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About Precise Characterization of Languages

Generated by Hybrid Networks of Evolutionary

Processors with One Node ∗

Artiom Alhazov Yurii Rogozhin

Abstract

A hybrid network of evolutionary processors (an HNEP) is a
graph where each node is associated with an evolutionary pro-
cessor (a special rewriting system), a set of words, an input fil-
ter and an output filter. Every evolutionary processor is given
with a finite set of one type of point mutations (an insertion, a
deletion or a substitution of a symbol) which can be applied to
certain positions of a string over the domain of the set of these
rewriting rules. The HNEP functions by rewriting the words that
can be found at the nodes and then re-distributing the resulting
strings according to a communication protocol based on a fil-
tering mechanism. The filters are defined by certain variants of
random-context conditions. In this paper we complete investiga-
tion of HNEPs with one node and present a precise description
of languages generated by them.

1 Introduction

Insertion, deletion, and substitution are fundamental operations in for-
mal language theory, their power and limits have obtained much at-
tention during the years. Due to their simplicity, language generating
mechanisms based on these operations are of particular interest. Net-
works of evolutionary processors (NEPs, for short), introduced in [8],
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are proper examples for distributed variants of these constructs. In this
case, an evolutionary processor (a rewriting system which is capable to
perform an insertion, a deletion, and a substitution of a symbol) is lo-
cated at every node of a virtual graph which may operate over sets or
multisets of words. The system functions by rewriting the collections
of words present at the nodes and then re-distributing the resulting
strings according to a communication protocol defined by a filtering
mechanism. The language determined by the network is defined as the
set of words which appear at some distinguished node in the course of
the computation. These architectures also belong to models inspired by
cell biology, since each processor represents a cell performing point mu-
tations of DNA and controlling its passage inside and outside the cell
through a filtering mechanism. The evolutionary processor corresponds
to the cell, the generated word to a DNA strand, and the operations in-
sertion, deletion, and substitution of a symbol to the point mutations.
It is known that, by using an appropriate filtering mechanism, NEPs
with a very small number of nodes are computationally complete com-
putational devices, i.e. they are as powerful as the Turing machines
(see, for example [5, 6]).

Particularly interesting variants of these devices are the so-called
hybrid networks of evolutionary processors (HNEPs), where each lan-
guage processor performs only one of the above operations on a certain
position of the words in that node. Furthermore, the filters are de-
fined by some variants of random-context conditions, i.e., they check
the presence/absence of certain symbols in the words. These constructs
can be considered both language generating and accepting devices, i.e.,
generating HNEPs (GHNEPs) and accepting HNEPS (AHNEPs). The
notion of an HNEP, as a language generating device, was introduced
in [16] and the concept of an AHNEP was defined in [15].

In [9] it was shown that, for an alphabet V , GHNEPs with
27 + 3 · card(V ) nodes are computationally complete. A significant
improvement of the result can be found in [1], where it was proved
that GHNEPs with 10 nodes (irrespectively of the size of the alphabet)
obtain the universal power. For accepting HNEPs, in [13] it was shown
that for any recursively enumerable language there exists a recognizing
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AHNEP with 31 nodes; the result was improved significantly in [14]
where the number of necessary nodes was reduced to 24. Furthermore,
in [14] the authors demonstrated a method to construct for any NP-
language L an AHNEP with 24 nodes which decides L in polynomial
time.

At last in [2] it was proved that any recursively enumerable language
can be generated by a GHNEP having 7 nodes (thus, the result from [1]
is improved) and in [3] the same authors showed that any recursively
enumerable language can be accepted by an AHNEP with 7 nodes
(thus, the result from [14] is improved significantly). In [3] also it was
showed that the families of GHNEPs and AHNEPs with 2 nodes are
not computationally complete.

In [9] it was demonstrated that a GHNEP with one node can gen-
erate only regular language, but now in this paper we present a precise
form of the generated language and consider one case omitted in the
previous proof. Tasks of characterization of languages generated by a
GHNEP with two nodes and languages accepting by an AHNEP with
two nodes are still opened.

2 Prerequisites

We first recall some basic notions from formal language theory that we
shall use in the paper. An alphabet is a finite and non-empty set of
symbols. The cardinality of a finite set A is denoted by card(A). A
sequence of symbols from an alphabet V is called a word (or a string)
over V . The set of all words over V is denoted by V ∗; the empty word
is denoted by ε; and we define V + = V ∗\{ε}. The length of a word x is
denoted by |x|, and we designate the number of occurrences of a letter
a in a word x by |x|a. For each non-empty word x, alph(x) denotes the
smallest alphabet Σ such that x ∈ Σ∗.

The shuffle operation defined on two words x, y ∈ V ∗ by
∐∐

(x, y) = {x1y1x2y2 . . . xnyn | n ≥ 1, xi, yy ∈ V ∗,
x = x1x2 . . . xn, y = y1y2 . . . yn}.

