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Minimum d-convex partition of a
multidimensional polyhedron with holes*

Ion Bat

Abstract

In a normed space R™ over the field of real numbers R,
which is an a-space [36,39], one derives the formula express-
ing the minimum number of d-convex pieces into which a geo-
metric n-dimensional polyhedron with holes can be partitioned.
The problem of partitioning a geometric n-dimensional polyhe-
dron has many theoretical and practical applications in various
fields such as computational geometry, image processing, pattern
recognition, computer graphics, VLSI engineering, and others
[5,10,11,19,21,28,29,31,43].
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1. Introduction

Let (X,d) be a metric space, and let z1,29 € X be two arbitrary
points of (X,d). By analogy with the classical definition of a con-
vex set one introduces the notion of metric convexity depending on
d [6,8,20,36]. The set of points, denoted by (z1,z9) and defined by
(x1,22) = {z | d(z1,22) =d(z1,2) + d(z,22)}, is called a metric seg-
ment joining the points 1 and x3. A set M C X is said to be d-convex
if for any two points z1,z9 € M the metric segment (z,,z9) C M. It is
easy to see that the intersection of two d-convex sets is a d-convex set.
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For a given set M C X, the d-convex hull of the set M, denoted by
d-conv M, is defined as the intersection of all d-convex sets containing
M. In case that (X,d) is a normed space R" over the field of real
numbers R with d (z1,29) = ||z1 — 22| every d-convex set is also a
convex set, but not always conversely. Convexity and d-convexity in
R™ coincide if and only if the closed unit ball of R" is strictly convex
[6, 8,20, 36]. Thus this notions coincide in the Euclidean space E". For
a bounded set N C R" it can happen that d-conv N = R" [6, 36]. We
will only consider those normed spaces such that d-conv N is bounded,
that is, so-called a-spaces [36, 39].

In the papers [1,7,24,26,32,38,40,42] it is given sufficient infor-
mation on the problem of partitioning a polygon with holes or a 3-
dimensional geometric polyhedron with holes into the minimum num-
ber of d-convex pieces.

Let R? be a normed plane, and let P? be an open polygon with ¢
holes of dimension d € {0, 1,2} all of whose edges are d-convex.

In the paper [24] R? coincides with the Euclidean plane E?, and
the edges of the polygon P? are only parallel to two perpendicular
directions while all the holes are of dimension 2. In this case it is
shown that the minimum number ¢ (PQ) of rectangles partitioning the
polygon P2 is

2

q(P)—%—h, (1.1)
where s is the total sum of interior angles of the polygon P?, measured
in radians, and A is the maximum number of mutually disjoint segments
that can be drawn within the closure of the polygon P?, parallel to the
edges of P2, and with the endpoints at the concave vertices. This
formula was generalized by Soltan and Gorpinevich [42] for the case of
a rectilinear polygonal domain with possible degenerate holes. That
problem appeared in VLSI engineering [35].

In the papers [7,26,32] the problem to partition the polygon P?
into a minimum number of d-convex pieces is completely solved. The
respective formula is shown to be

q(P*)=m+1—g—h, (1.2)
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where m, g are the total sum of all measures of local nonconvexity of
points of local nonconvexity [7, 26], the number of holes of the polygon
P?, respectively, and h is the number of elements of a maximum con-
cordant system of dividing trees [7,26]. Considering R? with the norm
l|z|| = |z1] + |z2], it is easy to obtain that ¢ in (1.1) and ¢ in (1.2) are
the same number for the case from [25].

Let P? be an open polyhedron in the Euclidean space E? with
polyhedral holes and the edges parallel to the coordinate axes of E3,
where the holes can be of dimension 3,2,1,0. A formula expressing the
minimum number of parallelepipeds ¢ (P3) into which the polyhedron
P3 can be partitioned is proposed in the paper [1]. The researches
done in this paper led to the fact that the minimum estimation of
q (P3) required the methods of algebraic topology to be applied, as it
would see below.

