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About one algorithm of C2 interpolation using

quartic splines

Igor Verlan

Abstract

The problem of C2 interpolation of a discrete set of data on
the interval [a,b] representing the function f using quartic splines
is investigated. An explicit scheme of interpolation is obtained
using different quartic splines on even and odd subintervals of
interpolation.
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1 Introduction

Let us suppose that the mesh ∆ : a = x0 < x1 < ... < xn = b is
given and fi = f(xi), i = 0(1)n are the corresponding data points. The
problem of the construction of an interpolation function S ∈ C2[a, b]
is considered. It is well known (e.g. [1]) that cubic splines may be
used in order to solve this problem. In this case you have to solve a
tri-diagonal system of linear algebraic equations, which is diagonally
dominant one. Well, but in the case of very large set of data you might
have problems with capacity of your computer in order to solve this
problem. In the case when additional data are available and you have
to solve the problem again, it may become critical. In the case of two-
dimensional interpolation it is much more difficult to overcome these
problems. In what follows quartic splines are considered in order to
solve this problem.
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2 Algorithm of interpolation using quartic
splines

In what follows the next notations are used: mi = S′(xi), Mi = S′′(xi),
hi = xi+1 − xi, t = (x− xi)/hi, δ

(1)
i = (fi+1 − fi)/hi.

The following three cases are considered.

a) Let us introduce splines as follows

S(x) = fi + (fi+1 − fi)t + h2
i Mi(t4 − 3t3 + 3t2 − t)/6−

−h2
i Mi+1(t4 − 3t3 + 2t)/6 (1)

For derivatives we have

S′(x) = δ
(1)
i + hiMi(4t3 − 9t2 + 6t− 1)/6−
−hiMi+1(4t3 − 9t2 + 2)/6 (2)

and
S”(x) = Mi(2t2 − 3t + 1)−Mi+1(2t2 − 3t) (3)

From (1) it follows immediately that interpolation conditions are
fulfilled. From (3) it follows that the second derivative is the continuous
one at the knots of the mesh.

From (2) for the first derivative at the knots of the mesh we obtain

S′(xi+) = δ
(1)
i − hiMi/6− hiMi+1/3 (4)

and
S′(xi−) = δ

(1)
i−1 + hi−1Mi/2 (5)

From the requirement of continuity of the first derivative at the
knots of the mesh the following system of equations is obtained:

(3hi−1 + hi)Mi/6 + hiMi+1/3 = δ
(2)
i , i = 1(1)n− 1,

where δ
(2)
i = δ

(1)
i − δ

(1)
i−1, i = 1(1)n− 1.
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As it can be seen, the system presented above is the undeter-
mined one. In this case end conditions are required. But, it should
be mentioned, for example, that if we have end conditionsM0 = f”(a)
and Mn = f”(b), in the sistem given above the value of M0 is not
present.

If the reprezentation of the spline via the first derivatives is used
we have

S(x) = fi + (fi+1 − fi)(2t4 − 6t3 + 5t2) +
+himi(−t4 + 3t3 − 3t2 + t) + himi+1(−t4 + 3t3 − 2t2), (6)

S′(x) = δ
(1)
i (8t3 − 18t2 + 10t) + mi(−4t3 + 9t2 − 6t + 1) +

+mi+1(−4t3 + 9t2 − 4t), (7)

S”(x) =
δ1
i

hi
(24t2 − 36t + 10) +

mi

hi
(−12t2 + 18t− 6) +

+
mi+1

hi
(−12t2 + 18t− 4). (8)

From (6) it follows that interpolation conditions are fullfilled and
from (7) it follows that the first derivative is the continuous one at the
knots of the mesh.

From (8) it follows

S”(xi+) = 10
δ
(1)
i

hi
− 6

mi

hi
− 4

mi+1

hi

and

S”(xi−) = −2
δ
(1)
i−1

hi−1
+ 2

mi

hi−1
.