Let L1, L2 ∈ V ∗ are two languages. Then
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∐∐
(L1, L2) =

⋃
x∈L1,y∈L2

∐∐
(x, y).

A type-0 generative grammar is a quadruple G = (N,T, S, P ),
where N and T are disjoint alphabets, called the nonterminal and ter-
minal alphabet, respectively, S ∈ N is the start symbol or the axiom,
and P is a finite set of productions or rewriting rules of the form u → v,
where u ∈ (N ∪ T )∗N(N ∪ T )∗ and v ∈ (N ∪ T )∗. For two strings x
and y in (N ∪ T )∗, we say that x directly derives y in G, denoted by
x =⇒G v, if there is a production u → v in P such that x = x1ux2

and y = x1vx2, x1, x2 ∈ (N ∪ T )∗ holds. The transitive and reflexive
closure of =⇒G is denoted by =⇒∗

G. The language L(G) generated by
G is defined by L(G) = {w ∈ T ∗ | S =⇒∗

G w}.
We recall now a concept dual to a type-0 generative grammar,

called a type-0 analytic grammar [17]. A type-0 analytic grammar
G = (N, T, S, P ) is a quadruple where N, T, S are defined in the same
way as for a generative grammar, and P is a finite set of productions
of the form u → v, where u ∈ (N ∪ T )∗ and v ∈ (N ∪ T )∗N(N ∪ T )∗.
The derivation relation is defined for a type-0 analytic grammar analo-
gously to the derivation relation for a type-0 generative grammar. The
language L(G) recognized or accepted by a type-0 analytic grammar
G = (N, T, S, P ) is defined as L(G) = {w ∈ T ∗ | w =⇒∗

G S}.
It is well-known that for the type-0 analytic grammar G′ obtained

from a type-0 generative grammar G with interchanging the left and the
right hand sides of the productions in G, it holds that L(G′) = L(G).

In the sequel, following the terminology in [9], we recall the neces-
sary notions concerning evolutionary processors and their hybrid net-
works. These language processors use so-called evolutionary opera-
tions, simple rewriting operations which abstract local gene mutations.

For an alphabet V, we say that a rule a → b, with a, b ∈ V ∪ {ε} is
a substitution rule if both a and b are different from ε; it is a deletion
rule if a 6= ε and b = ε; and, it is an insertion rule if a = ε and b 6= ε.
The set of all substitution rules, deletion rules, and insertion rules
over an alphabet V is denoted by SubV , DelV , and InsV , respectively.
Given such rules π, ρ, σ, and a word w ∈ V ∗, we define the following
actions of σ on w: If π ≡ a → b ∈ SubV , ρ ≡ a → ε ∈ DelV , and
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σ ≡ ε → a ∈ InsV , then

π∗(w) =
{ {ubv : ∃u, v ∈ V ∗(w = uav)},
{w}, otherwise

(1)

ρ∗(w) =
{ {uv : ∃u, v ∈ V ∗(w = uav)},
{w}, otherwise

(2)

ρr(w) =
{ {u : w = ua},
{w}, otherwise

(3)

ρl(w) =
{ {v : w = av},
{w}, otherwise

(4)

σ∗(w) = {uav : ∃u, v,∈ V ∗(w = uv)}, (5)
σr(w) = {wa}, σl(w) = {aw}. (6)

Symbol α ∈ {∗, l, r} denotes the way of applying an insertion or a
deletion rule to a word, namely, at any position (a = ∗), in the left-hand
end (a = l), or in the right-hand end (a = r) of the word, respectively.
Note that a substitution rule can be applied at any position. For every
rule σ, action α ∈ {∗, l, r}, and L ⊆ V ∗, we define the α − action of
σ on L by σα(L) =

⋃
w∈L σα(w). For a given finite set of rules M ,

we define the α − action of M on a word w and on a language L by
Mα(w) =

⋃
σ∈M σα(w) and Mα(L) =

⋃
w∈L Mα(w), respectively.

An evolutionary processor consists of a set of evolutionary opera-
tions and a filtering mechanism.

For two disjoint subsets P and F of an alphabet V and a word over
V , predicates ϕ(1) and ϕ(2) are defined as follows:

ϕ(1)(w; P, F ) ≡ P ⊆ alph(w) ∧ F ∩ alph(w) = ∅

and
ϕ(2)(w; P, F ) ≡ alph(w) ∩ P 6= ∅ ∧ F ∩ alph(w) = ∅.

The construction of these predicates is based on random-context condi-
tions defined by the two sets P (permitting contexts) and F (forbidding
contexts).
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For every language L ⊆ V ∗ we define ϕi(L,P, F ) = {w ∈ L |
ϕi(w; P, F )}, i = 1, 2.

