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Abstract

In this paper we consider finding meaningful solutions of ill-
conditioned overdetermined linear systems Az =~ b, where A and
b are both contaminated by noise. This kind of problems fre-
quently arise in discretization of certain integral equations. One
of the most popular approaches to find meaningful solutions of
such systems is the so called total least squares problem. First we
introduce this approach and then present three numerical algo-
rithms to solve the resulting fractional minimization problem. In
spite of the fact that the fractional minimization problem is not
necessarily a convex problem, on all test problems we can get the
global optimal solution. Extensive numerical experiments are re-
ported to demonstrate the practical performance of the presented
algorithms.

Keywords: Linear systems, Total least squares, Tikhonov
regularization, Newton method, Bisection method.

1 Introduction

In this paper we aim to find meaningful solutions for the linear systems
of the form

Az ~ b, (1)

where A € R™*", b € R™, m > n are both contaminated by noise.
This kind of systems frequently arise in discretization of certain integral
equations [3].
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If A is ill-conditioned, a quite effective procedure to find a rea-
sonably good solution for (1) is to use the regularized least squares
approach. Perhaps the best known regularization technique is due to
Tikhonov [6], which solves the following minimization problem rather
than classical least squares one:

. A _b2 2 2
min [[Az = b|" + p|l], (2)

where p is a positive constant.

It is worth mentioning that when p = 0 (the classical least squares
approach), and A is ill-conditioned, then the solution of (2) might have
large norm, while for positive p it is not the case. It is not easy to
find the exact value of p, however there have been some studies on this
subject [5]. It is obvious that (2) is a convex minimization problem
and its optimal solutions should satisfy

(ATA + phz = ATb. (3)

We may use existing efficient iterative algorithms like conjugate gradi-
ent methods to solve (3).

Another most popular approach to deal with such systems is the
so called total least squares problem [1, 4]. This approach leads to a
fractional nonconvex minimization problem. In this paper we present
three efficient algorithms to solve it. Extensive numerical results are
reported to show the efficiency of the discussed algorithms.

2 Total least squares problem

In this approach, one aims to find a feasible system by minimal changes
in problem data i.e.,

min ||E||2 + ||7‘H2
z,E,r
(A+E)x=0b+r. (4)

The optimal E and r values are given in the following theorem.
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Theorem 1. The optimal E and r values of problem (4) are given by
Ax* —b . Ax* —b p

r=—, =37
Lt fla= | L+ 2+

*

where x* is the optimal solution of

2
Az — b
s 1+ o]

(5)

Proof. The minimization problem in (4) can be written as two mini-
mization problems as follows:
min min  ||E|* + ||r|]?
zeR™ Er
(A+E)x=b+r.

Let us first consider the inner minimization problem. Obviously it
is a convex optimization problem, therefore the KKT conditions are
necessary and sufficient for optimality that follows:

2E" + N2" =0
= N"=0 (6)
(A+E )z —b—r* =0,

where the vector A\* denotes the lagrange multipliers. From the sec-
ond equation of (6) we have A* = 2r* and subsequently from the first

equation we have E* = —r*zT. Finally, the last equation implies that
N Ax—b
= —,
el
and subsequently
x Aﬂc — b T
- .
1+ [|l]]
Now the objective function of inner minimization problem becomes
2
| Az — b]|
5 -
1+ [l]|
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Thus if z* be an optimal solution of this problem, then the proof is
completed. O

Therefore, by solving this minimization problem we have a mod-
ified linear system which is feasible. Since the original system is ill-
conditioned, then the solution of (5) might be meaningless from prac-
tical point of view due to the large norm. Thus we can stabilize the
solution by utilizing the Tikhonov regularization technique. The regu-
larized problem becomes:

. 1Az — b||*
min f(z) :=
e

+plel?, (7)
where p is a nonnegative parameter. As it is obvious, problem (7) is
not known to be convex or concave in general. In the sequel we present
several numerical algorithms, which can help us to solve (7) up to global
optimality. First let us derive the gradient and hessian of the objective
function of (7) as follows:

C24T(Az—b)  2||Az — b))’

VIO =" T A+ ey

V2 f(z) = 2AT A 4z(AT (Az — b)) 9o — 4AT (Az — b)zT

- p
1+ ||z (1+ ||=]*)2 (1+ ||z]*)2
8ral 2

< . 221) | Az — b||2.

