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Abstract

This article deals with a method, based on total variation
diminishing (TVD) scheme, for solving three-dimensional equa-
tions of gravitational gas dynamics. For this method a parallel
algorithm of the decision is offered. Equations of this kind are a
powerful approach to simulating astrophysical problems. Numer-
ical schemes applied for their solving must provide high-resolution
capturing of shocks, prevent spurious oscillations and specify the
behavior of the matter in the neighborhood of small perturba-
tions beyond shock fronts. Difference schemes have to combine
the properties of high resolution in the regions of small pertur-
bations and of monotonicity in the domains of steep gradients in
order to satisfy such contradictory conditions.

1 Introduction

Modeling supernova explosions is referred to complex dynamic pro-
cesses, requiring application of difference schemes of a high resolution.
These have to describe the behavior of the matter in the neighborhood
of the discontinuity at the maximum accuracy and to refer small pertur-
bations far from shock fronts definitely. Conditions of such kind lead
to the necessity of loss of dissipative (nonconservative) properties of
numerical schemes and therefore to the apparition of large oscillations
beyond shock fronts.
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TVD, ENO, WENO, PPM schemes refer to the kind of schemes
that satisfy all these necessary conditions and possess high resolution in
regions of small perturbations combined with monotonicity in domains
of steep gradients.

1.1 Magnetorotational mechanism of supernova explo-
sion

In [1] a mechanism for the magnetorotational supernova explosion was
analyzed. The basic concept of magnetorotational explosion consists
in taking account on transition of rotating magnetic field energy into
the radial kinetic energy of explosion. Various layers of the star rotate
at the different angular velocities during the collapse. Differential ro-
tation of this kind generates and enforces the magnetic field toroidal
components. The growth of magnetic field intensity leads to the in-
crease of pressure. Hence a compression shock wave appears in the
neighborhood of the extreme magnetic pressure. It starts moving from
the center toward the considerably fast falling density of the matter.
For a rather short time this leads to the appearance of the fast mag-
netohydrodynamics (MHD) shock. When the shock wave reaches the
surface of the collapsing star it throws out its matter. This emission
may be interpreted as an explosion of supernova. Modeling magnetoro-
tational supernova explosion in one-dimensional setting was examined,
for example, in [2] and [3]. In one-dimensional case the star may be
represented in the form of an infinite cylinder. The equations of ideal
MHD with a self-gravitating substance in terms of Lagrangian coordi-
nate system were considered.

The initial magnetic field had only the radial component. Differ-
ential rotation led to the appearance and increasing of toroidal com-
ponent of the magnetic field. Modeling magnetorotational explosion
of supernova in one-dimensional case illustrates that differential ro-
tation of toroidal field leads to the apparition of the MHD shocks,
moving towards the surface of the star. Modeling supernova explo-
sion in two-dimensional case gives a more realistic flow pattern than in
one-dimensional case. The first two-dimensional model of rotating star
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collapse was analyzed in [4]. The magnetic field magnitude considered
in that work was unrealistic large and together with the differential
rotating it led to the formation of axial emission.

Simulation of magnetorotational supernova explosion in three-
dimensional case is considered in this work. Three-dimensional model
of collapse is the most realistic one and does not have any restric-
tions connected with the assumptions, stated in 1D and 2D models.
Three-dimensional models admit simulating of magnerotational super-
nova explosion in cases, when the axises of rotation do not coincide
with the axises of dipole magnetic field (if dipole is taken as the initial
value of magnetic field). If numerical schemes, elaborated for simulat-
ing two-dimensional cases, are utilized in three-dimensional case, then
it will lead to big problems. The substance of the star compresses in
the direction of ϕ in two-dimensional case. It is necessary to calcu-
late hundreds and thousands of cycles of rotation for simulating the
explosion of protoneutron star. The protoneutron star rotation occurs
very differently. If in three-dimensional case Lagrangian mesh contains
tetragonal elements, then it should be reorganized on every time step.
But grid modification involves reinterpolation of the mesh functions
with respect to mesh structure. Utilization of the rectangular Eule-
rian meshes allows to avoid this problem. A tree-dimensional model of
collapsing star in rectangular coordinate system was proposed in [5].