An evolutionary processor over V is a 5-tuple (M,PI, FI, PO, FO)
where:

- Either M ⊆ SubV or M ⊆ DelV or M ⊆ InsV . The set M repre-
sents the set of evolutionary rules of the processor. Notice that every
processor is dedicated to only one type of the evolutionary operations.

- PI, FI ⊆ V are the input permitting/forbidding contexts of the
processor, while PO, FO ⊆ V are the output permitting/forbidding
contexts of the processor.
The set of evolutionary processors over V is denoted by EPV .

Definition 1 A hybrid network of evolutionary processors (an HNEP,
shortly) is a 7-tuple Γ = (V,H,N , C0, α, β, i0), where the following
conditions hold:

- V is an alphabet, the alphabet of the network.
- H = (XH , EH) is an undirected graph with set of vertices or

nodes XH and set of edges EH . H is called the underlying graph of the
network.

- N : XH −→ EPV is a mapping which associates with each node
x ∈ XH the evolutionary processor N (x) = (Mx, P Ix, F Ix, POx, FOx).

- C0 : XH −→ 2V ∗ is a mapping which identifies the initial configu-
ration of the network. It associates a finite set of words with each node
of the graph H.

- α : XH −→ {∗, l, r}; α(x) defines the action mode of the rules
performed in node x on the words occurring in that node.

- β : XH −→ {(1), (2)} defines the type of the input/output filters of
a node. More precisely, for every node, x ∈ XH , we define the following
filters: the input filter is given as µx(·) = ϕβ(x)(·; PIx, F Ix), and the
output filter is defined as τx(·) = ϕβ(x)(·, POx, FOx). That is, µx(w)
(resp.τx) indicates whether or not the word w can pass the input (resp.
output) filter of x. More generally, µx(L) (resp. τx(L)) is the set of
words of L that can pass the input (resp. output) filter of x.

- i0 ∈ XH is the output node of Γ.
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We say that card(XH) is the size of Γ. An HNEP is said to be a
complete HNEP, if its underlying graph is a complete graph.

A configuration of an HNEP Γ, as above, is a mapping C : XH −→
2V ∗ which associates a set of words with each node of the graph. A
component C(x) of a configuration C is the set of words that can be
found in the node x in this configuration, hence a configuration can be
considered as the sets of words which are present in the nodes of the
network at a given moment.

A configuration can change either by an evolutionary step or by a
communication step. When it changes by an evolutionary step, then
each component C(x) of the configuration C is altered in accordance
with the set of evolutionary rules Mx associated with the node x and
the way of applying these rules, α(x). Formally, the configuration C ′

is obtained in one evolutionary step from the configuration C, written
as C =⇒ C ′, iff C ′(x) = M

α(x)
x (C(x)) for all x ∈ XH .

When the configuration changes by a communication step, then
each language processor N (x), where x ∈ XH , sends a copy of its
each word to every node processor where the node is connected with
x provided that this word is able to pass the output filter of x, and
receives all the words which are sent by processors of nodes connected
with x provided that these words are able to pass the input filter of
x. Those words which are not able to pass the respective output filter,
remain at the node. Formally, we say that configuration C ′ is obtained
in one communication step from configuration C, written as C ` C ′,
iff C ′(x) = (C(x)−τx(C(x)))

⋃
{x,y}∈EG

(τy(C(y))∩µx(C(y))) holds for
all x ∈ XH .

For an HNEP Γ, the computation in Γ is a sequence of config-
urations C0, C1,C2, . . . , where C0 is the initial configuration of Γ,
C2i =⇒ C2i+1 and C2i+1 ` C2i+2, for all i ≥ 0.

HNEPs can be considered both language generating devices (gen-
erating hybrid networks of evolutionary processors or GHNEPs) and
language accepting devices (accepting hybrid networks of evolutionary
processors or AHNEPs).

In the case of GHNEPs we define the generated language as the
set of all words which appear in the output node at some step of the
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computation. Formally, the language generated by a generating hybrid
network of evolutionary processors Γ is L(Γ) =

⋃
s≥0 Cs(i0).

In the case of AHNEPs, in addition to the components above,
we distinguish an input alphabet and a network alphabet, V and
U, where V ⊆ U, and instead of an initial configuration, we indi-
cate an input node iI . Thus, for an AHNEP, we use the notation
Γ = (V,U,H,N , iI , α, β, i0).

The computation by an AHNEP Γ for an input word w ∈ V ∗ is
a sequence of configurations C

(w)
0 , C

(w)
1 ,C

(w)
2 , . . . , where C

(w)
0 is the

initial configuration of Γ, with C
(w)
0 (iI) = {w} and C

(w)
0 (x) = ∅, for

x ∈ G, x 6= iI , and C
(w)
2i =⇒ C

(w)
2i+1, C

(w)
2i+1 ` C

(w)
2i+2, for all i > 0.