I+ =72 A+ =zl

The first approach which we utilize to tackle (7) numerically is the
classical Newton method. During this process one might end up with
an iterate when the hessian is singular or very close to singularity, but
a slight perturbation of it usually resolves this bad behavior. Although
the objective function of (7) is not known to be convex, but for most
of the test problems we have considered, it yields a global solution as
it will be shown in the next section. The structure of the algorithm is
as follows:
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Newton Based Algorithm

Inputs: An accuracy parameter € > 0;
A regularization parameter p;
A parameter § usually 107%;
A starting point zg € R".
begin
i=0;
while ||V f(z;)]| > €
Find an appropriate o by Armijo line search and let
Tiy1 = T — OJ(VQf({L‘Z) + 5[)71Vf(.%'1)
i=i+1;
end
end
In the sequel we present another algorithm by an old idea due to
Dinkelbach [2] which uses an equivalent formulation of the problem (7)
to solve it. It is obvious that

1Az — b]”

2
m{————5 +p|lx <t
i el
is equivalent to
. 2 2 2 4
min {[[Az = b[" — (1 + [|=[") + p(ll2]]” + [|l2[1)} < 0. (8)

Now let us define

() = min {[| Az — b|* — ¢(1 + [|[|") + p([lx[|” + [|1|)}

Lemma 1. The function ®(t) is a strictly decreasing function.
Proof. Let t; < ty and x4, be the point for which
2 2 2 4
®(t1) = [[Aze, = b7 = 61 (L + e, [I) + p[lve, 17 + [J04, 1)
Then we have

(1) > [|Aze, —bl* = t2(1+ [l [I*) + p(llze, |* + e I*) = (o).
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Therefore, ®(t1) > ®(t2). O
We further have that ®(0) > 0 and

(|[b]%) < (140 — b — [Ib* (1 + [10]1*) + p(0]* + [[0][) = 0

Therefore function ®(¢) has a unique root in the interval [0, ||b]|%]. Now
our goal is to find this root. First in the Next lemma we prove that
this gives us the global minimum of (7). Then explain how to find the
root numerically.

Lemma 2. The root of the function ®(t) gives the global minimum of
problem (7).

Proof. Let t* be the root of ®(¢). Then

nin {||Az — bIIF = (1 + [|z]*) + p(lll|* + [lz]*)} = 0.

Let z* be the point on which this minimum happens. Then for any
x € R"™ one has

1Az = bl|* — " (1 + [[l|*) + p(l|z]|* + |*) = 0,

or
| Az — b]*
1+ ||z
This further implies that

+pla)? =t

- 2
A0

2 *
— +pllz||7} > 17,
min (L2 ol

but at least we know that equality holds when x = x*. Thus z* is the
global minimum of (7). O

Now, to find the root of function ®(¢) we utilize the bisection algo-
rithm to reduce the initial interval [0, ||b]|*] and also the classical New-
ton method to solve the corresponding minimization problem. Similar
to the fractional case, here also we do not know whether the objective
function is convex or not. But this simple procedure leads us to the
global minimum for all test problems.

19



M. Salahi, H. Zareamoghaddam

However, as we are aware, the bisection method is usually too slow,
so the third approach which we consider is as follows. First we perform
a few iterations of bisection algorithm, then crossover to formulation
(7) rather than finding the root of function ®. This combined algo-
rithm finds the global solution much faster compared to both previous
algorithms. In the next section we report extensive numerical testing
which demonstrates the practical performance of the three presented
algorithms.

3 Computational experiments

Test problems in Tables 1 and 2 are taken from [5] which contains
ill-posed linear systems arising from certain integral equations, and
problems on Table 3 are taken from University of Florida sparse matrix
collection. The implementation of the algorithms are done in MATLAB
7.4 on a pentium M 1.7GHz laptop with 1 GB of memory. All test
problems are square, however they can easily be made overdetermined
by repeating some constraints with slightly different right hand side
and still the same observations, which will be given in the sequel, hold.

For all test problems the coefficient matrices are either singular or
very close to singularity. Moreover, for problems in Tables 1 and 2
we have the exact solution and for problems in Table 3 we consider
all one vector as the exact solution. Furthermore the noisy system is
generated by perturbing A and b by adding ‘le — 3 * randn(size(A))’
and ‘le — 3 x randn(size(b))’ respectively. Since the coefficient matrix
is singular or very close to singularity, then either system Az = b is
infeasible or its solution might have very large norm. Therefore the
total least squares approach is utilized to find an appropriate feasible
system with a meaningful solution.

