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Abstract

Abstract. We consider a multicriteria variant for the well-
known partition problem. A formula of the stability radius for
an efficient solution was obtained.
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Many problems of design, planning and management in technical
and organizational systems have a pronounced multicriteria character.
Multiobjective models that appeared in these cases are reduced to the
choice of the ”best” (in a certain sense) values of variable parameters
from some discrete aggregate of the given quantities. Therefore recent
interest of mathematicians to multicriteria discrete optimization prob-
lems keeps very high which is confirmed by the intensive publishing ac-
tivity (see, e. g., bibliography [1], which contains 234 references). One
of the important directions of study such problems is stability analysis
of solutions under perturbations of the initial data. Various questions of
stability analysis and regularization for incorrect discrete optimization
problems generate numerous directions of research. Nowadays owing to
the fundamental investigations of academician I. V. Sergienko and his
colleagues [2–11], characteristics of stable problems, necessary and suf-
ficient conditions of existence of Pareto-optimal solutions, methods of
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regularization for incorrect problems and many other properties of mul-
ticriteria integer problems under uncertainty of initial data are rather
well-known.

Nowadays many specialists study quantitative characteristics of sta-
bility of both scalar (single criteria) and vector (multicriteria) discrete
optimization problems. Not touching on this wide spectrum of ques-
tions, we refer the reader to the extensive bibliography [12] as well as
to the works [13–18] which contain the most typical recent results.

We continue to research the cycle of works devoted to the quanti-
tative analysis of stability [19–26] for the Pareto-optimal solutions of
the combinatorial problems with various types of vector criteria. We
consider a multicriteria variant of the well-known partition problem.
A formula of the stability radius of an efficient solution in the case of
l∞-metric is obtained.

The partition problem is a classical extremal combinatorial prob-
lem. It is stated as follows: it is needed to partition the finite set of
numbers into two nonintersecting subsets such that the sums of num-
bers of these subsets are differed minimally from each other. In the case
where the elements of the set are positive this problem is equivalent
to the problem of the scheduling theory that consists in distribution of
independent works in two identical processors such that to minimize
the time when the last work should be finished [27]. In the scheduling
theory this problem is marked as P | · |Cmax.

We consider a multicriteria (vector) variant of the partition prob-
lem.

We define a vector function (vector criterion)

f(x,C) = (|C1x|, |C2x|, . . . , |Cmx|) → min
x∈Qn

on the set of n-vectors Qn, n ≥ 2, Q = {−1, 1}, where Ci denotes the
i-th row of matrix C = [cij ]m×n ∈ Rm×n, m ≥ 1, x = (x1, x2, . . . , xn)T .

Under the multicriteria partition problem Zm(C) we understand
the problem of finding the set of efficient solutions (Pareto set)

Pm(C) = {x ∈ Qn : π(x, C) = ∅},
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where

π(x,C) = {x′ ∈ Qn : f(x,C) ≥ f(x′, C) & f(x,C) 6= f(x′, C)}.

Under the stability of the efficient solution x0 we understand the
property of preserving Pareto optimality of x0 under ”small” pertur-
bations of the elements of matrix C. We will model such perturbations
by adding a ”perturbing” matrices to C.

For each number k ∈ N, we endow the space Rk with metrics l1
and l∞ :

||z||1 =
∑

j∈Nk

|zj |, ||z||∞ = max
j∈Nk

|zj |, z = (z1, z2, . . . , zk) ∈ Rk,

where Nk = {1, 2, . . . , k}. Under the norm of matrix we understand the
norm of vector composed from all its elements. For any number ε > 0
we define the set of perturbing matrices

Ω(ε) = {C ′ ∈ Rm×n : ||C ′||∞ < ε}.

According to the definitions from [21–26], under the stability radius
of x0 ∈ Pm(C) we understand the number

ρm(x0, C) =

{
sup Ξ, if Ξ 6= ∅,
0, if Ξ = ∅,

where
Ξ = {ε > 0 : ∀ C ′ ∈ Ω(ε) (x0 ∈ Pm(C + C ′))}.

Thus, the stability radius is a limit level of independent perturbations
of the elements of C, such that the Pareto optimality of the solution is
preserved.

