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Abstract

In this paper, based on equivalence classes of attributes there
are formulated necessary and sufficient conditions that constraint
a database schema to be in the second, third or Boyce-Codd
normal forms. These conditions offer a polynomial complexity
for the testing algorithms of the normalizations level.
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1 Introduction

The anomalies that appear during database maintaining are known as
insertion, update and deletion anomalies. These are directly related to
the dependencies between attributes. A rigorous characterization of the
quality grade of a database schema can be made through the exclusion
of mentioned anomalies, with consideration of attributes dependencies,
which offers the possibility to define some formal techniques for design
of desirable relation schemes.

The process of design of some relation scheme structure with in-
tend to eliminate the anomalies, is called normalization. Normaliza-
tion consists in following a set of defined rules on data arrangement
with the scope to reduce the complexity of scheme structures and its
transformation into smaller and stable structures which will facilitate
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data maintenance and manipulation. There exist several normalization
levels that are called normal forms.

The normal forms based on functional dependencies are first nor-
mal form (1NF), second normal form (2NF), third normal form (3NF)
and Boyce-Codd normal form (BCNF). These forms have increasingly
restrictive requirements: every relation in BCNF is also in 3NF, every
relation in 3NF is also in 2NF and every relation in 2NF is in 1NF. A
relation is in 1NF if every attribute contains only atomic values. 2NF
is mainly of historical interest. 3NF and BCNF are important from a
database design standpoint [1].

For example, the design of a 3NF database schema, through the
synthesizing method, can be performed in a polynomial time [2]. Un-
fortunately, the problem of determination of the normalization level is
known to be NP-complete [3, 4], because normalization testing requires
finding the candidate keys and nonprime attributes. Firstly, the defi-
nitions of normal schemes (second, third or BCNF) contain the notion
of key. But it is known that a relation can have an exponential number
of keys under the number of all attributes of its scheme [5]. Secondly,
the definitions of normal forms use the notions of prime and nonprime
attributes, which are also related to key.

The problem of prime and nonprime attributes finding has been
solved in a polynomial time [6]. In this paper necessary and suffi-
cient conditions for a scheme to be in 2NF, 3NF or BCNF are defined.
These conditions are described in terms of redundant and nonredun-
dant equivalence classes of attributes and the computation of these
classes can be performed in polynomial time [6]. Therefore, the deter-
mination of normalization level of a scheme is also polynomial. Thus
a database designer may work in terms of attributes sets and data de-
pendencies, and not in terms of keys. This approach can be a part
of the database analysis and design toolset, i.e. for the automation of
database design and testing.

In Section 2, most of the definitions needed in this paper are pre-
sented. In Section 3, several properties for equivalence classes of at-
tributes, proved in [6], are given.

Besides this, the correlation is proven between nonredundant classes
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of attributes and the right and left sides of functional dependency that
is inferred from a given set of functional dependencies (Theorem 3).
In Sections 4, 5 and 6 there are presented necessary and sufficient
conditions (Theorems 4-6), in terms of equivalence classes of attributes,
for a relation scheme to be in 2NF, 3NF or BCNF, respectively. The
final section is about algorithmic aspects, where it is shown that the
determination of the normalization level of database schemas can be
performed in polynomial time.

2 Preliminary notions

In this and in the next section, that will be as concise as possible, some
definitions and statements used in this paper are presented.

Let Sch(R,F ) be a relation scheme, where F is a set of functional
dependencies defined on a set R of attributes. The set of all functional
dependencies implied by a given set F of functional dependencies is
called the closure of F and is denoted as F+, that is F+ = {V →
W |F | = V → W} [7].

If F is a set of functional dependencies over R and X is a subset
of R, then the closure of the set X with respect to F , written as X+,
is the set of attributes A such that X → A can be inferred using the
Armstrong Axioms, that is X+ = {A|X → A ∈ F+} [7].

Armstrong’s Axioms are sound in that they generate only functional
dependencies in F+ when applied to a set F . They are complete in
that repeated application of these rules will generate all functional
dependencies in the closure F+ [1].

