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An approach for testing the primeness of

attributes in relational schemas

Cotelea Vitalie

Abstract

In this paper there is proposed a method of partition the
attributes of relation scheme in equivalence classes and in nonre-
dundant equivalence classes. Several properties of these equiva-
lence classes are proved. Their properties serve as the basis for
an algorithm with a polynomial complexity, which determines the
prime attributes of a database schema.
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1 Introduction

The scope of this paper is to propose a solution to the problem that
arises during design and analysis of database, that is determination
of prime attributes (attributes that are contained in schema’s possible
keys). This problem is known to be NP-complete, due to the fact that
the solution to this problem was reached through keys searching. But a
schema can have an exponential number of keys with respect to number
of functional dependencies [1].

In the current paper a different approach is taken for the search-
ing of prime attributes that avoids the necessity of keys determination.
Namely, the notion of contribution graph (Definition 1) of a reduced
set of functional dependencies is proposed. The strongly connected
components are computed, where each component represents a vertex
of condensed graph (Definition 2). Over vertices of condensed graph a
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strict partial order is defined. Then it’s presented how the inferred de-
pendencies are reflected in contribution graph (Lemma 1 and Corollary
1).

Obviously, the strongly connected components of contribution
graph split the set of attributes of relation scheme into equivalence
classes. The notion of nonredundant equivalence classes of attributes
is given (Definition 3). In section 4 several lemmas and theorems (Lem-
mas 2-3, Theorems 1-4) are proved that reflect the properties of equiv-
alence classes of attributes.

It should be mentioned that redundant attributes represent the
set of nonprime attributes of scheme (Corollary 4), and nonredundant
equivalence classes of attributes consist only of prime attributes (Corol-
lary 3). Proved properties in section 4, allow the determination of prime
and nonprime attributes without scheme’s keys finding.

In section 5 it is shown that the determination of prime and non-
prime attributes can be performed in a polynomial time. This approach
can be a part of the database analysis and design toolset.

2 Some basic concepts

In order to facilitate exposure of this paper’s material, some preliminary
notions are presented [2].

Let Sch(R,F ) be a relation scheme, where F is a set of functional
dependencies defined on set R of attributes. Given a set F of functional
dependencies on R, the closure of F , written as F+, consists of all
functional dependencies that are logically implied by F , that is F+ =
= {V → W |F | = V → W}.

Given a set F of functional dependencies on set R of attributes and
a subset X of R, the closure of the set X under the set F , written as
X+, contains all attributes, each of which is functionally dependent on
Xunder F , that is X+ = {A|X → A ∈ F+}.

Let X and Y be two sets of attributes, where X, Y ⊆ R. The set
X is a determinant for Y , under the set F of functional dependencies,
if X → Y ∈ F+ and for every proper subset X ′ of the set X, the
expression X ′ → Y /∈ F+ takes place.
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A subset K of R is a key for a relation scheme Sch(R, F ), if K is a
determinant of the set R under the set F of dependencies. A relation
scheme can have more than one key, but it always has at least one.

An attribute A in R is prime if A belongs to some key, and nonprime
otherwise.

In this paper, it is considered that the set F of functional depen-
dencies is reduced. Let Sch(R, F ) be a relation scheme. The set of
functional dependencies F is reduced [2], if there is no attribute A in
R and no dependency X → Y in F , so that they satisfy the following
conditions:

1. A ∈ X and F ≡ F − {X → Y }⋃{(X − {A}) → Y },
2. A ∈ Y and F ≡ F − {X → Y }⋃{X → (Y − {A})}.

For functional dependencies an inference tool, named maximal
derivation [3], will be used. Maximal derivation of the set X of
attributes under the set F of dependencies, is a sequence of sets
H =< X0, X1, ..., Xn > of attributes, where

1. X0 = X;

2. Xi = Xi−1
⋃

Z, where Z =
⋃

j Wj for ∀Vj → Wj ∈ F that satisfy
Vj ⊆ Xi−1 and Wj 6⊂ Xi−1;

3. Nothing else is in Xi.

The last term of maximal derivation Xn is, in fact, the closure of the
set X of attributes under the set F of dependencies, that is Xn = X+.

Claim 1. [3]. X → Y ∈ F+, if and only if there exists a derivation
H =< X0, X1, ..., Xk > for X → Y under F , where Xk is the first term
that contains the set of attributes Y .

Claim 2. [3]. If X → Y ∈ F+ and X is a determinant for Y under
F , then for every attribute A in X − Y there exists in F a dependency
V → W used in derivation H =< X0, X1, ..., Xk > for X → Y under
F , such that A ∈ V .
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3 Graphical representation of functional de-
pendencies

Given a set F of functional dependencies on the set R of attributes,
that are part of the relation scheme Sch(R,F ), a contribution graph is
drawn, in order to represent F .

