Computer Science Journal of Moldova, vol.16, no.2(47), 2008

Using of P2P Networks for Acceleration of RTE
Tasks Solving*

Adrian Iftene

Abstract

In the last years the computational Grids have become an
important research area in large-scale scientific and engineering
research. Our approach is based on Peer-to-peer (P2P) networks,
which are recognized as one of most used architectures in order
to achieve scalability in key components of Grid systems.

The main scope in using of a computational Grid was to im-
prove the computational speed of systems that solve complex
problems from Natural Language processing field. We will see
how can be implemented a computational Grid using the P2P
model, and how can be used SMB protocol for file transfer. Af-
ter that we will see how we can use this computational Grid,
in order to improve the computational speed of a system used
in RTE competition [1], a new complex challenge from Natural
Language processing field.

Keywords: Computational Grid, P2P Network, SMB pro-
tocol, RTE competition

1 Introduction

To achieve their envisioned global-scale deployment, Grid systems [2, 3]
need to be scalable. Peer-to-peer (P2P) techniques are widely viewed
as one of the prominent ways to reach the desired scalability. Resource
discovery is one of the most important functionalities of a Grid system
and, at the same time, one of the most difficult to scale. Indeed, the

A preliminary version of this paper was presented at 9' SACCS International
Conference, Iasi, Romania, 16-17 October 2007
(©2008 by A. Iftene

240

Using of P2P Networks for Acceleration of RTE Tasks Solving

duty of a resource discovery system (such as the Globus MDS [4])
is to provide system-wide up-to-date information, a task which has
inherently limited scalability. To add to the challenge, Grid resource
discovery systems need to manage not only static resources, but also
resources whose characteristics change dynamically over time, making
the design critical.

The popularity of distributed file systems has continued to grow sig-
nificantly in the last years, due to the success of peer-to-peer services
like file sharing applications, VolP applications, Instant messaging and
TV on the Internet. Peer-to-peer systems offer a decentralized, self-
sustained, scalable, fault tolerant and symmetric network of machines
providing an effective balancing of storage and bandwidth resources.
The peer-to-peer system described in this paper is completely dis-
tributed (requires no form of centralized control, coordination or con-
figuration), scalable (its nodes control only a certain region which is
a part of the whole system and does not depend on the total number of
nodes in the system), and fault tolerant (it can avoid some failures).

Solving complex problems has become a usual fact in the Natural
Language Processing domain, where it is normal to use large informa-
tion databases like lexicons, semantic relations, dictionaries.

We will see how we can configure a peer-to-peer system in order
to find the global solution for the Third Recognising Textual Entail-
ment competition (RTE3) task. The system architecture is based on
the peer-to-peer model, using the SMB protocol for file transfer. The
system functionality was optimized by using a caching mechanism and
a quota for synchronizing the termination of all processes.

After the peer-to-peer network is configured, one computer becomes
the initiator and builds the list of available neighbors. Subsequently,
the initiator has the following additional roles: split the initial problem
into sub-problems, send the sub-problems to the list of neighbors for
solving, receive the partial output files and build the final solution.

2 Computational GRID

Grid computing is a phrase in distributed computing which can have

241

A. Iftene

several meanings [5]:

e A local computer cluster which is like a 7grid” because it is com-
posed of multiple nodes.

e This computer can offer online computation or storage as a me-
tered commercial service, known as utility computing, computing
on demand, or cloud computing.

e It can permit the creation of a ”virtual supercomputer” by using
spare computing resources within an organization.

e Also, it can create a "virtual supercomputer” by using a net-
work of geographically dispersed computers. Volunteer comput-
ing, which generally focuses on scientific, mathematical, and aca-
demic problems, is the most common application of this technol-
ogy.

