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Postoptimal analysis of one lexicographic
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Abstract

In this article we consider a multicriteria combinatorial prob-
lem with ordered MINMIN criteria. We obtain necessary and
sufficient conditions of that type of stability to the initial data
perturbations for which all lexicographic optima of the original
problem are preserved and occurrence of the new ones is allowed.
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Vector (multicriteria) discrete optimization problems may arise as
a result of formalization of object-oriented behavior of a human being
in various fields of human activity such as e.g. technical system de-
sign, planning and management, business administration, environmen-
tal analysis and etc. As far as accuracy of input data is not-guaranteed,
frequently, even in the well formalized problems, the reliability of the
results (solutions) may be questionable. The data inaccuracy may hap-
pen due to various factors, among them the most typical ones are mea-
surement and calculation errors, mathematical model inadequacy and
many other. Therefore, it seems to be very natural to define classes of
optimization problems for which small perturbations of input data are
not significant. This research continues the series of works devoted to
the above-mentioned topic [1–5]. We study different aspects of stabil-
ity to the initial data perturbations for the lexicographic combinatorial
problem with MINMIN criteria. In the paper, we formulate and prove
necessary and sufficient conditions of quasi-stability of the problem.
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This type of stability characterizes the case where all optimal solutions
remain optimal under small changes of input data.

Let us consider n-criteria trajectory problem, i.e. problem is given
on a system T of non-empty subsets (trajectories) of the set Nm =
{1, 2, . . . , m} with sub-criteria of the MINMIN form

fi(t, A) = min
j∈ t

aij → min
t∈T

, i ∈ Nn,

where A = [aij ] ∈ Rn×m, n ≥ 1, m ≥ 2, |T | > 1.

Under n-criterial trajectory problem Zn(A) we understand the
problem of finding the lexicographic set (the set of lexicographic opti-
mal trajectories):

Ln(A) = {t ∈ T : ∀t′ ∈ T (t Â
A

t′)},

where Â
A

as usual is a negation of the binary lexicographic relation Â
A

defined on the set of trajectories T ⊆ 2Nm by the formula:

t Â
A

t′ ⇔ ∃p ∈ Nn (fp(t, A) > fp(t′, A) & p =

= min{k ∈ Nn : fk(t, A) 6= fk(t′, A)}).
It is easy to see that the set Ln(A) is non-empty for any matrix A ∈
Rn×m as the subset of the Pareto set.

Note, that many classical combinatorial extreme problems on
graphs (traveling salesman problem, spanning tree problem, match-
ing problem, etc.), various problems of scheduling theory and boolean
programming problems [6–8] are included into the scheme of the scalar
(singlecriterion) problems (with linear, bottleneck,

∑
-MINMAX, and∑

-MINMIN criteria).
By definition, put Ln(A) = T \ Ln(A).
The following properties are obvious.
Corollary 1. If t Â

A
t′, then t ∈ Ln(A).

Corollary 2. If t Â
A

t′, then t′ Â
A

t.

49



V.A. Emelichev, O.V. Karelkina

It is also known (see, e.g., [9]) that the lexicographic set Ln(A) may
be defined as a result of solving the sequence of n scalar problems

Ln
i (A) = Arg min{fi(t, A) : t ∈ Ln

i−1(A)}, i ∈ Nn, (1)

where Ln
0 (A) = T , Argmin{·} is the set of all optimal trajectories for

corresponding minimization problem. Hence, the following inclusions

T ⊇ Ln
1 (A) ⊇ Ln

2 (A) ⊇ . . . ⊇ Ln
n(A) = Ln(A) (2)

are true.
Following [1–5], the problem Zn(A) is quasi-stable if the formula

∃ε > 0 ∀A′ ∈ Ω(ε) (Ln(A) ⊆ Ln(A + A′))

is valid. Here

Ω(ε) = {A′ ∈ Rn×m : ||A′|| < ε}

is a set of perturbing matrices

||A′|| = max{|a′ij | : (i, j) ∈ Nn ×Nm}, A′ = [a′ij ].

Thus, quasi-stability characterizes the case when all trajectories
from lexicographic set preserve a property of optimality for sufficiently
small initial data perturbations. Therefore, quasi-stability may be
interpreted as the discrete analogue of Hausdorff lower semicontinu-
ity [10] at a point A of the many-valued optimal mapping

Ln : Rn×m → 2T .

We define binary relations for any non-empty set I ⊆ Nn on the set
of trajectories T for the problem Zn(A)

t ≥
I,A

t′ ⇔ ∀i ∈ I (fi(t, A) ≥ fi(t, A)),

t >
I,A

t′ ⇔ ∀i ∈ I (fi(t, A) > fi(t, A)),
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t `
I,A

t′ ⇔ ∀i ∈ I (Ni(t, A) ⊇ Ni(t′, A)),

where Ni(t, A) = Argmin{aij : j ∈ t}, i. e. Ni(t, A) = {j ∈ t : aij =
fi(t, A)}.