From the requirement of continuity of the second derivative the
following system of equations is obtained:

(hi + 3hi−1)mi + 2hi−1mi+1 = 5hi−1δ
(1)
i + hiδ

(1)
i−1, i = 1, n− 1,
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which is the undetermined one and end conditions are required.

b) Let’s consider now the splines in the following form:

S(x) = fi + (fi+1 − fi)t + h2
i Mi(−t4 + t3 + 3t2 − 3t)/6 +

+h2
i Mi+1(t4 − t3)/6. (9)

For derivatives we have

S′(x) = δ
(1)
i + hiMi(−4t3 + 3t2 + 6t− 3)/6 + hiMi+1(4t3 − 3t2)/6

S”(x) = Mi(−2t2 + t + 1) + Mi+1(2t2 − t).

As in the previous case the interpolation conditions are hold and
the second derivative is continuous at the knots of the mesh.

In this case at the knots of the mesh for the first derivative we have

S′(xi+) = δ
(1)
i − hiMi/2 (10)

and
S′(xi−) = δ

(1)
i−1 + hi−1Mi−1/3 + hi−1Mi/6. (11)

From (10) and (11) the corresponding system of linear algebraic
equations which ensure the continuity of the first derivative of the spline
at the knots of the mesh is obtained:

hi−1Mi−1/3 + (hi−1 + 3hi)Mi/6 = δ
(2)
i , i = 1(1)n− 1.

As in the previous case, if the representation via the first derivatives
of the spline is used, we have

S(x) = fi + (fi+1 − fi)(−2t4 + 2t3 + t2) +
+himi(t4 − t3 − t2 + t) + himi+1(t4 − t3), (12)

S′(x) = δ
(1)
i (−8t3 + 6t2 + 2t) + mi(4t3 − 3t2 − 2t + 1) +

+mi+1(4t3 − 3t2), (13)
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S”(x) =
δ
(1)
i

hi
(24t2 + 12t + 2) +

mi

hi
(12t2 − 6t− 2) +

+
mi+1

hi
(12t2 − 6t). (14)

At the knots of the mesh in this case

S”(xi+) = 2
δ
(1)
i

hi
− 2

mi

hi
,

S”(xi−) = −10
δ
(1)
i−1

hi−1
+ 4

mi−1

hi−1
+ 6

mi

hi−1
.

So, the next system of equations results in

2himi−1 + (3hi + hi−1)mi = 5hiδi−1 + hi−1δi, i = 1, n− 1.

c) Let us consider now a scheme of interpolation, when splines (1)
and (6) are used alternatively, namely on odd subintervals the splines
(1) are used and on even subintervals the splines (6), respectively. As
a result, at the odd knots of the mesh from (5) and (7) the following
condition of continuity of the first derivative is obtained:

Mi = 2δ
(2)
i /(hi−1 + hi) (15)

and for even knots of the mesh we get

2hi−1Mi−1 + (hi−1 + hi)Mi + 2hiMi+1 = 6δ
(2)
i . (16)

Substituting in (16) expressions which follow from (14) for Mi−1

and Mi+1 we get the next formulae for the second derivative at the
even knots of the mesh

Mi = 6(δ(2)
i − 2hi−1δ

(2)
i−1/(3(hi−2 + hi−1))−

−2hiδ
(2)
i+1/(3(hi + hi+1)))/(hi−1 + hi). (17)

So, we obtain an explicit scheme of interpolation.
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If the representation via the first derivatives is used we have

S”(xi−) = −2
δ
(1)
i−1

hi−1
+ 2

mi

hi
, (18)

S”(xi+) = 2
δ
(1)
i

hi
− 2

mi

hi
. (19)

From requirement of continuity of the second derivative of the spline
at the knots of the mesh it follows:

mi =
hi−1δ

(1)
i

hi−1 + hi
+

hiδ
(1)
i−1

hi−1 + hi
. (20)