2. Auxiliary elements

In a normed space R" it is possible to define the notion of a geometric
n-dimensional polyhedron in a simpler or more complicated way. We
will introduce a more natural notion of a polyhedron as the (simple)
polygon [14] in R? and the (simple) geometric polyhedron [14] in R?
are defined.

By analogy with [9] we propose

Definition 2.1. A compact n-dimensional PL manifold [15, 18,27, 34]
with boundary in the normed space R™ which admits a decomposi-
tion into q handles [16,34] of index 1 is said to be a geometric n-
dimensional polyhedron of genus q in R". It is denoted by Pj'.

For a geometric polyhedron P’ as a topological subspace of the
space R"™, we will denote by bd Pg', int P, P_,? the boundary, the interior
and the closure of P}, respectively. By B"(z,e) C R" we denote
the closed ball with center at x and radius e. We will use B™ and
S™~1 as notations for the closed unit ball and the unit sphere of R,
respectively.
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Definition 2.2. Let x be a boundary point of a geometric polyhedron
P} We will denote by aff (x,Pq”) the union of x and all lines | in
R™ through the point x such that the intersection lﬂde;1 contains
an open line segment which includes x. The connection component of
aff ([L‘,PZ’) ﬂde(;1 which contains the point x s called a face of = of
P}. By convention, 0 and P} are called improper faces of P}

Definition 2.3. By a m-dimensional face F™ of P! we mean a
face of dimension m (the dimension of the affine hull of F™™). We call
Fm

1) a vertex of P}, if m =0;
2) an edge of P}, if m =1;
3) a facet of P}, if m=mn—1.
The dimension of the empty face is set to —1 by convention.

Definition 2.4. [36,39] A normed space R" is called an a-space if
for every bounded set N C R"™ the d-convex hull of N is bounded.

Let X be a Hausdorff space.

Definition 2.5. A subset e of the space X is called an m-dimensional
open polyhedral cell, or m-dimensional polyhedral cell in X if
it 18 PL homeomorphic with an m-dimensional open conver polytope
[13,25,33] in the space R™.

Definition 2.6. A subset e of the space X is called an m-dimensional
closed polyhedral cell in X if it s PL homeomorphic with an m-
dimensional convez polytope in the space R™.

Definition 2.7. A subset e of the space X is called an m-dimensional
open cell, or m-dimensional cell in X if it is homeomorphic to the
open unit ball of the space R™. Let € be the closure of e in X, and let
é=¢e\e.

Definition 2.8. [12,18,22] A set & = {ex | A € A} of cells in the Haus-
dorff space X is called a cellular decomposition of X if the following
three conditions are satisfied:
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1) ex(ey is empty if X # p;

2) X = Uex;
AEA
3) for every m-dimensional cell ey € £ there is a continuous map-
ping
P: (Bm,Sm_l) — (Xm_1 Ue)\,Xm_l)
such that @(Bm\Smfl) — ey 18 a homeomorphism, where
X™m=1 s the union of all the cells e, € &, whose dimensions
are not greater than m — 1.

Definition 2.9. [12,18,22] A Hausdorff space X together with its cel-
lular decomposition € = {e) | A € A} is called a cell complex. A cell
complex X 1is said to be finite if the set £ is finite.

Definition 2.10. The dimension dim X of a cell complex X is m if
X contains an m-dimensional cell but no (m+1)-dimensional cell, and
oo if X contains m-dimensional cells for all m > 0.

Definition 2.11. [12,18,22] A cell complez X s said to be closure
finite if the closure of each cell meets only finitely many other cells,

and X is said to have the weak topology if a subset A C X 1is closed
iff A€ is closed in € for each cell e of X.

Definition 2.12. We call a cell complex a CW complex if it is closure
finite and has the weak topology.

It is easy to see that a finite cell complex is a CW complex. A
geometric polyhedron is also a finite CW complex.