These varying definitions cover the spectrum of ”distributed com-
puting”, and sometimes the two terms are used as synonys.
Functionally, one can also speak of several types of grids:

e Computational grids (including CPU Scavenging grids) which are
focuses primarily on computationally-intensive operations.

e Data grids or the controlled sharing and management of large
amounts of distributed data.

e Equipment grids which have a primary piece of equipment e.g. a
telescope, and where the surrounding Grid is used to control the
equipment remotely and to analyze the data produced.

Usually, a computational Grid consists of a set of resources, such
as computers, networks, on-line instruments, data servers or sensors
that are tied together by a set of common services which allow the
users of the resources to view the collection as a seamless comput-
ing/information environment. The standard Grid services include [6]:

e security services which support user authentication, authoriza-
tion and privacy

242

Using of P2P Networks for Acceleration of RTE Tasks Solving

e information services, which allow users to see what resources (ma-
chines, software, other services) are available for use,

e job submission services, which allow a user to submit a job to
any compute resource that the user is authorized to use,

e co-scheduling services, which allow multiple resources to be sched-
uled concurrently,

e user support services, which provide users access to ”trouble
ticket” systems that span the resources of an entire grid.

Our P2P system can be considered like a computational Grid, fo-
cused on complex linguistic operations. All standard services were
implemented except the security services which are supported by our
operating system.

3 P2P Networks

The term Peer-to-Peer (P2P) refers to a class of systems (hardware and
software) which employ distributed resources to perform a function in
a decentralized manner. Each node of such a system has the same
responsibility.

Basic goals are decentralization, immediate connectivity, reduced
cost of ownership and anonymity. P2P systems are defined in [7] as
" applications that take advantages of resources (storage, cycles, con-
tent, human presence) available at the edges of the Internet”. The P2P
architecture can help to reduce storage system costs and allow cost
sharing by using the existing infrastructure and resources of several
sites. Considering these factors, the P2P systems could be very useful
in designing the future generation of distributed file systems.

3.1 Design Issues in P2P Networks

Peer-to-Peer systems have basic properties that separate them from
conventional distributed systems. We describe in this section different
design issues and their effect in system performance [8].

243

A. Iftene

Symmetry: Symmetry comes among the roles of the participant
nodes. We assume that all nodes have the same characteristics.

Decentralization: P2P systems are decentralized by nature, and they
have mechanisms for distributed storage, processing, information shar-
ing. In this way scalability, resilience to faults and availability are
increased.

Operations with Volunteer Participants: An important design
issue is that the participants can neither be expected nor enforced.
They haven’t a manager or a centralized authority and can be inserted
or removed from the system at any time.

Fast Resource Location: One of the most important P2P design
is the method used for resource location. Because resources are dis-
tributed in diverse peers, an efficient mechanism for object location
becomes the deciding factor in the performance of such system.

Load Balancing: Load balancing is very important in one robust P2P
system. The system must have optimal distribution of resources based
on capability and availability of node resources.

Anonymity: With scope to prevent censorship we need to have
anonymity in our system. Our network must to assure anonymity for
producer and for consumer of information.

Scalability: The number of peers from network should be any value
(hundreds, thousands or millions), and that not affect the network
behavior. Unfortunately actual systems are not scalable over few hun-
dreds or thousands of nodes.

Persistence of Information: Methods from our system should be
able to provide persistent data to consumers, the data stored in the
system is safe, protected against destruction, and highly available in a
transparent manner.

Security: Security from attacks and system failure are design goals for
every system. The system should be able to assure data security, and
this can be achieved with encryption, different coding schemes, etc.

244

Using of P2P Networks for Acceleration of RTE Tasks Solving

4 Peer to Peer GRID Concepts

P2P systems are divided into two categories in [6]:

o File sharing utilities how we already see in FreeNet, which can
be characterized as providing a global namespace and file caching
and a directory service for sharing files in a wide-area distributed
environment. In the most interesting cases, the resources and all
services are completely distributed. Each user client program,
which can access local files, is also a data server for files local to
that host.

e (CPU cycle sharing of unused user resources usually managed by
a central system, which distributes work in small pieces to con-
tributing clients. Examples of this include Seti-athome, Entropia
[11] and Parabon [12].