Let’s consider the knots i + 1. In this case

S”(xi+1−) = −10
δ
(1)
i

hi
+ 4

mi

hi
+ 6

mi+1

hi
, (21)

S”(xi+1+) = 10
δ
(1)
i+1

hi+1
− 6

mi+1

hi+1
− 4

mi+1

hi+1
. (22)

Then we have the following:

2hi+1mi + 3(hi + hi+1)mi+1 + 2himi+2 = 5hiδ
(1)
i+1 + 5hi+1δ

(1)
i . (23)

Substituting formulae for mi and mi+2 which are obtained from
(20) in (23) we get

mi+1 =
1

3(hi + hi+1)

[
− 2hihi+1

hi+1 + hi+2
δ
(1)
i+2 + (5hi − 2hihi+2

hi+1 + hi+2
)δ(1)

i+1+

+(5hi+1 − 2hi−1hi+1

hi−1 + hi
)δ(1)

i − 2hi−1hi+1

hi−1 + hi
δ
(1)
i−1

]
(24)

and an explicit scheme of interpolation is obtained when representation
of spline via the first derivative is used.
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3 Remarks on errors of approximation.

We’ll consider the case of uniform mesh with step h. Then the formula
(15) has the form

Mi = (fi−1 − 2fi + fi+1)/h2 (25)

and the formula (17), respectively,

Mi = (−fi−2 + 5fi−1 − 8fi + 5fi+1 − fi+2)/h2. (26)

If the reprezentation via the first derivatives of the spline at the
knots of the mesh is used we have

mi =
fi+1 − fi

2h
, (27)

which follows from (20) and

mi+1 =
−fi+3 + 5fi+2 − 5fi + fi−1

6h
, (28)

which follows from (24).
The set of functions f , which have absolutely continuous derivatives

of order r−1 on the interval [a, b] and which have derivatives of order r
from L∞[a, b], is denoted by W r∞[a, b]. The norm in this case is defined
as follows:

‖f(x)‖∞ = ess sup |f(x)| , x ∈ [a, b].

Lemma 1 Let us suppose that f(x) ∈ W 3∞[a, b]. Then the following
estimates are valid for regular mesh:

∣∣mi − f ′i
∣∣ ≤ h2

6

∥∥∥f (3)(x)
∥∥∥∞ (29)

at the odd knots and

∣∣mi − f ′i
∣∣ ≤ 13h2

18

∥∥∥f (3)(x)
∥∥∥∞ (30)

for the even knots.
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Proof. Let’s consider the case (29).
We have ∣∣mi − f ′i

∣∣ =
∣∣∣∣
fi+1 − fi−1

2h
− f ′i

∣∣∣∣ .

Substituting fi+1 and fi−1 by the corresponding Taylor series ex-
pansions at the point xi with the remainder term in the integral form,
after necessary transformations we get

∣∣mi − f ′i
∣∣ =

1
4h

∣∣∣∣∣∣

xi+1∫

xi

(xi+1 − v)2 f (3)(v)dv −
xi−1∫

xi

(xi−1 − v)2f (3)(v)dv

∣∣∣∣∣∣
.

Using the Hölder inequality in the last relation and computing in-
tegrals the presented above estimation follows immediately.

Let’s consider now the case (30). We have

∣∣mi − f ′i
∣∣ =

∣∣∣∣
−fi+2 + 5fi+1 − 5fi−1 + fi−2

6h
− f ′i

∣∣∣∣ .

Using the corresponding Taylor series expansions for fi−2, fi−1,
fi+1, fi+2 with the remainder term in the integral form we get

|mi − f ′i | =
∣∣∣∣∣∣

1
12h


−

xi+2∫

xi

(xi+2 − v)2f (3)(v)dv+

+5

xi+1∫

xi

(xi+1 − v)2f (3)(v)dv − 5

xi−1∫

xi

(xi−1 − v)2f (3)(v)dv+

+

xi−2∫

xi

(xi−2 − v)2f (3)(v)dv




∣∣∣∣∣∣
.