Definition 1. Contribution graph G = (S, E) of set F is a graph that:

• ∀A ∈ R there exists in S a vertex labeled with attribute A;

• ∀X → Y ∈ F and ∀A ∈ X and ∀B ∈ Y there exists in E an edge
a = (A,B), that is directed from vertex A to vertex B.

Example 1. If F = {C → B, AD → B, AB → DC, B → E} and R =
{A,B, C, D, E} then the contribution graph of set F of dependencies is
presented in Figure 1.

Figure 1. A contribution graph for set F

Two vertices A,B ∈ S are strongly connected, if and only if there
exists in graph G a path from A to B and backwards, from B to A.
It is obvious that the relation of strong connectivity is an equivalence
relation. So, there is a partition of set of vertices S into pairwise
disjoint subsets. That is, S =

⋃n
i=1 Si and all vertices in Si, i = 1, n,

are strongly connected, and every two vertices from different subsets
are not strongly connected.
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In accordance with this partition, subgraphs Gi = (Si, Ei), i = 1, n
are called strongly connected components [4] of the graph G, where Ei

represents the set of edges that connect pairs of vertices in Si.

Example 2. The set of vertices of the graph represented in Figure 1
are split into three equivalence classes S1 = {A}, S2 = {B, C, D} and
S3 = {E}.
Definition 2. Let G∗ be the condensed graph of the graph G. Set of
vertices of graph G∗ represents set {G1, ..., Gn} of all strongly connected
components of graph G and there is an edge from vertex Gi to vertex
Gj of graph G∗, if there exists in G at least one edge that connects one
vertex from component Gi to one vertex from component Gj.

Obviously the graph G∗ is an acyclic one.

Example 3. The condensed graph of graph from Figure 1 has three
vertices and two edges, as shown in Figure 2.

Figure 2. Condensed graph of the graph from Figure 1

Over the set of vertices of graph G∗ a strict partial order is defined.
Vertex Gi precedes vertex Gj , if Gj is accessible from Gi. Now, the
equivalence classes S1, ..., Sn will be sorted based on the corresponding
order graph’s G∗ vertices.

Lemma 1. If X → Y ∈ F+ and X is a determinant of set Y under
F , then for every attribute A ∈ (X − Y ) there is an attribute B ∈ Y
so that in the contribution graph G there exists a path from vertex A
to vertex B and for every attribute B ∈ (Y −X) there exists in X an
attribute A, from which the vertex B can be reached.

Proof. Let attribute B ∈ (Y −X) and let the subset X ′ of set X
be determinant for B under F . Because X ′ → B ∈ F+, according to
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Claim 1, there is a derivation H =< X
′
0, X

′
1, ..., X

′
m > for dependency

X ′ → B under F . Then, based on Claim 2, there exists a sequence of
dependencies V1 → W1, ..., Vq → Wq in F , where A ∈ V1, B ∈ Wq and
Wi

⋂
Vi−1 6= ∅, for i = 1, q − 1.

Contribution graph has a structure, such that for every dependency
Vj → Wj in F , from each vertex labeled with an attribute in Vj an edge
leaves to every vertex labeled with an attribute in Wj . So, there exists
a path from every vertex A ∈ X ′ to vertex B.

It must be mentioned that, if X is considered the union of all de-
terminants of attributes in Y − X, then X

⋃
X

⋂
Y = X. Indeed, if

we suppose that the set X
⋃

X
⋂

Y is a proper subset of set X, this
will contradict the supposition that X is a determinant for Y under F .

Corollary 1. If reduced dependency V → W is used nonredundantly
in building the derivation H for dependency X → Y under F , then in
contribution graph G there exists a path from every vertex labeled with
an attribute in V to every vertex labeled with an attribute in Y .

4 Properties of equivalence classes of attributes

Theorem 1. If X is a determinant under F of set S1
⋃

...
⋃

Sj, where
j = 1, n, then X ⊆ S1

⋃
...

⋃
Sj.

Proof. Let X 6⊂ S1
⋃

...
⋃

Sj . Then there exists an equivalence
class St, where t = j, n, such that X

⋂
St 6= ∅. By Lemma 1, in

the contribution graph G, from every attribute A ∈ X
⋂

St there is a
path towards B, where B ∈ S1

⋃
...

⋃
Sj . But this fact contradicts the

supposition that the sets S1, ..., Sj precede the set St.