Both of these cases are interesting distributed system architectures.
From the perspective of Grid computing there are several compelling
features to these systems. First, the deployment model of P2P systems
is purely user-space based. They require no system administrator.

Security, when it exists in these systems is based on users deciding
how much of their resource they wish to make public to the collective
or to the central resource manager. Also P2P systems are designed
to be very dynamic, with peers coming and going from the collective
constantly as users machines go on and off the network. P2P systems
are also doing a good job of bypassing firewalls. This stands in contrast
to large-scale scientific Grid systems, which manage large expensive re-
sources and must be constantly maintained and managed by the system
administration staff.

5 The System

5.1 CAN

The system P2P architecture is based on CAN model [15]. In order
to implement a P2P architecture that respects all these issues, we use

245

A. Iftene

the Content Addressable Network (CAN) presented in [9]. The basic
operations performed on a CAN are the insertion, lookup and dele-
tion of nodes. Our implementation is based on [10] and it provides a
completely distributed system, scalable and fault-tolerant.

CAN Construction

Our design is over a virtual d-dimensional Cartesian coordinate space.
This space is completely logical and we haven’t any relation between
it and any physical system. In this d-dimensional coordinate space,
two nodes are neighbors if their coordinates are the same along d-1
dimensions and are different over one dimension. In this way, if all
zones from this space are approximate the same every node has 2d
neighbors. To allow the CAN to grow, a new node that joins to this
space must to receive its own portion of the coordinate space.

CAN Insertion

The process has three steps:

- The new node must find a node that is already in CAN (source
node).

- After that, it knows CAN dimensions and it generates a d-point
in this space (this point is in a node zone - destination node). We
route from source node to destination node following the straight-
line path through the Cartesian space. The destination node then
splits its zone in half and assigns one half to the new node.

- In the last step, the neighbors of the split zone must be notified
about new node from CAN.

CAN Deletion

When nodes leave from our CAN, we need to ensure that the remaining
neighbors take their zones. If the zone of a neighbor can be merged
with the node’s zone to produce a valid single zone, then this is done.

246

Using of P2P Networks for Acceleration of RTE Tasks Solving

If not, then the zone is split in zones accordingly with neighborhoods
structure. In some cases it is possible like this zone to remain non-
allocate, but with first occasion it is used.

5.2 Transfer Protocol

The transfer protocol we used in our approach is based on CIFS (Com-
mon Internet File System) [13], the Microsoft version of SMB (Server
Message Block) [14]. The main scope of using this transfer protocol is
to manage the download and upload of files between nodes from our
P2P network. Using our protocol, advantages come from possibility to
retry in case of failures and in possibility to use bandwidth partially in
order to by-pass network overloaded.

SMBs have a specific format that is very similar for both requests
and responses. After connecting at the network level, the client is ready
to request services from the server. However, the client and server must
first identify which protocol variant they each understand.

The client negotiates the protocol which will be further used in its
communication with the server. Once a protocol has been established,
the client can proceed to login to the server, if required. One of the most
important aspects of the response is the UID of the logged on user. This
UID must be submitted with all subsequent SMBs on that connection
to the server. The client sends a SMB specifying the network name of
the share that they wish to connect to, and if all is proper, the server
responds with a TID that the client will use in all future SMBs relating
to that share.

Having connected to a tree, the client can now open a file with an
open SMB, followed by reading it with read SMBs, writing it with write
SMBs, and closing it with close SMBs.

Download and Upload files

Our CIFS implementation respects the following design issues:

e Possibility to split and transfer files in blocks;

247

A. Iftene

e Possibility to retry and resume when connection is lost, in case
of power failures;

e Upload/Download files to/from one computer which need user/
password login;

e Possibility to use the bandwidth partially, in order not to overload
the network.

