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Abstract

Methodology and algorithms of evaluation of the traffic co-
efficient in priority queueing systems with zero and nonzero
switchover times are presented. In the case of zero switchover
times the calculation of the traffic coefficient is straightforward.
In contrast, it relies heavily on the efficient numerical evaluation
of the busy period’s Laplace-Stieltjes transform in the case when
switchover times are not all degenerate zero. Examples for both
cases are provided.
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1. Introduction

It is a usual practice to represent and to study real world phenomena
processes by mathematical models. Among the latter there are models
of priority queueing systems. The theory of priority queueing systems
is concerned with the phenomena of prioritized servicing—the incoming
requests should be classified by their importance and served according
to assigned priority labels. In comparison with other queueing models
the priority queueing systems have a more complicated structure, which
limits the possibility of their exact analytical analysis. Thus, many
results are derived considering the stationary behaviour of the system.
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The traffic coefficient is an important measure of the performance of
a queueing system and it is responsible for the workload of the system.
Analysis of queueing systems delivers formulae for system performance
characteristics—many of such analytical expressions involve the traffic
coefficient ρ. In the case of priority queueing systems M |G|1|∞ and
Mr|Gr|1|∞ with zero switchover times one can easily evaluate ρ via
analytic formulae using the rates of incoming flows and mean values
of corresponding service times. However, in the case of priority sys-
tems with random switchover times, one should be able to evaluate the
Laplace-Stieltjes transforms (LST’s) of the system busy period in order
to estimate the value of the traffic coefficient. Generally, this can only
be done numerically.

2. Priority Queueing Systems with Switchover
Times

2.1 Description

Consider a queueing system with a single server and r classes of in-
coming requests, each having its own flow of arrival and waiting line.
We call the requests from the ith queueing line Li i-requests. The i-
requests have a higher priority than j-requests if 1 ≤ i < j ≤ r. The
server gives a preference in service to the requests of the highest priority
among those presented in the system.

Suppose that the time periods between two consecutive arrivals of
the requests of the class i are independent and identically distributed
with some common cumulative distribution function (cdf) Ai(t) with
mean E[Ai], i = 1, . . . , r. Similarly, suppose that the service time of
a customer of the class i is a random variable Bi with a cumulative
distribution function Bi(t) having mean E[Bi], i = 1, . . . , r.

It is assumed that the server needs some additional time to proceed
with the switching from one priority waiting line of requests to another.
This time is considered to be a random variable, and we say that Cij

is the time of switching from the service of i-requests to the service of
j-requests, if 1 ≤ i, j ≤ r, i 6= j.
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We adopt the classification and the terminology introduced in [1, 2].
We also explain some additional notions and notations.

Definition 1. By a kk-busy period call the period of time which starts
when a k-request enters the empty system and finishes when there are
no longer k-requests in the system. Denote the kk-busy period by Πkk.

Definition 2. By a k-busy period call the period of time which starts
when an i-request enters the empty system, i ≤ k, and finishes when
there are no longer k-requests in the system. Denote the k-busy period
by Πk.

Note, that an r-busy period is nothing but the system’s busy period
Π, i.e. Π ≡ Πr.

The following two notions are due to the fact that both servicing and
switching can be interrupted under preemptive service and switching
policies.

Definition 3. By a k-cycle of service call the period of time which
starts when server begins the servicing of a k-request, and finishes when
this request leaves the system. Denote the k-cycle of service by Hk. If
the servicing of a certain k-request is not interrupted then the corre-
sponding realization of Hk coincides with the time Bk this request was
being serviced.

Definition 4. By a k-cycle of switching call the period of time which
starts when the server begins the switching to the line of k-requests, and
finishes when the server is ready to provide service to these requests.
Denote the k-cycle of switching by Nk. If the switching from the ith line
to the kth line is not interrupted, then the corresponding realization of
Nk coincides with the time Cik this ik-switching lasted.

Let Πkk(t), Πk(t), Hk(t) and Nk(t) be the cumulative distribution
functions of kk-busy periods, k-busy periods, k-cycle of service and k-
cycle of switching, correspondingly. Let also πkk(t), πk(t), hk(t) and
νk(t) be their Laplace-Stieltjes transform, i.e.

πkk(s) =

∞∫

0

e−stdΠkk(t), . . . , νk(s) =

∞∫

0

e−stdNk(t).
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Finally, let βi(s) be the Laplace-Stieltjes transform of Bi(t), i.e.