Corollary 2. If X is a determinant of set S1
⋃

...
⋃

Sn under F , then
X

⋂
S1 6= ∅.

Proof. Indeed, for every attribute B in S1 or B ∈ X, or, according
to Lemma 1, there is in X an attribute A from which vertex B is
accessible in contribution graph G. But then A is also a member of
equivalence class S1.
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Definition 3. Equivalence class Sj is called nonredundant, if and only
if for every attribute A in Sj, the expression (

⋃n
i=1 Si−Sj) → A /∈ F+

holds.

Considering Lemma 1, it can be concluded that set Sj is nonre-
dundant, if and only if for every attribute A in Sj , the expression
(
⋃j−1

i=1 Si) → A /∈ F+ holds.
From the ordered sequence of sets S1, ..., Sn a sequence of ordered

nonredundant sets can be built T1, ..., Tn, where T1 = S1 and Tj =
= Sj − (

⋃j−1
i=1 Ti)+F for j = 2, n. As a result of this process, some sets

Tj can become empty. These empty sets can be excluded from the
sequence and a sequence of nonempty sets T1, ..., Tm will be obtained,
keeping the precedence of prior sets.

Proposition 1. T1 = S1.

Proposition 2. (T1
⋃

...
⋃

Tm) → (S1
⋃

...
⋃

Sn) ∈ F+.

Example 4. Sequence of equivalence classes of attributes S1 = {A},
S2 = {B,C, D} and S3 = {E} turns into the following sequence of non
redundant equivalence classes of attributes: T1 = {A}, T2 = {B,C, D}.

Theorem 2. Set X is a determinant of set S1
⋃

...
⋃

Sn under F , if
and only if X is determinant of set T1

⋃
...

⋃
Tm under F .

Proof. Necessity. Because X is a determinant of set S1
⋃

...
⋃

Sn

and T1
⋃

...
⋃

Tm ⊆ S1
⋃

...
⋃

Sn, then X → (T1
⋃

...
⋃

Tm) ∈ F+.
Supposing X is not a determinant of set T1

⋃
...

⋃
Tm under F , thus

there exists at least one attribute A in X for which the expression (X−
{A}) → (T1

⋃
...

⋃
Tm) ∈ F+ holds. Then, according to Proposition

2, the expression (X − {A}) → (S1
⋃

...
⋃

Sn) ∈ F+ holds, fact that
contradicts the hypothesis that X is a determinant of set S1

⋃
...

⋃
Sn

under F .
Sufficiency. Let X be a determinant of set T1

⋃
...

⋃
Tm under

F . Since (T1
⋃

...
⋃

Tm) → (S1
⋃

...
⋃

Sn) ∈ F+ and T1
⋃

...
⋃

Tm ⊆
S1

⋃
...

⋃
Sn, then X is a determinant for S1

⋃
...

⋃
Sn under F .
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Lemma 2. If X is a determinant under F of set S1
⋃

...
⋃

Sn, then
Z, where Z = X

⋂
(S1

⋃
...

⋃
Sj) and j = 1, n, is a determinant for

S1
⋃

...
⋃

Sj under F .

Proof. According to Theorem 1, the expression X ⊆ S1
⋃

...
⋃

Sn

takes place. First it will be shown that Z → (S1
⋃

...
⋃

Sj) ∈ F+. Lets
suppose the contrary: Z → (S1

⋃
...

⋃
Sj) /∈ F+. Then there exists

a set Z ′, where Z ′ ⊆ X, which is a determinant of set S1
⋃

...
⋃

Sj

and Z ′
⋂

(
⋃n

i=j+1 Si) 6= ∅. Considering Lemma 1, there is a path from
every vertex labeled with A in Z ′

⋂
(
⋃n

i=j+1 Si) that leads to a vertex
B in

⋃j
i=1 Si. A contradiction has been encountered. Therefore, Z →

(S1
⋃

...
⋃

Sj) ∈ F+.
To complete the proof of this lemma, it will be shown that Z is

a determinant under F of set S1
⋃

...
⋃

Sj . Indeed, if it is considered
that Z is not a determinant of F under F , then there must exist in Z
an attribute A, such that (Z − {A}) → (S1

⋃
...

⋃
Sj) ∈ F+. But then

(Z − {A}) → Z ∈ F+ takes place, fact that implies (X − {A}) → X ∈
F+. So, a contradiction has been encountered, that X is a determinant
of set S1

⋃
...

⋃
Sn under X.

Theorem 3. If set Z = X
⋂

(T1
⋃

...
⋃

Tj)of attributes is a determi-
nant of set S1

⋃
...

⋃
Sn, then X ⊆ T1

⋃
...