Download a file

In order to download a file, the following steps are performed in our
implementation:

1. Login: First the dialect of CIFS to use is negotiating and the
Protocol to use is obtained. Secondly, the connection was set up
to the server using credentials and set the UID assigned by the
server to the client.

2. TreeConnect - connect to the specified folder and set TID iden-
tifier

3. Open File - open file for read and set FID

4. ReadFromkFile - read from remote file starting with position
offset, length bytes and put the result in buffer

Upload a file

In order to upload a file, the first two steps described above are per-
formed, followed by:

3’. Open File - create file or open file for write, append and set FID
(flags should be FILE_OPEN_IF)

4’. WriteToFile - write to remote file starting with position offset,
length bytes from buffer

248

Using of P2P Networks for Acceleration of RTE Tasks Solving

5.3 System Architecture

The system presented below consists of more core modules (CMs) and
databases of linguistic resources. In order to solve the task from RTE
competition we must connect to a computer from this computational
Grid in order to initiate the problems solving. The system main com-
ponents and transfer protocols were implemented using Microsoft plat-
form and the C# language.

o SME upload

4 ---- SMBE download

Figure 1. P2P Network

Between CMs, the upload and download operations are done using
a special component based on the SMB protocol.

Any computer from this network can initiate the solving of the
RTE task and it becomes the Initiator. First of all it checks its list
with neighbors in order to know the number of computers which can be
involved in the problem solving (the future CMs). After that it updates
all these CMs with the last version of the TE module (this module
identifies if we have textual entailment between text and hypothesis).

249

A. Iftene

In parallel, all pairs are sent to the LingPipe and Minipar modules
[16, 17], which send back the pairs on which the central module can run
the TE module. All necessary files are automatically uploaded from the
initiator to the other computers and eventually, in the end the partial
results from the other computers are automatically downloaded to the
initiator.

After that, the Initiator automatically splits the initial problem
(consisting of 800 pairs) in sub-problems (a range between the number
of the first and last pair) according to the number of its neighbors and
using a dynamic quota. At first, this quota has an initial value, but
in time it is decreased and eventually becomes the default minimal
value. The main goal of using this quota is to send to any neighbor
a number of problems according to its computational power and how
busy it is in the running moment. In order to accomplish this, each
computer is given an initial number of problems for solving and when
it finishes, it receives automatically another quota according to the
remaining number of problems.

We run in a network with different system configurations of com-
puters (dual core - running two processes and normal - running one
process) and with different degrees of business in the execution mo-
ment. For that we run Disk Defragmenter on some computers (those
marked with *) to see how the initiator distributes the sub-problems
to its neighbors.

Table 1. Number of Problems Solved by Computers

[quota 100 100 100 20 20 20 |
Duall_1 165 163 176 171 178 209
Duall_2 197 136% 179 145% 159% 221
Dual2_1 175 175 155% 185 138% 108*
Dual2_2 152 183 163 180 129% 130%
Normal 111 143 127 119 196 132

The table above demonstrates the correctness of our supposition
regarding the quota mechanism. In all cases presented, the proces-
sor solves fewer problems. After splitting the initial problem in sub-

250

Using of P2P Networks for Acceleration of RTE Tasks Solving

problems, the ”Client Module” from the initiator creates threads for
each sub-problem. It also creates for every neighbor a sub-client in
order to communicate with server components from neighbor and solve
the sub-problem (see Figure 2).

Core Module /

/ Buffer \
Server Client
|

component \ component
Core Module 2

/ - \ Client !
e =

Client 2

il

TE

module : /

\

Client 1 Core Module »

o] =]

i

[mtiator

Figure 2. Client Server architecture

This sub-client is responsible for sending sub-problem, for receiving
the results and saving them to a file with partial results, and informing
the initiator server when the solving of sub-problem is finished. In order
to inform the server about ending of solving process the client module
uses the buffer zone in order to inform the server about that. The client
uses the buffer like a ”producer” which puts here information about
ending of processes, and the server uses the buffer like a ”consumer”
[18]. The server takes the information and sees how the sub-problem is
solved on the corresponding computer and starts the solving of a new
sub-problem when the previous one is finished.