Let X and Y be two nonempty finite subsets of R. The set X is a
determinant for Y with respect to F if X ′ → Y is not in F+ for every
proper subset X ′ of X.

If X is a determinant for R with respect to F , then X is a key for
relation scheme Sch(R,F ). Note that some relation scheme may have
more than one key.

An attribute A is prime in Sch(R, F ) if A is contained in some key
of Sch(R, F ). Otherwise A is nonprime in Sch(R, F ).
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In what follows, it will be assumed that the set F of functional
dependencies is reduced [7].

Given a relation scheme Sch(R, F ), the set F can be represented by
a graph, called contribution graph [6] for F and denoted by G = (S, E),
where:

• for every attribute A in R, there is a vertex labeled by A in S;

• for every functional dependence X → Y in F and for every at-
tribute A in X and every B in Y there is an edge a = (A,B) in
E that is directed from vertex A to vertex B.

Let G = (S,E) be divided into strongly connected components.
The relation of strong connectivity is an equivalence relation over the
set S. So, there is a partition of set of vertices S into pairwise disjoint
subsets, that is, S =

⋃n
i=1 Si.

Let S1, ..., Sn be the strongly connected components of a graph
G = (S, E). Then the condensed graph [8] of G, G∗ = (S∗, E∗) is
defined as follows:

S∗ = {S1, ..., Sn} and
E∗ = {(Si, Sj)|i 6= j, (A,B) in E, A ∈ Si and B ∈ Sj}.
Evidently the condensed graph G∗ is free of directed circuits. Over

the set S∗ of vertices of graph G∗ a strict partial order is defined.
Strict partial orders are useful because they correspond more directly to
directed acyclic graphs. Vertex Si precedes vertex Sj , if Sj is accessible
from Si.

From the ordered sequence of sets S1, ..., Sn a sequence of ordered
nonredundant sets can be built T1, ..., Tn, where T1 = S1 and Tj = Sj−
(
⋃j−1

i=1 Ti)+F for j = 2, n. All empty sets are excluded from the sequence
and a sequence of nonempty sets T1, ..., Tm is obtained, keeping the
precedence of prior sets.

Lemma 1. [6]. If X → Y ∈ F+ and X is a determinant of Y under
F , then for every attribute A ∈ (X − Y ) there is an attribute B ∈ Y
so that in the contribution graph G there exists a path from vertex A
to vertex B and for every attribute B ∈ (Y −X) there exists in X an
attribute A, from which the vertex B can be reached.
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3 Some properties of equivalence classes of at-
tributes

In this section a brief overview of several properties of equivalence
classes of attributes is given. And their proofs are presented in [6].

Theorem 1. ([6], Theorem 2). Set X is a determinant of set
S1

⋃
...

⋃
Sn under F , if and only if X is determinant of set T1

⋃
...

⋃
Tm

under F .

Lemma 2. ([6], Lemma 3). If X is a determinant under F of set
T1

⋃
...

⋃
Tm, then Z, where Z = X

⋂
(T1

⋃
...

⋃
Tj) and j = 1,m, is a

determinant for T1
⋃

...
⋃

Tj under F .

Theorem 2. ([6], Theorem 4). If set of attributes X is a determinant
of set T1

⋃
...

⋃
Tm, then X

⋂
Ti 6= ∅, where i = 1,m.

Corollary 1. ([6], Corollary 3). If an attribute A in S1
⋃

...
⋃

Sn is
prime in scheme Sch = (

⋃n
i=1 Si, F ), then A ∈ ⋃m

i=1 Ti.

Corollary 2. ([6], Corollary 4). If an attribute A in S1
⋃

...
⋃

Sn is
nonprime in scheme Sch = (

⋃n
i=1 Si, F ), then A ∈ (

⋃n
i=1 Si−

⋃m
i=1 Ti).

Theorem 3. Let X → Y ∈ F+, where X is a determinant for Y under
F and X, Y ⊆ T1

⋃
...