1.2 TVD schemes

TVD-type schemes of the first and second order of accuracy are con-
sidered in this article. First order accurate difference schemes retain
the property of monotonicity, but lead to the smearing of the shock
fronts. Second order accurate nonlinear schemes with the diminishing
of total variation allow to carry out calculations of high resolution and
to prevent nonphysical oscillations beyond shock wave fronts. Schemes
of this type are of different order of accuracy in the domains with steep
and low gradients. Application of these schemes in tree-dimensional
case produces especially good results while simulating collapsing stars.

Equations that govern hydrodynamic motion are conservation laws
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for mass, momentum, [6] and energy. The conservation form of hy-
drodynamic equations in terms of Eulerian coordinate system is the
following:

∂ρ

∂t
+

∂ρ

∂xi
(ρvi) = 0, (1)

∂ρvi

∂t
+

∂

∂xi
(ρvivj + Pδij) = 0, (2)

∂e

∂t
+

∂

∂xi
[(e + P )vi] = 0. (3)

The influence of gravitational field is omitted in equations (1) - (3)
as well as the action of other sources of energy, for example, neutrino
radiation. The equation of state may be written as follows

P = (γ − 1)ε, (4)

here ρ is the density, v is the vector of speed and P is the pressure,
besides that the total energy is e = 1

2ρv2 + ε.
A TVD scheme was applied to the equations (1) - (3) in [7, 8]. A

common restriction of oscillations is a nonlinear condition of stability.
The discrete solution for TVD scheme may be defined in the following
way

TV (ut) =
N∑

i=1

|ut
i+1 − ut

i| (5)

as a measure of total amount of oscillations.
Thus using second order accurate fluxes F

(2)t
i+1/2 across cells bound-

aries a nonlinear TVD scheme may be presented in another way. Sec-
ond order fluxes are derived from first order accurate fluxes F

(1)t
i+1/2 for

the upwind scheme applying second order accurate correction. First
order accurate flux is obtained, in turn, from the flux mean values.
Second order accurate correction is introduced in order to bound spu-
rious oscillations. Hence the number of oscillations on the current time
step must not exceed the number of oscillations on the previous one.
TV (ui+1) ≤ TV (ui).
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Figure 1. TVD scheme using vanLeer flux limiter (stared line) in
comparison with analytical solution (solid line)

Different flux limiters are used in order to limit oscillations , specif-
ically, minmod, superbee, vanLeer. The former limiter chooses the
smallest absolute value from between the left and right corrections:

minmod(a, b) =
1
2
[sign(a) + sign(b)] min(|a|, |b|). (6)

The superbee limiter choses between the larger correction and 2
times the smallest correction, whichever is smaller in magnitude

superbee(a, b) =

{
minmod(a, 2b), if |a| ≥ |b|,
minmod(2a, b), if |a| < |b|. (7)

The vanLeer limiter is the most moderate of all limiters and finds
a harmonic mean between left and right corrections

vanleer(a, b) =
2ab

a + b
.

7



B. Rybakin, N. Shider

The test, proposed in [7], was used for checking the obtained computer
program

u0 =





−x sin(3
2πx2, −1 ≤ x < −1

3 ,

| sin(2πx)|, |x| < 1
3 ,

2x− 1− 1
6 sin(3πx), 1

3 < x < 1.

(8)

The solution obtained by TVD scheme with the vanLeer limiter
(stared line) is presented in Figure 1. The analytical solution (solid
line) is included for comparison. The Courant – Friedrich’s – Levy
number CFL = 1. A close agreement between numerical and analyti-
cal solutions should be noted [8].

1.3 Equations of gravitational gas dynamics

The solution of equations of gravitational gas dynamics that describes
the collapsing star may be written in the following way

∂ρ

∂t
+

∂ρ

∂xi
(ρvi) = 0, (9)

∂ρvi

∂t
+

∂

∂xi
(ρvivj + Pδij) = −ρ

∂φ

∂xi
, (10)

∂e

∂t
+

∂

∂xi
[(e + P )vi] = −ρvi

∂φ

∂xi
. (11)

The value of gravitational potential φ is defined from Poisson equa-
tion: 4φ = 4πGρ. Equation of state is used in the form of (4). In the
equations from above ρ - density, v - field of velocities, P - pressure, ε
- specific internal energy, e - total energy:

e =
1
2
ρv2 + ε . (12)

TVD scheme testing was accomplished for the Sedov-Taylor test-
problem of point explosion. For this purpose computational domain
was defined in the form of a cube with 128 cells. The cube domain is
filled in with the medium of constant density ρ1 while the pressure is a
negligible quantity. A high energy deposition takes place at the moment
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Figure 2. Pressure profile for the Sedov–Taylor test problem

t=0 in the center of the computational domain. Pressure profile is
plotted in the Figure 2 at the moment t = t*. A good coincidence of
numerical and analytical results has to be mentioned.