⋃
Tm.

Proof. Let Sj be the first set of attributes that doesn’t coincide
with Tj and assume that there is an attribute A in X, such that
A ∈ Sj and A /∈ Tj . Lemma 2 implies that (X

⋂
(S1

⋃
...

⋃
Sj)) →

(S1
⋃

...
⋃

Sj) ∈ F+. Since A /∈ Tj , then (X
⋂

(S1
⋃

...
⋃

Sj)) → A ∈
F+. So (X − {A}) → X ∈ F+, thus X is not a determinant of set
S1

⋃
...

⋃
Sn under F .

Corollary 3. If an attribute A in R is prime in scheme M , then
A ∈ ⋃m

i=1 Ti.

Corollary 4. If an attribute A in O(||F ||) is nonprime in scheme
Sch = (

⋃n
i=1 Si, F ), then A ∈ (

⋃n
i=1 Si −

⋃m
i=1 Ti).

Example 5. Considering Corollaries 3 and 4, and Example 4, for the
scheme Sch(R, F ), where F = {C → B, AD → B, AB → DC, B → E}
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and R = {A,B, C,D, E}, {A,B, C, D} is set of prime attributes and
E is nonprime attribute.

Theorem 3 and Lemma 2 can be paraphrased for nonredundant
equivalence classes of attributes.

Lemma 3. If X is a determinant under F of set T1
⋃

...
⋃

Tm, then
Z, where Z = X

⋂
(T1

⋃
...

⋃
Tj) and j = 1,m, is a determinant for

T1
⋃

...
⋃

Tj under F .

Proposition 3. If set of attributes X is a determinant of set T1
⋃

...
⋃

⋃
Tj, then X ⊆ T1

⋃
...

⋃
Tj, where j = 1,m.

The soundness of this affirmation follows from theorems 1, 2 and 3.

Theorem 4. If set of attributes X is a determinant of set T1
⋃

...
⋃

Tm,
then X

⋂
Ti 6= ∅, where i = 1,m.

Proof. Let for a set Tj , where j = 1,m, the equality X
⋂

Tj = ∅
holds. From Corollary 2 and Proposition 1, follows that X

⋂
T1 6= ∅.

According to Lemma 3 set Z, where Z = X
⋂

(T1
⋃

...
⋃

Tj) and
j = 1, m, is a determinant for T1

⋃
...

⋃
Tj under F . From the

fact that X
⋂

Tj = ∅ it follows that Z ⊆ T1
⋃

...
⋃

Tj−1 and then
(T1

⋃
...

⋃
Tj−1) → Tj ∈ F+. But this contradicts the assumption that

set T1
⋃

...
⋃

Tm is nonredundant.

5 Algorithmic aspects

From the algorithmic point of view, the problem of testing the prime-
ness of attributes consists of two parts, construction of equivalence
classes of scheme’s attributes and elimination of the redundancy in
these classes. In other words, being given a relation scheme Sch(R, F ),
the sets S1

⋃
...

⋃
Sn = R and T1∪ ...∪Tm are to be build, respectively.

The method for determination of equivalence classes of attributes
consists in the fact that for every attribute A in R, the list of attributes
that label accessible vertices from A on the contribution graph is com-
puted. So, accessibility matrix M will be computed, that will consist
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of 0 and 1, with a dimension |R| × |R|, where |R| is cardinality of set
R. The element M(i, j) = 1 if and only if there exists a path from
vertex i to vertex j. Based on matrix M the set of equivalence classes
of attributes R is constructed.

In the speciality literature (for example, in [5]) it is described an
algorithm of finding the strongly connected components of a directed
graph with a complexity O(max(|S|, |E|)), where |S|- number of ver-
tices, and |E|- number of edges. But, it is easy to observe that, using
this algorithm is non suitable, because the computing of the contribu-
tion graph (for example its representation in form of adjacency lists)
for a set F of functional dependencies requires O(|R| · ||F ||) opera-
tions and the graph will have a number of edges proportionally to |R|2.
Where ||F || is the number of attributes involved in F , when dupli-
cates are also considered. As ||F || > |R|, algorithm of computing the
equivalence classes of attributes needs O(|R| · ||F ||) operations.

Because the closure of a set of attributes under a set of func-
tional dependencies is computed in a time O(||F ||) [2], then for equiv-
alence classes of attributes the elimination of redundancies requires
O(|EquivClasses| · ||F ||), where |EquivClasses| represents the num-
ber of equivalence classes of attributes. Since |EquivClasses| ≤ |R|,
this algorithm requires a time proportionally to |R| · ||F ||.
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