Theorem 2.1. [12,18,22] If X is a CW complez, then the mth integral
cellular homology group of X is isomorphic to the mth integral singular
homology group of X.

Definition 2.13. If X is a finite CW complex and (B, denotes the

rank of the mth integral singular homology group of X, then the number
dim X
x(X)= > (=1)™B,, is called the Euler-Poincaré characteristic

m=0
[12,17,18,22] of X.
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Theorem 2.2 (Euler-Poincaré). [12,18,22,23,30,44] For a finite
CW complex X it holds that

dim X dim X
X(X)= Y ()" Bn= Y (=1)"m,
m=0 m=0

where «,, denotes the number of m-dimensional cells of X.

It is evident from the definition of the integral singular homology
group and the theorems above that the Euler-Poincaré characteristic
Xx(X) is an integer topological invariant for a finite CW complex X.
Moreover, x(X) depends only on the homotopy type of X. In partic-
ular, given any CW decomposition of X, we always will get the same
integer x(X).

In that follows, a subscript in the name of mathematical objects
denotes their dimension.

3. Main theorem

Let R" be an a-space, and let Pi' C R" be a geometric n-polyhedron
of genus ¢ all of whose facets belong to the d-convex hyperplanes in
R". Consider this polyhedron P}’ having also a finite number of holes,
mutually disjoint open geometric polyhedrons of genus 0 of dimension
n,n —1,...,0, the facets of which belong to the d-convex linear man-
ifolds in R™. Suppose also that R"™ \ U is an n-cell in R", where U is
the unbounded connection component of the complement R" \ int P’
When speaking of a face of F}', we will mean either a face of the poly-
hedron P' without holes or a face of a certain hole of P'. Since P} is
compact, the set of faces of P is finite.

Definition 3.1. A point x € bd P} is called a point of local non-
d-convexity [6,7,26,32,40] of P, if, for any sufficiently small € > 0,
there exists at least one non-d-convex connection component of the in-
tersection d-conv B" (z,¢) ()int Py

Let R be the set of all points of local non-d-convexity of the poly-
hedron Pp'. We will always assume that the set R is not empty.
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Definition 3.2. The geometric polyhedron P} is called partitioned
tnto d-convex pieces Q1,Qo,...,Q, if

1) intQ; #£0, i=1,2,...,r;
T T

2) UintQ; Cint P;' C |JQi;
=1 =1

3) intQ;NintQ; =0, i # j.

It is obvious that P}’ has at least one d-convex partition. We will de-
note by p (Pq”) the minimum number of d-convex pieces into which P’
can be partitioned. Since the number of d-convex pieces of a d-convex
partition Q1,Q2,...,Qr of the geometric polyhedron P7' is equal to
the number of d-convex pieces of the d-convex partition Q1, Qs ..., Q:,
without losing generality, we will assume that the d-convex pieces into
which P¢' can be partitioned are closed.

By D" ! and ‘D"*l‘ we will denote a finite set of polyhedral cells
of dimension < n — 1 in the a-space R", belonging to the interior of
P7', and the set of all points of the cells, respectively.

Definition 3.3. A set D"! is called a dividing [1-4,37] of the
polyhedron Pj if D" 1 satisfies the following condition: for every
z € RUJ|D" ! there exists an € > 0 such that the intersection
(int PP\ |D"—1|) N d-conv B" () consists only of d-convez connec-
tion components;

The set dvz P of all dividings of the polyhedron F}' is not empty.
This assertion relies on the existence of a d-convex partition of P
Inverse, any d-convex partition of P}’ can be obtained by a certain
dividing of P

n—1 .
Definition 3.4. The number x (D" 1) = Y (—1)'ey; will be called the
i=0
Euler-Poincaré characteristic of the dividing D"~ ', where «; is
the number of polyhedral cells of dimension i of D" !.
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The Euler-Poincaré characteristic is an integer topological invariant
for ‘D”’l‘. This fact results from the definition of the dividing. The
notion of a dividing is not other than a generalization of the notion of
a concordant system of dividing trees [6,26] for a polygonal domain.