We will use the following implication

∃q ∈ Q ∀q′ ∈ Q (qz > q′z′) ⇒ |z| > |z′|, (1)

which holds for any numbers z, z′ ∈ R.
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Suppose

sg z =

{
1, if z ≥ 0,

−1, if z < 0,

K(x0, x) = {i ∈ Nm : |Cix
0| ≤ |Cix|},

αi(x0, x) = min{βi(x0, x, q) : q ∈ Q},

βi(x0, x, q) =
|Ci(qx0 + x)|
||qx0 + x||1 .

It is evident, that K(x0, x) 6= ∅ if x0 ∈ Pm(C).
Theorem. Stability radius of an efficient solution x0 of the problem

Zm(C), m ≥ 1 is expressed by the formula

ρm(x0, C) = min
x∈Qn\{x0,−x0}

max
i∈K(x0,x)

αi(x0, x). (2)

Proof. Denote by ϕ the right side of (2). It is easy to see, that ϕ ≥ 0.
At first we will prove the inequality ρm(x0, C) ≥ ϕ. Suppose ϕ > 0

(otherwise the inequality ρm(x0, C) ≥ ϕ is evident). Let C ′ ∈ Ω(ϕ).
Then by the definition of ϕ for any x ∈ Qn\{x0,−x0} there exists
k ∈ K(x0, x) such that

||C ′||∞ < ϕ ≤ αk(x0, x). (3)

Taking into account αk(x0, x) > 0, we have

|Ckx
0| < |Ckx|.

From this, assuming
σk = sg Ckx,

we obtain
Ck(qx0 + σkx) = |Ck(σkqx

0 + x)|, q ∈ Q.

Therefore, using (3), we derive

(Ck + C ′
k)(qx

0 + σkx) = |Ck(σkqx
0 + x)|+ C ′

kσk(σkqx
0 + x) ≥

≥ |Ck(σkqx
0 + x)| − ||C ′||∞ · ||σkqx

0 + x||1 >
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> |Ck(σkqx
0 + x)| − βk(x0, x, σkq)||σkqx

0 + x||1 = 0.

Thus, we have

(Ck + C ′
k)σkx > (Ck + C ′

k)qx
0, q ∈ Q.

Taking into account (1) for any x ∈ Qn \ {x0,−x0} we obtain

|(Ck + C ′
k)x| > |(Ck + C ′

k)x
0|,

and for x = ±x0 we have

|(C + C ′)x| = |(C + C ′)x0|,

which imply x0 ∈ Pm(C + C ′).
Resuming the said above, we conclude that for any C ′ ∈ Ω(ϕ) the

inclusion x0 ∈ Pm(C + C ′) holds. Hence ρm(x0, C) ≥ ϕ.
It remains to prove the inequality ρm(x0, C) ≤ ϕ. By the definition

of ϕ, there exists x∗ ∈ Qn\{x0,−x0}, such that for any i ∈ K(x0, x∗)
the following inequalities hold:

0 ≤ αi(x0, x∗) ≤ ϕ. (4)

Let ε > ϕ. We will prove that there exists C ′ ∈ Ω(ε) with condition
x0 /∈ Pm(C + C ′).

Suppose

N(x0, x∗) = |{j ∈ Nn : x0
j = 1 & x∗j = −1}|,

M(x0, x∗) = |{j ∈ Nn : x0
j = x∗j}|,

σ∗i = sg Cix
∗.

It is easy to see, that

M(x0, x∗) = M(x∗, x0),

2(N(x0, x∗) + N(x∗, x0)) = ||x0 − x∗||1, (5)

2M(x0, x∗) = ||x0 + x∗||1. (6)
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To construct the rows C ′
i, i ∈ Nm of the needed matrix C ′, we

consider four possible cases.
Case 1: i ∈ K(x0, x∗), βi(x0, x∗,−1) < βi(x0, x∗, 1). Then under

(4) the following inequalities hold:

|Ci(x0 + x∗)| > 0,

βi(x0, x∗,−1) ≤ ϕ < ε.

Therefore if we consider a perturbing row

C ′
i = (c′i1, c

′
i2, . . . , c

′
in),

obtained by setting

c′ij =





σ∗i δi, if x0
j = 1, x∗j = −1,

−σ∗i δi, if x0
j = −1, x∗j = 1,

0 in other cases,

ϕ < δi < ε,

then we have ||C ′
i||∞ = δi, and taking into account (5), we derive

σ∗i (Ci + C ′
i)x

0 − σ∗i (Ci + C ′
i)x

∗ =

= σ∗i Ci(x0 − x∗) + 2δi(N(x∗, x0) + N(x0, x∗)) ≥
≥ −|Ci(x0 − x∗)|+ δi||x0 − x∗||1 >

> −|Ci(x0 − x∗)|+ βi(x0, x∗,−1)||x0 − x∗||1 = 0,

σ∗i (Ci + C ′
i)x

0 + σ∗i (Ci + C ′
i)x

∗ = σ∗i Ci(x0 + x∗) =

= |Ci(x0 + x∗)| > 0.