βi(s) =

∞∫

0

e−stdBi(t).

From now on throughout the text we assume that Cij do not depend
on i and only depend on j, i.e. Cij ≡ Cj , i = 1, . . . , r. Denote the
Laplace-Stieltjes transform of Cj with cdf Cj(t) by cj(s):

cj(s) =

∞∫

0

e−stdCj(t).

2.2 Priority Queueing Systems with Poisson incoming
flows

The queueing systems with Poisson incoming flows are of great impor-
tance in the theory and practice. In this case the interarrival times are
exponentially distributed, i.e. Ai(t) = 1− e−ait, i = 1, . . . , r, where a1,
a2,..., ar are some positive real numbers with the physical meaning of
the flow arrival rates. The compound flow of the requests with priority

not greater than k is Poisson with the arrival rate σk =
k∑

i=1
ai.

Using the extended Kendall notation we write Mr|Gr|1|∞ to denote
a priority queueing system with Poisson incoming flows of requests and
random switchover times.

3. Traffic coefficient and its calculation

Analysis of queueinq systems delivers formulae for systems performance
characteristic—many of such analytical expressions involve the traffic
coefficient ρ.

3.1 Zero switchover times

In the case of priority queueing systems Mr|Gr|1|∞ with degenerated
switchover times one can easily evaluate ρ via analytic formulae using

272



Evaluation of the traffic coefficient in priority queueing systems

the rates of incoming flows and mean values of corresponding service
times.

For instance, the traffic coefficient of the system Mr|Gr|1|∞ can be
calculated as follows [1]:

ρ =
r∑

i=1

aibi, (1)

where

• for the service scheme “repeat again”

bi =
1

σi−1

[
1

βi(σi−1)
− 1

]
(2)

• for the service scheme “resume”

bi = E[Bi] (3)

• for the service scheme “loss”

bi =
1

σi−1
[1− βi(σi−1)] . (4)

In the case when ρ > 1, the following takes place: π(0) < 1, and
Π(t) is an improper cumulative distribution function, i.e.

lim
t→∞Π(t) < 1,

which means that the busy period is of indefinite length with a positive
probability. However, if ρ < 1, then π(0) = 1 and the cdf Π(t) of the
busy period Π is proper. These comments motivate the presence of the
quantity π(0) ≡ πr(0) in our further examples.

Remark 1. It is easy to see that the value of the traffic coefficient
in the system Mr|Mr|1|∞ running under the service scheme “repeat
again” is the same as the value of the traffic coefficient of the same
system running under the service scheme “resume”. To see this, one
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should compare (2) and (3). The LST’s of the exponential service times
Bi can be written as follows:

βi(s) =
1

sE[Bi] + 1
, i = 1, . . . , r. (5)

Calculation of bi in (2) using (5) shows that

bi =
1

σi−1

[
1

βi(σi−1)
− 1

]
=

1
σi−1

(σi−1E[Bi] + 1− 1) = E[Bi],

i.e., the traffic coefficients for the priority systems with exponential
switchover times under the service schemes “resume” and “repeat
again” coincide (for both schemes ρ should be calculated using (1) with
the same values of ai, i = 1, . . . , r).

Example 3.1.1. Consider the system M10|M10|1|∞ with zero switch-
over times. In this case

βi(s) =
1

sE[Bi] + 1
, i = 1, . . . , 10.

Let ai = 1 and E[Bi] = 0.05, i = 1, . . . , 10. The results of our calcu-
lations of the traffic coefficient ρ and the LST of the busy period using
the given algorithms can be found in Table 1. The approximation error
ε is taken to be equal to 0.001.

preemptive service schemes: repeat again resume loss
ρ 0.5 0.5 0.413914

π10(0) 0.999959 0.999959 0.999989

Table 1. Calculation of the traffic coefficient ρ and π10(0) in Exam-
ple 3.1.1.

Example 3.1.2. Consider M10|G10|1|∞ with zero switchover times
running under the service scheme “repeat again”. Let ai = 45,
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i=1,. . . ,10. The service times of the requests from the queueing pri-
ority lines L1, L2, L3, L4 are exponential Exp(20), the service times
of the requests from the lines L5, L6, L7, L8 are uniformly distributed
on the interval [0,1], and, finally, the service times of the requests from
the lines L9 and L10 are of Erlang type Er(2, 20). The approximation
error ε is taken to be equal to 0.001. Thus, the following holds:

βi(s) =
20

20 + s
, i = 1, 2, 3, 4,

βi(s) = 1− e−s, i = 5, 6, 7, 8,

βi(s) =
(

20
20 + s

)2

, i = 9, 10.