Theorem 3.1. The Euler-Poincaré characteristic of a polyhedron
P} CR"™ n >3, satisfies the property:

X (bdP)) = x (P) = ()" 1 —¢q) +g, (3.1)

where g is the number of bounded connection components of the com-
plement R™ \ int P

Proof. First we consider that ¢ = 0. We will prove the statement of
the theorem by induction on g.

The case g = 0 is trivial: x (P}') = x (bd P}') + (—=1)"™.

For the case g = 1, let () denote the bounded connection component
of the complement R" \ int P}'. Let z be a vertex of () and let H be
a hyperplane through the point z such that H ()@ = z. The existence
of such a point z results from the facts that the set of holes is finite
and the holes are geometric polyhedrons. Consider that the connection
component of the intersection H (| P}’ which contains the point z is a
closed polyhedral (n —1)-cell in the space R™. This connection compo-
nent divides int By’ into two polyhedral n-cells in R". The polyhedron
P can be PL homeomorphically deformed in order to pass such a
hyperplane H. Therefore

X (PF) = (x (bd Pg) = 1) + (=1)" " + (=1)" - 2.
As a result,
x (bdPY) —x (B7) = (=)™ 11 —-0) + 1.

Assume the equality (3.1) holds for all polyhedrons M{§ with at most
Il — 1,1 > 2, bounded connection components of the complement
R™\ int M, and let PJ be a polyhedron with ! bounded connection
components of the complement R" \ int Pj'. Choose a hyperplane H
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such that H () int Pj # () and regard a connection component C' of
the intersection H (| P§'. Suppose that the connection component C' is
a closed polyhedral (n — 1)-cell in the space R™ and C'()int P is an
open polyhedral (n — 1)-cell. The connection component C' determines
two n-polyhedrons P, and P». Counsider that each of these polyhedrons
contains at least one bounded connection component of its complement.
The polyhedron FJ' can be PL homeomorphically deformed in order
to pass such a hyperplane H. By inductive assumption,

x(bdP) —x (P) =(-1)""1(1-0)+g

and
X (bd Py) — x (P2) = (—=1)" "1 (1 = 0) + go,

where g1, g9 are the bounded connection components of the comple-
ments R™ \ int P and R™ \ int P,, respectively. It is easily seen, that
g1+ 92 =g. Since x (8" 1) =14 (=1)""! for the unit sphere 5" ! in
R"™, we have

X (bdP}) = x(dPy)+x(bdP) — (-1)" 12— (1+(-1)"?),
X (P_On) = X (Fl) +x (E) — (=)t = (1 + (_1)n72) .

Hence
x (bd P§)=x (FF) = (=1)" 1 (1=0)+g1+(=1)" H(1=0)+ga—(—1)" .

Whence
X (bdPg) = x (Bf) = (=1)""'(1 = 0) +g.

Now assume that ¢ > 0. Choose for the handles in F;' two secant balls
each. Suppose that each of these secant balls intersects the polyhedron
Pj' and the interior of P}’ by a closed polyhedral (n — 1)-cell and by
an open polyhedral (n — 1)-cell in the space R", respectively. The
polyhedron Fj' can be PL homeomorphically deformed in order to
pass such balls. The balls separate P}' into ¢ + 1 polyhedrons P; of
dimension n of genus 0, ¢+ = 1,2,...,¢ + 1. Reasoning as above, we
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obtain
x(bdP)—x(B) = ()" '1—-0)+g;,i=1,2...,g+1,
q+1
Y9 = 9
=1
q+1
X (bdPp) =3 x(bdP) = (1) dg— (14 (=) ?) - 2,
=1
q+1

X(®F) = Y x(B) - (=)""-2q— (14 (-1)"?) - 2,
i=1
where g; is the bounded connection components of the complement
R"\intP;, i =1,2,...,q+ 1. It follows immediately that

q+1

x (bd P7) = x (P) =D ()" (1= 0) +g) = (=1)""" - 2¢.
i=1

Therefore we get
x (bdP}) —x (Pr) = (-1)"""(1—q) +g.
This completes the proof. O

Theorem 3.2 (Main Theorem). For a polyhedron P} CR" n=>3,
the equality

p(F]) = (1 (e () —x (B)) ¢, min e (0

holds.