⋃
Tm. For a Tj , where j = 1,m, the following

takes place: if Y
⋂

Tj 6= ∅, then X
⋂

Tj 6= ∅.
Proof. The soundness of this statement is proven by contra-

diction: let Y
⋂

Tj 6= ∅, but X
⋂

Tj = ∅. Evidently that X ⊆
T1

⋃
...

⋃
Tj−1

⋃
Tj+1

⋃
...

⋃
Tm and X → (Y

⋂
Tj) ∈ F+. Let X ′,

where X ′ ⊆ X, is a determinant for Y
⋂

Tj under F . According to
Lemma 1, on the contribution graph of set F of dependencies, from ev-
ery vertex labeled with an attribute in X ′ there exists a path to a vertex
labeled with an attribute in Y

⋂
Tj . Thereby, X ′ ⊆ T1

⋃
...

⋃
Tj−1. But

in this case, Tj is redundant. A contradiction has been reached.
Using above structures and statements it will be shown that the

problem of determination of the normalization level has polynomial
complexity. In the following sections, in terms of equivalence classes of
attributes, sufficient and necessary conditions for a relation scheme to
be in a normal form are presented.
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4 Second normal form

Thus, the relation scheme in the 2NF can be defined:

Definition 1. [9]. Scheme Sch = (
⋃n

i=1 Si, F ) is in the 2NF under
a set of functional dependencies F , if it is in 1NF and each nonprime
attribute in

⋃n
i=1 Si doesn’t partially depend on every key for Sch.

Database schema is in the 2NF, if each constituent relation scheme is
in the 2NF.

Definition 2. [9]. Let X → A ∈ F be a nontrivial functional depen-
dency (namely A /∈ X). An attribute A is called partially dependent on
X, if there exists a proper subset X ′ of set X, such that X ′ → A ∈ F+.
If such a proper subset doesn’t exist, then A is called that completely
depends on X.

Proposition 1. If set of attributes X is a determinant for attribute A
under set of attributes F , then A completely depends on X.

The next theorem gives a characterization of the 2NF in terms of
equivalence classes of attributes.

Theorem 4. Relation scheme Sch = (
⋃n

i=1 Si, F ) is in the 2NF, if and
only if it is in the 1NF and for every Tj , j = 1,m, (

⋃m
i=1 Ti − Tj)+ =⋃m

i=1 Ti − Tj takes place.

Proof. Necessity. Let scheme Sch = (
⋃n

i=1 Si, F ) be in the 2NF.
Then every nonprime attribute A, that is a member of set

⋃n
i=1 Si −⋃m

i=1 Ti completely depends on every determinant X of set S1
⋃

...
⋃

Sn.
According to Theorem 1, X is a determinant of set T1

⋃
...

⋃
Tm. In

addition, X ⊆ T1
⋃

...
⋃

Tm. Assuming to the contrary, that Sch is in
the 2NF, but there is an attribute A∈(

⋃m
i=1 Ti−Tj)+ such that A /∈

(
⋃m

i=1 Ti−Tj). There are two cases: either A ∈ Tj , or A ∈ (
⋃n

i=1 Si −⋃m
i=1 Ti).

Let A ∈ Tj . From the construction of contribution graph, follows
that (T1

⋃
...

⋃
Tj) → A ∈ F+. Because A∈(

⋃m
i=1 Ti−Tj)+, namely

A∈(
⋃j−1

i=1 Ti−Tj)+, then (T1
⋃

...
⋃

Tj−1)→A∈F+. But this contradicts
the fact that set Tj is nonredundant.
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Let A ∈ (
⋃n

i=1 Si−
⋃m

i=1 Ti). If X is a determinant for T1
⋃

...
⋃

Tm

under F , taking into account Lemma 2, X
⋂

(T1
⋃

...
⋃

Tj−1) is a de-
terminant for T1

⋃
...

⋃
Tj−1. So that (T1

⋃
...