For this system the traffic coefficient ρ was numerically estimated to be
equal to 104.0625 À 1, whereas π(0) ≡ π10(0) = 0.429542 < 1. This
clearly shows that the system is under the heavy traffic regime.

3.2 Nonzero switchover times

Let us assume that at least one random variable Cj is not constant
zero. In this case the the traffic coefficient can be calculated using the
following formula [1]:

ρ =
r∑

k=1

akbk,

where

b1 = −β′(0) + c′1(0)
1− a1c′1(0)

,

and

• for the service scheme “repeat again”

bk = f1 . . . fk−1
1

σk−1ck(σk−1)

[
1

βk(σk−1)
− 1

]
(6)
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• for the scheme “loss”

bk = f1 . . . fk−1
1

σk−1ck(σk−1)
[1− βk(σk−1)] (7)

• for the service scheme “resume”

bk = f1 . . . fk−1
1

ck(σk−1)
E[Bk]. (8)

Here
f1 = 1,

fk = 1 +
σk−1 − σk−1π(ak)

σk−1

(
1

c(σk−1)
− 1

)
,

where σ0 = 0 and πk(t) is the Laplace-Stieltjes transform of the busy
period Π(t).

Value of ρ can be evaluated numerically. In what follows we present
algorithms of numerical evaluation of the LST of the k-busy periods
and the traffic coefficient ρ. For simplicity we only give the algorithms
for the systems Mr|Gr|1|∞ under the service scheme “repeat again”
and preemptive switchover policy. In order to calculate ρ one needs to
be able to evaluate the LST of the busy period (r-busy period). This
can be done numerically using the following sample algorithm [3].

Algorithm 1 BPLSTE (for the system Mr|Gr|1 with switch-
over times under the preemptive service scheme “repeat
again”)

Input: r, s∗, E > 0, {ak}r
k=1, {βk(s)}r

k=1, {ck(s)}r
k=1.

Output: πk(s∗)
Description:
IF (k==0) THEN π0(s∗) := 0; RETURN
k := 1; q := 1; σ0 := 0;
Repeat
inc(q);
σq := σq−1 + aq;
Until q == r;
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Repeat

νk(s) := ck(s∗ + σk−1){1− σk−1

s∗+σk−1
[1−

−ck(s∗ + σk−1)]πk−1(s∗)}−1;

hk(s∗) := βk(s∗ + σk−1){1− σk−1

s∗+σk−1
[1−

−βk(s∗ + σk−1)]πk−1(s∗)νk(s∗)}−1;

π
(0)
kk (s∗) := 0; n := 1;

Repeat

π
(n)
kk (s∗) := hk(s∗ + ak − akπ

(n−1)
kk );

inc(n);

Until |π(n)
kk (s∗)− π

(n−1)
kk (s∗)| < E;

πkk(s∗) = π
(n)
kk (s∗);

πk(s∗) :=
σk−1πk−1(s∗ + ak)

σk
+

σk−1

σk
(πk−1(s∗ + ak − akπkk(s∗)))−

−πk−1(s∗+ak)νk(s∗+ak[1−πkk(s∗)])+
ak

σk
ν(s∗+ak−akπkk(s∗))πkk(s∗);

inc(k);
Until k == r;

End of Algorithm 1 BPLSTE.

Remark 2. Algorithm 1 is convergent. However, it does not provide
one with the absolute error of the approximation. In this algorithm
some quantity E is used to judge on the convergence of the Cauchy
sequence {π(n)

kk (s∗)}∞n=0.

Improved algorithms which evaluate the LST of the busy period
with a certain precision are discussed in [3, 4]. We present next Al-
gorithm BPLSTε, which was introduced and discussed in [3]. It is an
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improved algorithm of numerical evaluation of the LST of the busy pe-
riod with a given precision and it is based on the acceleration scheme
of solving the Kendall equation [5].