The following properties are obvious.
Corollary 3. If t `

I,A
t′, then there exists a number ε > 0 such that

for any perturbing matrix A′ ∈ Ω(ε) the relation

t′ ≥
I,A+A′

t

holds.
Corollary 4. If t ≥

Nn,A
t′, then t′ Â

A
t.

Consequently applying the properties 3, 4 and using continuity of
the functions fi(t, A), i ∈ Nn on the set of parameters Rm, we deduce
the following properties.

Corollary 5. If t `
Nn,A

t′,then

∃ε > 0 ∀A′ ∈ Ω(ε) (t Â
A+A′

t′).

Corollary 6. If any of the following conclusions:

(i) t >
1,A

t′,

(ii) ∃k ∈ Nn−1 (t′ `
Nk,A

t & t >
k+1,A

t′),

holds for trajectories t and t′, then the formula

∃ε > 0 ∀A′ ∈ Ω(ε) (t Â
A+A′

t′)

is true.
Denote

Un(A) = {t ∈ Ln(A) : ∀i ∈ Nn ∀t′ ∈ Ln
i (A) (t `

i,A
t′)}.

Next property follows directly from the previous definition.
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Corollary 7. If t ∈ Un(A) and t′ ∈ Ln(A), then t `
Nn,A

t′.

In order to prove the quasi-stability criteria we need a series of
lemmas.

Lemma 1. If t ∈ Un(A) and t′ ∈ T , then

∃ε > 0 ∀A′ ∈ Ω(ε) (t Â
A+A′

t′) (3)

Proof. Let t ∈ Un(A). We consider two possible cases for trajec-
tory t′.

Case 1: t′ ∈ Ln
1 (A). Suppose that t′ ∈ Ln(A). Then by virtue of

the property 7 the relation

t `
Nn,A

t′

holds. Hence, taking into account the property 5, we get (3).
Now let t′ ∈ Ln

1 (A)\Ln(A). Thus, there exists an index k = k(t′) ∈
Nn \{1}, such that t′ 6∈ Ln

k(A) and t′ ∈ Ln
i (A) for i ∈ Nk−1. Therefore,

we obtain
t `

Nk−1,A
t′ and t′ >

k,A
t.

Making use of this facts and property 6, we conclude that the formula

∃ε > 0 ∀A′ ∈ Ω(ε) (t′ Â
A+A′

t)

is true. Therefore, due to the property 2, we obtain (3).
Case 2: t′ ∈ T \ Ln

1 (A). Thus,

t′ >
1,A

t.

Therefore, in view of the properties 2 and 6 the formula (3) is true.
Lemma 1 is thus proved.
Lemma 2. If t ∈ Ln(A) \ Un(A), then the formula

∃t0 ∈ T ∀ε > 0 ∃A0 ∈ Ω(ε) (t Â
A+A0

t0) (4)

is true.
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Proof. Since t 6∈ Un(A), then there exist k ∈ Nn and t0 ∈ Ln
k(A)

such that Nk(t, A) + Nk(t0, A) and t ∈ Ln
k(A) (by virtue of t ∈ Ln(A)).

Hence fk(t, A) = fk(t0, A) = akp, if p ∈ Nk(t0, A)\Nk(t, A). Therefore,
let us assume ε > 0 and construct elements of a perturbing matrix
A0 = [a0

ij ] ∈ Rn×m according to the rule

a0
ij =

{ −α, if i = k, j = p,
0 otherwise,

where 0 < α < ε, in view of p ∈ Nk(t0, A) \Nk(t, A) we conclude that
the relations

fk(t0, A + A0) = min{akj + a0
kj : j ∈ t0} = akp − α < akp =

= fk(t, A) = fk(t, A + A0),

fi(t0, A + A0) = fi(t0, A) = fi(t, A) = fi(t, A + A0), i ∈ Nk−1

hold true. Hence,
t Â

A+A0
t0,

i.e. formula (4) is true.
Lemma 2 is thus proved.
Now let us formulate quasi-stability criterion for the concerned

problem.
Theorem. The vector problem Zn(A), n ≥ 1, is quasi-stable if

and only if the formula

∀t ∈ Ln(A) ∀i ∈ Nn ∀t′ ∈ Ln
i (A) (t `

i,A
t′) (5)

is true.
Proof. Sufficiency. Let the formula (5) holds true and t ∈ Ln(A).