A computation as above is said to be accepting if there exists a
configuration in which the set of words that can be found in the output
node io is non-empty. The language accepted by Γ is defined by

L(Γ) = {w ∈ V ∗ | the computation by Γ on w is an accepting one}.

3 Result

The following theorem states the regularity result for GHNEPs with
one node. Although this has already been stated in [9], their proof is
certainly incomplete. They stated that while GHNEPs without inser-
tion only generate finite languages, GHNEPs with one insertion node
only generate languages I∗C0, C0I

∗, C0
∐∐

I∗, for the mode l, r, ∗, re-
spectively. In the theorem below we present a precise characterization
of languages generated by GHNEP with one node and consider the case
omitted in [9] then the underlying graph G has a loop.

Theorem 1 GHNEPs with one node only generate regular languages.

Proof. As finite languages are regular, the statement holds for GH-
NEPs without insertion nodes. We now proceed with the case of one
insertion node. Consider such a GHNEP Γ = (V, G, N1, C0, α, β, 1),
where

N1 = (M,PI, FI, PO, FO).
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Let us introduce a few notations. Inserting a symbol from I in a
language C yields a language insI(C). Depending on whether α = l,
α = r or α = ∗, insI(C) is one of IC, CI, C

∐∐
I, respectively. For

inserting an arbitrary number of symbols from a set I in a language C,
ins∗I(C) is one of I∗C, CI∗, C

∐∐
I∗. Clearly, ins∗I preserves regularity.

We denote the set of symbols inserted in N1 by I = {a | λ →
a ∈ M}. The configuration of N1 after one step is C1 = insI(C0).
Assume that β = 2 (a case then β = 1 can be considered analogously),
then the conditions of passing permitting and forbidding output filter
can be specified by regular languages π = V ∗POV ∗ and ϕ = (V −
FO)∗, respectively. For instance, the set of words of C1 that pass the
forbidding output filter but do not pass the forbidding input filter is
C ′

1 = C1 ∩ ϕ \ π. Notice that inserting symbols that belong to neither
PO nor FO does not change the behavior of the filters; we denote the
corresponding language by B = ins∗I\(PO∪FO)(C1).

Consider the case when the graph G consists of one node and no
edges. Then, Γ generates the following language

L1 = L1(Γ) = C0 ∪ C1 ∪ ins∗I(C1 \ ϕ) ∪B

∪insI∩PO\FO(B) ∪ ins∗I(insI∩FO(B)), (7)
B = ins∗I\(PO∪FO)(C1),

C1 = insI(C0).

Indeed, this is a union of six languages:

1. initial configuration,

2. configuration after one insertion,

3. all words that can be obtained from a word from C1 if it is trapped
in N1 by the forbidding filter,

4. B represents the words that pass the forbidding filter but not the
permitting filter,

5. words obtained by inserting one permitting and not forbidden
symbol into B, and
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6. words obtained by inserting one forbidden symbol into B, and
then by arbitrary insertions.

Consider the case when the graph G has a loop. The set of words
leaving the node (for the first time) is D = (C1∩ϕ∩π)∩insI∩PO\FO(B).
The conditions of the permitting and forbidding input filters can be
specified by regular languages π′ = V ∗PIV ∗ and ϕ′ = (V − FI)∗,
respectively. Some of words from D return to N1, namely D ∩ π′ ∩ ϕ′.
Notice that further insertion of symbols that belong neither to FO
nor to FI causes the words to continuously exit and reenter N1. The
associated language is B′ = ins∗I\(FO∪FI)(D ∩ π′ ∩ ϕ′). Finally, we give
the complete presentation of the language generated by Γ in this case:

L′1 = L1(Γ) = L1 ∪B′ ∪ ins∗I(insI∩FO(B′)) ∪ insI∩FI\FO(B′), (8)
B′ = ins∗I\(FO∪FI)(D ∩ π′ ∩ ϕ′),
D = (C1 ∩ ϕ ∩ π) ∩ insI∩PO\FO(B),
C1 = insI(C0).

Indeed, this is a union of four languages:

1. words that never reenter N1, as in the case when G has no edges,

2. B′ represents the words that once leave and reenter N1, and keep
doing so after subsequent insertions,

3. words obtained by inserting a symbol from FO into B′, and then
by arbitrary insertions,

4. words obtained by inserting a symbol from FI \ FO into B′.

2

4 Conclusion

In this paper we presented a precise form of the languages generated by
an HNEP with one node and considered one case omitted in the pre-
vious proof. Thus we completed investigation of this class of HNEPs.
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Tasks of characterization of languages generated by a GHNEP with
two nodes and languages accepting by an AHNEP with two nodes are
still opened.
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