In all tables x5 and =* denote the exact and computed solution of
problems, respectively and ||Az* — b|| denotes the violation of the com-
puted solution from the original system. The numbers in all parenthesis
are for the classical Newton method, bisection method, and bisection-
Newton method (crossover) respectively. For all test problems we have
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Table 2. Comparison of Newton, bisection-Newton and crossover algorithms

problem p [[Az* — b]| || [EA] time
shaw-100 0.001 | (0.5862,0.5862,0.5862) | (9.3802,9.3802,9.3802) 9.982 (0.18,0.28,0.17)
0.1 (6.7763,6.7763,6.7763) (6.093,6.093, 6.093) 9.982 (0.1,0.3,0.15)
1 | (12.128,12.128,12.128) | (3.985, 3.085, 3.985) 9.082 (0.1,0.33,0.18)
10 | (16.704,16.704,16.704) | (2.3207,2.3207,2.3207) | 9.082 (0.1,0.35,0.15)
shaw-500 0.001 (224.4, 3.9035, 3.9035) (58.085,19.253,19.253) 22.32 (6,25.9,14.2)
0.1 (23.265,23.265, 23.265) (10.37,10.37,10.37) 22.32 (2.7,27.6,17.3)
1 (33.95, 33.95, 33.95) (6.409, 6.409, 6.409) 22.32 (3.2,27.8,18.7)
10 (41.504,41.504,41.504) (3.715,3.715,3.715) 22.32 (3.6,31,0.14.2)
shaw-1000 0.001 | (270.21,8.1311,8.1311) | (66.423,25.695,25.695) | 31.566 (58.3,172.1,95.5)
0.1 (37.78,37.78,37.78) (12.82,12.82,12.82) 31.566 (22.5,193,118.6)
1 (51.57,51.57,51.57) (7.7873,7.7873,7.7873) | 31.566 (25.3,199.5,125.5)
10 (60.833,60.833,60833) (4.5,4.5,4.5) 31.566 | (28.60,207.6,101.7)
spike-100 0.001 | (1.2306,1.2306,1.2306) | (14.121,14.121,14.121) | 29.017 (0.2,0.3,0.15)
0.1 (17.211,17.211,17.211) | (11.664,11.664,11.664) | 29.017 (0.1,0.33,0.2)
1 (43.986,43.986,43.986) | (8.4666,8.4666,8.4666) | 29.017 (0.1,0.34,0.23)
10 (72.392,72.392,72.392) | (5.4189,5.4189,5.4189) | 29.017 (0.1,0.39,0.23)
spike-500 0.001 | (1.3441,1.3441,1.3441) | (22.706,22.706,22.706) 34.67 (17,25.9,14.8)
0.1 (33.24,33.24,33.24) | (21.207, 21.207,21.207) | 34.670 (6.3,32,10)
1 (138.54, 138.54, 138.64) | (17.723,17.723,17.723) | 34.670 (9.1,29.5,20.5)
10 (319.12,319.12,319.12) | (12.607,12.607,12.607) | 34.670 (4.4,29.3,18.4)
spike-1000 0.001 (1.9066, 1.9066) (30.877,30.877,30.877) | 40.645 (580,210,124)
0.1 (51.536,51.632,51.536) | (29.536,29.536,29.536) | 40.645 (26,205.9,123.7)
1 (252.78,252.78,252.78) | (25.833,25.833,25.833) | 40.645 (48.3,215,156.2)
10 (678.16,678.16,678.16) | (19.205,19.205,19.205) | 40.645 (20,220.2,152)
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used 10 * ones(n, 1) as the starting point! with four different values of
the p parameter. Having prior information of the solution also indeed is
suggested to be incorporated as the starting point selection procedure.

As our computational results show, the classical Newton method
solves all problems for p = 0.1,1,10 faster than the other two ap-
proaches, however it fails for many problems when p = 0.001. It is
worth to note that by changing the starting point to for example
100 x ones(n,1) Newton method solves some of the failed problems.
However, the other two approaches successfully solve all problems for
all p values up to global optimality. Therefore, based on these compu-
tational results we may conclude that for smaller p values the later two
approaches are preferred to Newton algorithm, specially the crossover
approach, otherwise the Newton algorithm seems to find the global
solution much faster.

4 Conclusions

In this paper, first we have introduced the total least squares problem
to deal with approximate feasible linear systems. Then three numerical
algorithms are presented to solve the resulting fractional minimization
problem. Finally, several numerical examples are presented to demon-
strate the practical efficiency of the presented algorithms.
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