⋃
Tj−1)→A∈F+, then

(X
⋂

(T1
⋃

...
⋃

Tj−1)) → A ∈ F+. In other words, the nonprime at-
tribute A partially depends on determinant X. That is A partially
depends on key X, fact that contradicts the assumption that scheme
Sch is in the 2NF.

Sufficiency. Let scheme Sch = (
⋃n

i=1 Si, F ) be in the 1NF and for
every Tj , j = 1,m, the following equality takes place: (

⋃m
i=1 Ti−Tj)+ =⋃m

i=1 Ti−Tj . It will be proven that scheme Sch is in the 2NF. Two cases
are possible: either (

⋃n
i=1 Si−

⋃m
i=1 Ti) = ∅, or (

⋃n
i=1 Si−

⋃m
i=1 Ti) 6= ∅.

If (
⋃n

i=1 Si −
⋃m

i=1 Ti) = ∅, then scheme doesn’t contain nonprime
attributes and, therefore, scheme is in the 2NF and it is even in the
third.

If (
⋃n

i=1 Si−
⋃m

i=1 Ti) 6= ∅, that is in the case when set of nonprime
attributes is not empty, results that every nonprime attribute A com-
pletely depends on T1

⋃
...

⋃
Tm, furthermore it completely depends on

determinant X under F of set T1
⋃

...
⋃

Tm. So, the scheme is in the
2NF.

Corollary 3. Scheme Sch = (
⋃n

i=1 Si, F ) is in the 2NF, if and only if
for every i = 1,m Ti = Si holds.

Proof. The soundness of this statement follows from the fact that
(
⋃m

i=1 Ti−Tj)+ =
⋃m

i=1 Ti−Tj takes place when Ti = Si holds for every
i = 1,m and vice versa.

5 Third normal form

In this section a characterization of the 3NF is given through the equiv-
alence classes.

Definition 3. [9]. Scheme Sch = (
⋃n

i=1 Si, F ) is in 3NF under a set
of functional dependencies F , if it is in the 1NF and every nonprime
attribute doesn’t transitively depend on a key of scheme Sch. Database
schema is in the 3NF, if every constituent relation scheme is in the 3NF.
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Definition 4. [10]. Let scheme Sch = (
⋃n

i=1 Si, F ), V, W ⊆ ⋃n
i=1 Si

and A ∈ ⋃n
i=1 Si. It is considered that the attribute A transitively

depends on V through W , if the following conditions are all satisfied:

1. V → W ∈ F+;

2. W → V /∈ F+ (namely V doesn’t functionally depend on W );

3. W → A ∈ F+;

4. A /∈ V W.

Theorem 5. Relation scheme Sch = (
⋃n

i=1 Si, F ) is in the 3NF, if
and only if (

⋃n
i=1 Si−

⋃m
i=1 Ti) is a determinant for (

⋃n
i=1 Si−

⋃m
i=1 Ti)

under F .

Proof. Necessity. Let scheme Sch = (
⋃n

i=1 Si, F ) be in the
3NF. Then scheme Sch = (

⋃n
i=1 Si, F ) is also in the 2NF and each

attribute A, where A ∈ (
⋃n

i=1 Si −
⋃m

i=1 Ti), fully functionally depends
on key X of scheme Sch = (

⋃n
i=1 Si, F ), namely it is fully functionally

dependent on determinant X of set T1
⋃

...
⋃

Tm under F . In addition,
no attribute A, where A ∈ (

⋃n
i=1 Si−

⋃m
i=1 Ti), transitively depends on

X. That is, there doesn’t exist any dependency W → A ∈ F+, such
that W ⊆ (

⋃n
i=1 Si −

⋃m
i=1 Ti) and A /∈ XW . Therefore, dependency

(
⋃n

i=1 Si−
⋃m

i=1 Ti) → (
⋃n

i=1 Si−
⋃m

i=1 Ti) is reduced on the left side, fact
that confirms that (

⋃n
i=1 Si −

⋃m
i=1 Ti) is a determinant for (

⋃n
i=1 Si −⋃m

i=1 Ti) under F .
Sufficiency. Assume (

⋃n
i=1 Si −

⋃m
i=1 Ti) is a determinant for

(
⋃n

i=1 Si −
⋃m

i=1 Ti) under F . Let X be a determinant of set
T1

⋃
...

