalized Newton Algorithm

• Inputs: An accuracy parameter ε > 0, a regularization parame-
ter1, δ = 10−4 and a starting point x0 ∈ Rn.

• i=0;

• While ‖∇f(xi)‖∞ ≥ ε.

• xi+1 = xi − (∇2f(xi) + δI)−1∇f(xi).

• i=i+1.

• End.

Remark 2.5. It is worth to note that one may use line search tech-
niques such as Armijo or Wolf in the structure of the algorithm. More-
over the finite global convergence of generalized Newton algorithm with
Armijo line search is proved in [6].

3 Linear Inequalities with Nonnegativity Con-
straints

In this section we consider the set of linear inequalities (1) by adding
extra nonnegativity constraint to them i.e.,

Ax ≤ b

x ≥ 0. (11)

It is obvious that one can consider (11) as a special case of (1), but due
to its special structure it is reasonable to do the correction of this sort

1It guarantees the nonsingularity of hessian matrix.
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of inconsistent set of linear inequalities specifically. Here we consider
the case where the correction is done by just correcting the right hand
side of the first set of inequalities not the x ≥ 0 i.e.,

min
1
2
‖r‖2

Ax ≤ b + r (12)
x ≥ 0.

In the following theorem we show how one can compute optimal x and
r values.

Theorem 3.1. Let x∗ and r∗ be optimal solutions of (12). Then r∗ =
(Ax∗ − b)+, where x∗ is an optimal solution of

min
x≥0

1
2
‖(Ax− b)+‖2 . (13)

Proof. Similar to the proof of Theorem 2.1.
As it is obvious the only difference between (13) and (5) is the

nonnegativity constraint and it makes the problem a constraint op-
timization problem. To solve (13) we use the logarithmic barrier [7]
approach by bringing the x ≥ 0 to the objective functions as:

min
x

1
2
‖(Ax− b)+‖2 − µ

n∑

i=1

log(xi), (14)

where µ is the barrier parameter. Then we apply the generalized New-
ton method by starting from a strictly positive vector x and µ0 = 1.
The logarithmic term does not allow the components of variable x to
get negative and the value of µ approaches to zero during the iterations
of the algorithm, for example µk+1 = 0.8µk. Another approach which
one might consider to solve (13) is the penalty function method as:

min
x

1
2
‖(Ax− b)+‖2 +

1
2
M ‖(−x)+‖2 , (15)

where M is a very big number, for example 1010. This does not allow
to have big ‖(−x)+‖2. It is worth mentioning that vector x might
have very small negative values in the optimal solution which can be
rounded to zero.
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4 Computational Results

In this section we present numerical results for the generalized New-
ton and conjugate gradient algorithms on various randomly generated
problems. Test problems are generated using the following MATLAB
code:
MATLAB random insolvable linear inequalities generator
% Generates random inconsistent system Ax <= b;
% Input:m,n,d(density); Output:A ∈ Rm×n, b ∈ Rm;
pl=inline(’(abs(x)+x)/2’);%pl(us) function;
m=input(’enter m= ’); n=input(’enter n= ’); d=input(’enter
d= ’);
m1=max(m-round(0.5*m),m-n);
A1=sprand(m1,n,d);A1=1*(A1-0.5*spones(A1));
x=spdiags(rand(n,1),0,n,n)*1*(rand(n,1)-rand(n,1));
x=spdiags(ones(n,1)-sign(x),0,n,n)*10*(rand(n,1)-rand(n,
1));
m2=m-m1;u=randperm(m2);A2=A1(u,:);
b1=A1*x+spdiags((rand(m1,1)),0,m1,m1)*1*ones(m1,1);
b2=b1(u)+spdiags((rand(m2,1)),0,m2,m2)*10*ones(m2,1);
A=100*[A1;-A2]; b=[b1;-b2];

In Tables 1 and 2 we present comparison between the gradient based
algorithm (GR) and our new generalized Newton algorithm (GNew-
ton) with Armijo linesearch for various randomly generated problems
with different densities. Our numerical experiments show that the gen-
eralized Newton method finds an optimal solution much faster than the
gradient based algorithm for majority of problems and for all problems
the optimal objective values are much smaller than the gradient algo-
rithm. It is worth mentioning that we run both algorithms for at most
500 seconds with the tolerance equal to 10−5 for gradient algorithm
and 10−8 for the generalized Newton method.

In Tables 3 and 4 we report numerical experiments on various ran-
domly generated problems with different densities for inconsistent lin-
ear inequalities that involve nonnegativity of variables. To solve these
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problems we have employed the generalized Newton (GNewton) and
barrier methods (Barrier). In the optimal solution obtained by the
generalized Newton method we might have very small components of
x that are negative. In this case we rounded them to zero and this
is the reason for having norm infinity of the gradient vector far away
than zero, however at optimality it is usually around O(10−8). On the
other hand this shows the sensitivity of these problems to very small
changes in the optimal solution. As we observe from these tables, the
generalized Newton method beats the barrier approach both in time
and quality of solution for all of the problems.

5 Conclusion

In this paper we have furthermore investigated how to correct an in-
consistent set of linear inequalities by minimal changes in its data.
A new formulation of the original model is given and its relation to
normal solution of alternative system for original system is discussed.
Then we have presented a generalized Newton based algorithm to solve
the new formulation. We also discussed inconsistent set of inequalities
that involve nonnegativity of variables. To solve this specific case we
have utilized the generalized Newton method and barrier approach.
At last, our computational experiments on several randomly generated
problems show the superior performance of the generalized Newton al-
gorithm to the classical gradient based algorithm and barrier approach.
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