Then t ∈ Un(A) and, therefore, due to Lemma 1 we find that

∀t′ ∈ T ∃ε(t′) > 0 ∀A′ ∈ Ω(ε(t′)) (t Â
A+A′

t′).

Hence, by putting ε(t) = min{ε(t′) : t′ ∈ T}, it is easy to see that for
any trajectory t ∈ Ln(A) and for any perturbing matrix A′ ∈ Ω(ε(t))
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the inclusion t ∈ Ln(A + A′) is true. Therefore, if ε∗ = min{ε(t) : t ∈
Ln(A)}, we obtain

∃ε∗ > 0 ∀A′ ∈ Ω(ε∗) (Ln(A) ⊆ Ln(A + A′)).

Thus, the problem Zn(A) is quasi-stable.
Necessity. We assume that, on the contrary, the problem Zn(A)

is quasi-stable, but the formula (5) is not true. Then there exists
trajectory t ∈ Ln(A) \ Un(A), for which on account of Lemma 2 and
property 1 the formula

∀ε > 0 ∃A0 ∈ Ω(ε) (t ∈ Ln(A + A0))

is true. Hence, we conclude

∀ε > 0 ∃A0 ∈ Ω(ε) (Ln(A) 6⊆ Ln(A + A0)),

This is contradiction to the quasi-stability of the problem Zn(A).
Theorem is proved.
Let us give two examples which illustrate stated result.
Example 1. Let n = 2, m = 4, T = {t1, t2, t3}, t1 = {1, 2, 4},

t2 = {1, 4}, t3 = {1, 2},

A =
(

1 3 1 2
3 2 2 1

)
.

Thus,
f1(t1, A) = f1(t2, A) = f1(t3, A) = 1.

Therefore L2
1(A) = {t1, t2, t3} = T . Moreover, we have

f2(t1, A) = f2(t2, A) = 1, f2(t3, A) = 2.

Hence, we get lexicographic set L2(A) = L2
2(A) = {t1, t2}.

Further we find the sets

N1(t1, A) = N1(t2, A) = N1(t3, A) = {1},

N2(t1, A) = N2(t2, A) = {4}.
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Therefore, the formula

∀t ∈ L2(A) ∀i ∈ N2 ∀t′ ∈ L2
i (A) (Ni(t, A) = Ni(t′, A))

is true. Consequently, in virtue of the theorem the problem Z2(A) is
quasi-stable.

Example 2. Let n = 2, m = 4, T = {t1, t2, t3}, t1 = {1, 2, 4},
t2 = {1, 2}, t3 = {1, 3, 4},

A =
(

1 3 1 2
3 2 2 1

)
.

Then
f1(t1, A) = f1(t2, A) = f1(t3, A) = 1.

Thus, L2
1(A) = {t1, t2, t3} = T . Then, we have

f2(t1, A) = f2(t3, A) = 1, f2(t2, A) = 2.

Hence we get the lexicographic set L2(A) = L2
2(A) = {t1, t3}.

Having found the sets

{1} = N1(t1, A) = N1(t2, A) 6⊇ N1(t3, A) = {1, 3},

N2(t1, A) = N2(t3, A) = {4},
we conclude that conditions of the theorem don’t hold. Therefore, the
problem Z2(A) isn’t quasi-stable.

Corollary 1. A sufficient condition for the problem Zn(A) to be
quasi-stable is equality |Ln

1 (A)| = 1.
Let us give an example illustrating that the equality |Ln

1 (A)| = 1
isn’t necessary condition for the problem to be quasi-stable.

Example 3. Let n = 2, m = 3, T = {t1, t2}, t1 = {1, 2, 3},
t2 = {1, 2},

A =
(

3 2 4
3 5 5

)
.

Then
f1(t1, A) = f1(t2, A) = 2.
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Therefore L2
1(A) = {t1, t2} = T . Moreover

f2(t1, A) = f2(t2, A) = 3.

Hence, the lexicographic set is L2(A) = L2
2(A) = {t1, t2}. Thus,

|L2
1(A)| = 2.
Further, having found the sets

N1(t1, A) = N1(t2, A) = {2},

N2(t1, A) = N2(t2, A) = {1},
we conclude that the formula

∀t ∈ L2(A) ∀i ∈ N2 ∀t′ ∈ L2
i (A) (Ni(t, A) = Ni(t′, A))

is true. Therefore, by theorem, the problem Z2(A) is quasi-stable but
|L2

1(A)| > 1.
Corollary 2. The formula

∀t, t′ ∈ Ln(A) (N1(t, A) = N1(t′, A)) (6)

is necessary condition for the problem Zn(A), n ≥ 1 to be quasi-stable.
It is obvious that the formula (6) is simultaneously a sufficient con-

dition for quasi-stability of the problem Z1(C) in scalar case (n = 1).
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