⋃
Tm under F . According to Theorem 1, X is a determinant

of set S1
⋃

...
⋃

Sn. Hence, X → (
⋃n

i=1 Si −
⋃m

i=1 Ti) ∈ F+ holds. Be-
cause (

⋃n
i=1 Si−

⋃m
i=1 Ti) is a determinant for (

⋃n
i=1 Si−

⋃m
i=1 Ti) under

F , then there doesn’t exist any dependency W → A ∈ F+, such that
W ⊆ (

⋃n
i=1 Si−

⋃m
i=1 Ti), A ∈ (

⋃n
i=1 Si−

⋃m
i=1 Ti) and A /∈ XW . That

is, all nonprime attributes A don’t depend transitively on determinant
X.
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6 Boyce-Codd normal form

The concept of BCNF is refined from the notion of 3NF. In the de-
termination of a database schema being in BCNF, a given set F of
functional dependencies is used.

Definition 5. [11]. Relation scheme Sch = (
⋃n

i=1 Si, F ) is in BCNF
under set F of functional dependencies, if it is in the 1NF and for
every nontrivial dependency V → A ∈ F+ V → ⋃n

i=1 Si ∈ F+ takes
place, that is, the left side of each functional dependency functionally
determines all attributes of scheme.

Theorem 6. Scheme Sch = (
⋃n

i=1 Si, F ) is in the normal form Boyce-
Codd, if and only if it is in the 3NF and for every Tj , j = 1,m, the set
of attributes (

⋃m
i=1 Ti − Tj) is a determinant for (

⋃m
i=1 Ti − Tj) under

F .

Proof. Necessity. Let scheme Sch = (
⋃n

i=1 Si, F ) be in BCNF.
Then for every nontrivial functional dependency V → A ∈ F+, that
is, the case when A /∈ V , V → ⋃n

i=1 Si ∈ F+ holds. Based on the
reflexivity rule, (

⋃m
i=1 Ti− Tj) → (

⋃m
i=1 Ti− Tj) ∈ F+. If it’s supposed

that (
⋃m

i=1 Ti − Tj) is not a determinant for (
⋃m

i=1 Ti − Tj) under F ,
that is, if there exists a set of attributes V ⊂ (

⋃m
i=1 Ti − Tj), so that

V → (
⋃m

i=1 Ti − Tj) ∈ F+, then the last dependency is not trivial.
By the definition of BCNF V → ⋃n

i=1 Si ∈ F+ holds. But this func-
tional dependency contradicts the fact that every determinant Xof set⋃n

i=1 Si and consequently a set
⋃m

i=1 Ti contains, according to Theorem
2, attributes in Tj j = 1,m too, namely X

⋂
Tj 6= ∅ for j = 1,m.

Sufficiency. Let scheme Sch = (
⋃n

i=1 Si, F ) be in the 3NF and for
every Tj , j = 1,m, the set of attributes (

⋃m
i=1 Ti−Tj) is a determinant

for (
⋃m

i=1 Ti − Tj) under F . It will be proven that scheme Sch =
(
⋃n

i=1 Si, F ) is in BCNF.
Let scheme Sch = (

⋃n
i=1 Si, F ) not be in BCNF. In this case, there

is a nontrivial functional dependency V → A ∈ F+, so that V →⋃n
i=1 Si /∈ F+ holds. Then it can be stated that V → ⋃m

i=1 Ti /∈ F+.
Without constraining the generality, let V be a determinant for A under
F . From the construction of the contribution graph and from the fact
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that dependency V → A is reduced, three cases can be examined (other
cases don’t exist):

1. V ⊆ (
⋃n

i=1 Si−
⋃m

i=1 Ti) and A ∈ (
⋃n

i=1 Si−
⋃m

i=1 Ti), that is, left
and right sides are formed just from nonprime attributes,

2. V ⊆ ⋃m
i=1 Ti and A ∈ (

⋃n
i=1 Si−

⋃m
i=1 Ti) - the left side is formed

from prime attributes, and the right side consists of a nonprime
attribute.