Proof. Let D"~ be a dividing of the polyhedron Pg. This dividing
determines a finite CW n-complex K™ representing the polyhedron
P and whose n-cells are open d-convex polytopes. Indeed, from the
definition of the dividing, the set of all points belonging to the closures
of polyhedral cells of the dividing D" ! is a finite CW (n — 1)-complex

356



Minimum d-convex partition of a multidimensional polyhedron

M1, Moreover, the set of the cells of M™ !, each of which belongs
to the boundary of P, determines a decomposition of the bound-
ary into polyhedral cells in the space R™. Denote by L"~! the CW
(n — 1)-complex formed by this decomposition. The finite CW com-
plex M"1{JL" ! together with the connection components C; of
the set int Py \ (M" tJL" ') forms the required cell decomposi-
tion. The connection components C; are open, local d-convex, so they
are also d-convex [41]. The closures of these connection components
partition P}’ into d-convex pieces. We have x (P_q”) = x (K™) and
x (bd P}') = x (L™!). From the theorem 2.2, it is clear that

n

X(K") =3 (1), (3.2)

1=0

where ay, is the number of d-convex pieces into which Pg' is parti-
tioned, and «; represents the number of polyhedral i-cells of K", ¢ =
0,1,...,n — 1. Rewrite (3.2) as follows

n—1
(=1)"a, = x (K") - Z(_l)iai-
=0
Whence
n—1 ' n—1 '
(—1)"an = x (K™) = > (=1)'af =Y (-1)'af,
=0 =0

where ¢ is the number of polyhedral i-cells belonging to the boundary
of P/, and «f is the number of polyhedral i-cells belonging to the
dividing D"~!. Therefore we get

(—1)"an = x (K") = x (L") = x (D"71). (3.3)

Thus, both sides of the equality (3.3) being multiplied by (—1)", we
obtain

an = (1) (K™) + (21" (177) + (=17 (D771).
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Whence
an = (D" (x (6dP}) — x (PF)) + (-1)"'x (D"71).  (34)

The Euler-Poincaré characteristic of the dividing D"~ ! is nonnegative
for odd n and is nonpositive for even n in view of the facts that the
relations (3.1), (3.4) and the inequality a;, > g hold. Therefore we get
‘X (D”_l)‘ = (=1)""tx (D™"1). If the dividing D"! is chosen such
that the value of ‘X (D"*l) ‘ to be minimum, then ¢, is minimum, too.
Hence we obtain

n\ _ (_1\n—1 ny _ Dn : n—1
p(F) = (" e (a2 —x (Bp)) + ) pnim [ (D)),

and the theorem is proved. ]

Corollary 3.1. Let P! C R", n > 3, be a geometric n-polyhedron.
Then
PY)=1—g+(-1)"!'-g+ min D1,
p( Q) ¢+ (=) 9 D”—ledvaq"‘X( )‘

where g is the number of bounded connection components of the com-
plement R™ \ int P

Corollary 3.2. Let Pq2 C R? be a geometric 2-polyhedron (a polygonal
domain). Then
P?)=1- i D!
r(Fy) g+Dlgli:JIzqu?‘X( )|

where g is the number of bounded connection components of the com-
plement R? \ int PqQ.

To prove the corollary, it suffices to analyse the proof of the theorem
3.1.

n
If the norm of R" is defined by ||z|| = ) |z;|, then for the polyhe-

i=1
drons P? and P? in Figure 3.1 and Figure 3.2, respectively, we obtain
p(P?) =1-5+|1-18| =13 and p (P3) = 1—-0+2+]0—22+34| = 15.
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