From the last relation using the Hölder inequality and computing
integrals we get

∣∣mi − f ′i
∣∣ ≤ 13h2

18

∥∥∥f (3)(x)
∥∥∥∞ .

So, the lemma is proved.
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Lemma 2 Let us suppose that f(x) ∈ W 3∞[a, b]. Then the following
estimates are valid for regular mesh:

|Mi − f”i| ≤ h

3

∥∥∥f (3)(x)
∥∥∥∞

at the odd knots and

|Mi − f”i| ≤ 13h

3

∥∥∥f (3)(x)
∥∥∥∞

at the even knots.

The proof of the lemma 2 is the analogous one as for lemma 1.
Let us introduce now Hermite splines

H(x) = fi + (fi+1 − fi)(2t4 − 6t3 + 5t2) +
+hif

′
i(−t4 + 3t3 − 3t2 + t) + hif

′
i+1(−t4 + 3t3 − 2t2) (31)

and

H(x) = fi + (fi+1 − fi)(−2t4 + 2t3 + t2) +
+hif

′
i(t

4 − t3 − t2 + t) + hif
′
i+1(t

4 − t3). (32)

Lemma 3 Let us suppose that f(x) ∈ W 3∞[a, b]. Then for regular
mesh: ∥∥∥H(k)(x)− f (k)(x)

∥∥∥∞ = O(h3−k), k = 0, 1, 2.

Proof. Let’s consider the remainder term

R(x)=H(x)-f(x).

For the case (31), substituting Taylor series expansions for fi, fi+1,
f ′i , f ′i+1 at the point x = xi + th with remainder term in the integral
form after necessary transformations we obtain

R(x) =
xi∫

x

[
(xi − v)2(

1
2
− t4 + 3t3 − 5t2

2
)+

45



I.Verlan

+h(xi − v)(−t4 + 3t3 − 3t2 + t)
]
f (3)(v)dv+

+

xi+1∫

x

[
(xi+1 − v)2(t4 − 3t3 +

5t2

2
)+

+h(xi+1 − v)(−t4 + 3t3 − 2t2)
]
f (3)(v)dv.

Substituting in the previous relation v − xi = τh we get

R(x) = h3

t∫

0

ψ1(t, τ)f (3)(xi + τh)dτ + h3

1∫

t

ψ2(t, τ)f (3)(xi + τh)dτ,

where

ψ1(t, τ) = τ

[
−t4 + 3t3 − 3t2 + t− τ(

1
2
− t4 + 3t3 − 5t2

2
)

]

and

ψ2(t, τ) = (1− τ)

[
(1− τ)(t4 − 3t3 +

5t2

2
)− t4 + 3t3 − 2t2

]
.

From the above it follows that R(x) = O(h3).
Consider the case (32).

R(x) =
h3

2

t∫

0

ψ1(t, τ)f (3)(xi + τh)dτ +
h3

2

1∫

t

ψ2(t, τ)f (3)(xi + τh)dτ,

where
ψ1(t, τ) = τ(t4 − t3)− τ2(1 + 2t4 − 2t3 − t2)

and

ψ2(t, τ) = (1− τ)2(−2t4 + 2t3 + t2)− (1− τ)(t4 − t3),

from where it follows that R(x) = O(h3).
Similarly, for derivatives corresponding estimates are obtained.
Now we are in position to state:
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Theorem 1 If f(x) ∈ W 3∞[a, b] then for regular mesh
∥∥∥S(k)(x)− f (k)(x)

∥∥∥∞ = O(h3−k), k = 0, 1, 2.

The proof of the theorem follows from the identity

R(x) = S(x)−H(x) + H(x)− f(x),

and from Lemma 1 and Lemma 3.

4 Conclusions.

So, in the presented paper an explicit scheme of interpolation using
quartic splines is obtained. The order of approximation by the proposed
algorithm is the same as by the one for cubic splines. The presented
algorithm can be extended for bidimensional case.
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