3. V ⊆ ⋃m
i=1 Ti and A ∈ ⋃m

i=1 Ti, that is, left and right sides are
formed just from prime attributes,

Suppose that V ⊆ (
⋃n

i=1 Si−
⋃m

i=1 Ti) and A ∈ (
⋃n

i=1 Si−
⋃m

i=1 Ti),
then nonprime attribute A would transitively depend through V on
every determinant of set

⋃n
i=1 Si and then scheme Sch = (

⋃n
i=1 Si, F )

will not be in the 3NF, which contradicts the hypothesis.
If it is considered that V ⊆ ⋃m

i=1 Ti and A ∈ (
⋃n

i=1 Si −
⋃m

i=1 Ti),
then nonprime attribute A would partially depend on a determinant
of set

⋃n
i=1 Si therefore scheme Sch = (

⋃n
i=1 Si, F ) will not be in the

2NF, that is, neither in the third, fact that contradicts the hypothesis.
If it is considered that V ⊆ ⋃m

i=1 Ti and A ∈ ⋃m
i=1 Ti, then the

set (
⋃m

i=1 Ti − Tj) of attributes is not a determinant for (
⋃m

i=1 Ti − Tj)
under F . Indeed, let m > 1 and A ∈ Tk. Then by Theorem 3 and
the construction way of drawing the contribution graph, it can exist
two cases either V ⊆ Tk, or V 6⊂ Tk, but V ⊆ (Tl

⋃
Tl+1

⋃
...

⋃
Tk),

where V
⋂

Ti 6= ∅, i = l, k. Evidently m > k − l + 1, but in this case
there exists a Tj , where V

⋂
Tj = ∅, so that (

⋃m
i=1 Ti − Tj) is not a

determinant for (
⋃m

i=1 Ti − Tj) under F , because ((
⋃m

i=1 Ti − {A}) −
Tj) → (

⋃m
i=1 Ti − Tj) ∈ F+.

7 Algorithms’ complexities

Based on the above characterization, the polynomiality of the normal
form testing problem can be proved. A few comments about the com-
plexity of the algorithms for finding the normal form of scheme are
made below.
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Both construction of equivalence classes of scheme’s attributes and
redundancy elimination from these classes have a complexity O(|R| ·
||F ||) [6].

It is not hard to calculate the complexity of algorithms that deter-
mine whether a scheme is in the second, third or Boyce-Codd normal
form. That is, |R| · ||F || for each of these algorithms. This is explained
through the fact that the complexity of calculation of the classes of
nonredundant attributes exceeds the complexity of calculation of the
verification conditions that determine if a scheme is in one of the enu-
merated forms.

Thus, if nonredundant classes
⋃m

i=1 Ti are built, then calculation
of the condition for the scheme Sch = (

⋃n
i=1 Si, F ) to be in the 2NF

(that is, if for every Tj , j = 1,m, (
⋃m

i=1 Ti − Tj)+ =
⋃m

i=1 Ti − Tj)
requires a time O(|NonRedEquivClasses| · ||F ||). Therefore the time
is O(|R| · ||F ||).

Computation of the condition for the scheme Sch = (
⋃n

i=1 Si, F )
to be in the 3NF (that is, if (

⋃n
i=1 Si −

⋃m
i=1 Ti) is a determinant for

(
⋃n

i=1 Si −
⋃m

i=1 Ti)) requires a time O(||F ||).
Similarly, verification of the condition for the scheme Sch =

(
⋃n

i=1 Si, F ) to be in BCNF (that is, if for every Tj , j = 1,m, set
of attributes (

⋃m
i=1 Ti − Tj) is a determinant for (

⋃m
i=1 Ti − Tj) under

F ) requires a time O(|R| · ||F ||).
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