Algorithm 2 BPLSTε (for the system Mr|Gr|1 with switch-
over times under the preemptive service scheme “repeat
again”)

Input: r, s∗, ε > 0, {ak}r
k=1, {βk(s)}r

k=1, {ck(s)}r
k=1

Output: πk(s∗)
Description:
IF (k==0) THEN π0(s∗) := 0; RETURN
k := 1; q := 1; σ0 := 0;
Repeat
inc(q);
σq := σq−1 + aq;
Until q == r;

Repeat

νk(s∗) := ck(s∗ + σk−1){1− σk−1

s∗+σk−1
[1−

−ck(s∗ + σk−1)]πk−1(s∗)}−1;

hk(s∗) := βk(s∗ + σk−1){1− σk−1

s∗+σk−1
[1−

−βk(s∗ + σk−1)]πk−1(s∗)νk(s∗)}−1;

π
(0)
kk (s∗) := 0; n := 1;

Repeat

π˜
(n)
kk (0) := 0; π̃

(n)
kk (0) = 1;

Repeat
π̃

(n)
kk (s∗) = hk(s∗ + ak − akπ̃

(n−1)
kk (s∗));

π˜
(n)
kk (s∗) = hk(s∗ + ak − akπ˜

(n−1)
kk (s∗));

inc(n);

Until
eπ(n)

kk (s∗)−π˜
(n−1)
kk (s∗)

2 < ε;
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πkk(s∗) :=
eπ(n)

kk (s∗)+π˜
(n−1)
kk (s∗)

2 ;

πk(s∗) :=
σk−1πk−1(s∗ + ak)

σk
+

σk−1

σk
(πk−1(s∗ + ak − akπkk(s∗)))−

−πk−1(s∗+ak)νk(s∗+ak[1−πkk(s∗)])+
ak

σk
ν(s∗+ak−akπkk(s∗))πkk(s∗);

inc(k);
Until k == r;

End of Algorithm 2 BPLSTε.

The following is the model algorithm of calculation of the traffic
coefficient for the priority queueing systems with switchover times [3].

Algorithm 3 WLCOEEF (for the system Mr|Gr|1 with
switchover times under the preemptive ”repeat again” ser-
vice scheme)

Input: r, {ak}r
k=1, {βk(s)}r

k=1, {ck(s)}r
k=1.

Output: ρ

Description:
k := 1; ρ := 1; σ0 := 0; σ1 := a1;
f1 := 1; p := 1;
b1 := −(β′(0) + c′1(0))/(1− a1c

′
1(0));

ρ := a1b1;

Repeat
inc(k);
σk := σk−1 + ak;

bk := p 1
σk−1ck(σk−1)

(
1

βk(σk−1) − 1
)
;
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ρ := ρ + akbk;

fk := 1 + σk−σk−1πk−1(ak)
σk−1

(
1

ck(σk−1) − 1
)
;

p := fkp;

Until k == r;

End of Algorithm 3 WLCOEEF.

Remark 3. Calculation of ρ in Algorithm 3 requires calculation of
πk−1(ai), k = 2, . . . , r, which, in turn, can be realized using Algorithm 1
or Algorithm 2. For a different scheme of service or switching policy
one should employ the corresponding formulae for the LST’s hk(s),
νk(s), πkk(s), πk(s) (see [1]).

Example 3.2.1. Consider the system M5|M5|1 with all interarrival
times being distributed exponentially Exp(10) and all service times being
distributed exponentially Exp(200). The switchover times Ck are all
distributed as Exp(100), k = 1, . . . , 5; the service scheme is “repeat
again”. The results of calculations for such systems can be found in
Table 2. The quantity ε is taken to be 0.001.

BPLSTE BPLSTε difference
π1(10) 0.859847 0.858993 0.000854
π2(10) 0.839391 0.838905 0.000486
π3(10) 0.813851 0.813453 0.000398
π4(10) 0.781973 0.781613 0.000360

ρ 0.442225 0.442271 -0.000046
π5(0) 0.999874 0.999385 0.000489

Table 2. Calculation results for k-busy periods and the traffic coeffi-
cient for the system from Example 3.2.1

Example 3.2.2. Consider the system M10|M10|1 with all interarrival
times being distributed exponentially Exp(ak), k = 1, ..., 10, and all
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service times being distributed exponentially Exp(200). The switchover
times Ck are all distributed as Exp(100), k = 1, . . . , 10. The results of
calculations for such systems can be found in Tables 3, 4. The quantity
ε is taken to be 0.001. In this case:

βk(s) =
1

sE[Bk] + 1
,

ck(s) =
1

sE[Ck] + 1
,

k = 1, . . . , 10.

ak ρ(BPLSTE) ρ(BPLSTε) difference
1 0.064175 0.064175 0.000000
10 1.806396 1.807565 -0.001169
100 7213724.500000 7212584.000000 1140.500000

Table 3. Calculation results for the traffic coefficient for the systems
from Examples 3.2.2 (scheme “repeat again”).

ak ρ(BPLSTE) ρ(BPLSTε) difference
1 0.062948 0.062948 0.000000
10 1.375752 1.376590 -0.000838
100 1323211.375000 1322987.875000 223.500000

Table 4. Calculation results for the traffic coefficient for the systems
from Example 3.2.2 (scheme “loss”).

Example 3.2.3. Consider the system M10|G10|1 with all interarrival
times being distributed exponentially Exp(ak), k = 1, ..., 10, and all
service times being distributed Er(3, 200). The switchover times Ck are
all distributed as Exp(100), k = 1, . . . , 10. The results of calculations
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for such systems can be found in Tables 5, 6. The quantity ε is taken
to be 0.001. In this case:

βk(s) =
(

1
sE[Bk] + 1

)3

,

ck(s) =
1

sE[Ck] + 1
,

k = 1, . . . , 10.

ak ρ(BPLSTE) ρ(BPLSTε) difference
1 0.176818 0.176821 -0.000003
10 12.101274 12.102625 -0.001351
100 348237984.000000 348191168.000000 46816.000000

Table 5. Calculation results for the traffic coefficient for the systems
from Example 3.2.3 (scheme “repeat again”).

ak ρ(BPLSTE) ρ(BPLSTε) difference
1 0.165731 0.165734 -0.000003
10 4.723875 4.724642 -0.000767
100 2153345.5000000 2153149.750000 195,750000

Table 6. Calculation results for the traffic coefficient for the systems
from Example 3.2.3 (scheme “loss”).

Example 3.2.4. Consider the system M10|G10|1 with interarrival
times being all distributed as Exp(10) and with the times of service
of the requests from the lines L1, L2 and L3 being distributed exponen-
tially Exp(200), from the lines L4, L5 and L6 being distributed uni-
formly U [0, 1], and from the lines L7, L8, L9, L10 being distributed as
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Er(3, 200). The switchover times Ck are all distributed as Exp(100),
k = 1, . . . , 10. The quantity ε is taken to be 0.001.

In this case:

βk(s) =
1

sE[Bk] + 1
, k = 1, 2, 3;

βk(s) =
e−as − e−bs

b− a
, a = 0, b = 1, k = 4, 5, 6;

βk(s) =
(

1
sE[Bk] + 1

)3

, k = 7, 8, 9, 10;

ck(s) =
1

sE[Ck] + 1
, k = 1, . . . , 10.

scheme ρ(BPLSTE) ρ(BPLSTε) difference
repeat again 5.184965 5.188527 -0.003562

loss 2.020857 2.022199 -0.001342

Table 7. Calculation results for the traffic coefficient for the systems
from Example 3.2.4.

4. Conclusions

We presented a model algorithm of the numerical evaluation of the traf-
fic coefficient in priority queueing systems (Algorithm 3 WLCOEFF).
This algorithm makes use of the LST of busy period of the system—
this should also be calculated numerically, using algorithms similar to
the model Algorithm 1 BPLTSE and Algorithm 2 BPLTSε. However,
it was found from our experience that (i) the number of priority flows
r should not exceed 10-12 for satisfactory fast calculations, and (ii) the
calculation of the LST periods with algorithm Algorithm 1 BPLTSE

was performed without clear idea about the absolute error of the eval-
uation. Therefore, there was a necessity of further optimization of this
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numerical algorithm in order to achieve fast performance and high level
of precision of calculations. Algorithm 2 BPLSTε served this purpose.
However, one should also notice that for some systems the algorithm
BPLTSE calculates the busy period’s LST with the same precision as
BPLTSε does (throughout the considered examples for the systems for
which ‘difference‘ in tables is of the same order as E and ε).

There is a necessity of further optimization in order to consider
greater number of priority waiting lines. Such work is being done cur-
rently [3, 4, 6].
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