1.4 The main results

Let us consider the case of interaction of two shocks. Two sources of
energy are placed in the center of a cube for this purpose. Instanta-
neous energy production takes place in the start time and the explosion
is of the same yield as in the previous section. The complexity of this
test consists in the necessity of an accurate computation of interac-
tion of two shock waves. This test is more often used in astrophysical
computations as a basis of supernova explosion simulating.

Pressure profile is plotted in the Figure 3 for the problem (1)-(3).
The initial density and energy are respectively: ρ0 = 1.0 and E = 105.
The problem was solved for the case of rectangular coordinate system
which is not invariant with respect to the rotation. However, the non
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Figure 3. Pressure distribution for the case of two interacting shocks.

isotropic dispersion is not large. One can observe that the numerical
solution has spherically symmetric form. Shock wave resolution is of
two space cells dimension. Numerical scheme testing convinced us that
TVD scheme may be used in solving supernova explosion problems.

Adaptive mesh techniques are currently being used for the improv-
ing of the accuracy of numerical calculations as well as of the algorithm
efficiency. The methods of this type allow to reduce the computing time
and to narrow the volume of employed memory. These techniques are
especially effective in solving the problems of gas dynamics charac-
terized by apparition of compression waves, shock waves and contact
discontinuities. The use of adaptive meshes makes it possible to in-
vestigate the processes with a desirable degree of accuracy in complex
geometry domains or steep gradients. AMR method allows to decrease
the number of cells and therefore the time of computing. AMR tech-
nology is based on use of cells hierarchical structure. In this case every
level of the hierarchy is referred to its level of spacial and time reso-
lution. The possibility to add cells to a fixed place of computational
domain locally and dynamically is the characteristic property of AMR
methods. An algorithm for the refinement of the mesh on several levels
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with consecutively diminishing space steps is proposed in this work.
Nested meshes were used for solving three-dimensional Poisson

equation, for example in [10, 11]. The density of collapsing star varies
in many degrees. The density on the surface is not large but in the cen-
ter the order of density increases up to 1014g/cm3. Nested and refined
meshes were built in order to take account on such enormous variation
of density. In the center of computational domain a cube with the size
of cells in 23 times smaller than the initial size of the cells was ex-
tracted. In the center of specified cube another cube was constructed
with smaller dimension of cells. Dimensions of the nested cube were
equal to M3, here the value of M is varying from 64 up to 1024 cells.
The solution of Poisson equation was found with the help of successive
over-relaxation method. The density profile and the particles paths for
two interacting shock waves are plotted in the Figure 4. Calculations
were carried out on the 1024x1024x1024 mesh.

Figure 4. Distribution of the density and the particles paths for the
1024x1024x1024 mesh.

A parallel algorithm for solving Poisson hydrodynamic equations
was constructed [11]. The algorithm efficiency is the highest one for
8-12 processors but for the greater number of processors the loss of
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efficiency is observed. Calculations have been performed on the high
performance computing cluster of the Institute of Mathematics and
Computer Science of the Academy of Sciences of Moldova.

1.5 Summary

A parallel algorithm and a code for three-dimensional gravitational
gas dynamic equations were provided in this work. For this purpose a
TVD scheme possessing high resolution in the regions of shock fronts
and steep gradients was used. Numerical calculations obtained on the
sequence of nested meshes have been presented. Calculations were
implemented on the meshes from 64x64x64 to 1024x1024x1024 nodes
up to 5 nesting levels. It was demonstrated that the algorithm is quite
efficient for 8 – 12 processors.

The results of computer modeling obtained in this work were visu-
alized with the help of HDVIS program [12].

This article has been written under the support of the grant RFFI-
Moldova ( Space Research Institute of the Academy of Sciences of Rus-
sia – Institute of Mathematics and Computer Science of the Academy
of Sciences of Moldova) 08.820.06.40 RF.
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