Therefore we obtain

σ∗i (Ci + C ′
i)x

0 > σ∗i (Ci + C ′
i)qx

∗, q ∈ Q.

From this, using (1), we find

|(Ci + C ′
i)x

0| > |(Ci + C ′
i)x

∗|. (7)
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Note, that the inequality (7) is coordinated with condition x∗ ∈
Qn\{x0,−x0}.

Case 2: i ∈ K(x0, x∗), βi(x0, x∗,−1) > βi(x0, x∗, 1). Then under
(4) we have

|Ci(x∗ − x0)| > 0,

βi(x0, x∗, 1) ≤ ϕ < ε.

Therefore, constructing the row C ′
i by the rule

c′ij =





−σ∗i δi, if x0
j = x∗j = 1,

σ∗i δi, if x0
j = x∗j = −1,

0 in the other cases,

where ϕ < δi < ε, we obtain ||C ′
i||∞ = δi and, using (6), we derive

−σ∗i (Ci + C ′
i)x

0 − σ∗i (Ci + C ′
i)x

∗ = −σ∗i Ci(x0 + x∗) + 2δiM(x0, x∗) >

> −|Ci(x0 + x∗)|+ βi(x0, x∗, 1)||x0 + x∗||1 = 0,

−σ∗i (Ci + C ′
i)x

0 + σ∗i (Ci + C ′
i)x

∗ = σ∗i Ci(x∗ − x0) = |Ci(x∗ − x0)| > 0.

Thus, the following inequalities hold:

−σ∗i (Ci + C ′
i)x

0 > σ∗i (Ci + C ′
i)qx

∗, q ∈ Q.

Therefore, using (1), we obtain (7).
Case 3: i ∈ K(x0, x∗), βi := βi(x0, x∗,−1) = βi(x0, x∗, 1) =

αi(x0, x∗).
Consider two possible variants.
At first let βi = 0. Then

Cix
0 = Cix

∗ = 0. (8)

It is easy to see, that taking into account x∗ 6= ±x0, we may choose
k, p ∈ Nn such that

x∗k = x0
k, x∗p 6= x0

p.
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Therefore, if we define the elements of the row C ′
i = (c′i1, c

′
i2, . . . , c

′
in)

by

c′ij =





x0
kδi, if j = k,

x0
pδi, if j = p,

0 in other cases ,

where
0 ≤ ϕ < δi < ε,

then we have, that ||C ′
i||∞ = δi and under (8) the inequality (7) holds.

Now let βi > 0. Then, repeating all the argumentations from case
1, we obtain (7).

Case 4: i ∈ Nm\K(x0, x∗). Then, assuming C ′
i = (0, 0, . . . , 0) ∈ Rn,

we have (7).
So we obtain the matrix C ′ with norm

||C ′||∞ = max{δi : i ∈ Nm \K(x0, x∗)} < ε.

Summarizing what has been proven in four cases we see, that for
any ε > ϕ there exists C ′ ∈ Ω(ε) such that x0 /∈ Pm(C + C ′). Hence,
ρm(x0, C) ≤ ϕ.

Theorem is proved.
Remark 1. If we impose on C = [cij ] ∈ Rm×n the condition of

preserving positivity for all its elements during perturbing, then the
stability radius of x0 ∈ Pm(C) is equal to

min{ϕ, cmin},
where ϕ is the right side of (2), cmin = min{cij : (i, j) ∈ Nm ×Nn}.

Efficient solution x0 is called stable if ρm(x0, C) > 0 and special if
the following condition holds:

@ x ∈ Qn\{x0,−x0} (f(x,C) ≤ f(x0, C)).

The following statement follows directly from the theorem.
Corollary. Solution x0 ∈ Pm(C) is stable if and only if it is special.
Remark 2. As a rule (see, e. g., [22,26]) the strict efficiency (Smale

optimality [28]) of a solution of a multicriteria discrete optimization
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problem is a sufficient condition of the solution stability. But, it is
easy to see, that our problem does not have strictly efficient solutions.
Nevertheless efficient solutions can be stable (see corollary).
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