5.4 Results

The idea to use a computational Grid came after the first run of the
first system build for RTE3 [19]. This first run had no optimization and

251

A. Iftene

took around 26 hours on one computer. In order to observe the system
changes faster, we improved this system and during the competition
period we used a system which took around 8 hours for a full run.

This initial system was installed on four computers and after man-
ual splitting of problems in sub-problems a single run took only two
hours. After all system finished its runs we manually built the final
solution from the four partial solutions.

Now, in the current solution the Initiator is responsable for splitting
of problems in sub-problems, and for collecting of partial results in
order to build the final result. Also, a common caching mechanism is
used for the large databases of Dirt and WordNet in order to increase
the computational speed. For the building of the caching resource, the
system was run on one computer. After that, the computational Grid
was configured on a P2P network with 5 computers (3 normal and 2
with dual core processor) and a run of the system now takes 6.7 seconds
(see Table 2).

Table 2. Details on the Duration of Runs

| No Run details Durati0n|

1 One computer without caching mechanism 5:28:45
One computer with caching mechanism, with 2:03:13
empty cache at start

3 One computer with full cache at start 0:00:41

4 5 computers with 7 processes 0:00:06.7

Another big problem was synchronizing the termination of pro-
cesses. When we manually split the initial problem in sub-problems,
if another process (like Windows update or a scanning computer after
viruses) starts on some computer, then this computer works slowly. In
this case, we have up to 30 minutes delay due to the fact that we have
to wait for it to finish solving its sub-problems in order to build the
final solution.

Now, using the quota mechanism for synchronizing the ending of
all processes, the difference between the time when the first computer
from the network finishes its work, and the last computer is around 0.26

252

Using of P2P Networks for Acceleration of RTE Tasks Solving

seconds. Also, the powerful computers from the network have time to
finish more problems while the slow ones solve less.

6 Conclusions and Future Work

In this paper we have shown how to build the system for RTE competi-
tion. This system is based on a P2P arhitecture in order to observe the
system changes faster. This approach seems as most appropriate given
the complexity of the task and the fact that the impact of any change
brought to the system must be quantified quickly (the competition has
a duration of 3 days). To our knowledge, there were no similar efforts
to optimize RTE systems from the computational speed point of view
(presently, there are systems whose run takes days to complete).

One important further development of the system will be a web-
service allowing users to run in a GRID environment NLP applications.
For that we will use for the middleware part of the GRID, the Globus
Toolkit [20], a software ”work-in-progress” which is being developed by
the Globus Alliance [21]. The toolkit provides a set of software tools
to implement the basic services and capabilities required to construct
a computational GRID, such as security, resource location, resource
management, and communications. Our scope is to offer basic linguis-
tic GRID services, and after that, based on these services we will build
complex services. Like basic services we already implement in Java
GRID services for lemmatization, POS, tokenizing, name entity recog-
nition, WordNet (in English and in Romanian). As complex services
we will be focused on special services necessary in Question Answering
and in Textual Entailment.

Acknowledgement

The author thanks the members of the NLP group in Iasi for their help
and support at different stages of the system development.

The work on this project is partially financed by the CEEX GRAI
(Grid Computing and Artificial Intelligence) project number 94 and by

253

A. Iftene

Siemens VDO Iasi.

References

[1]
2]
[3]

[4]
[5]
[6]

7]

8]

[9]

[10]

RTE competition: http://www.pascal-network.org/Challenges/
RTES.

G. C. Fox, D. Gannon, Computational Grids, IEEE Comput Sci
Eng. Vol 3, No. 4, pp. 74-77, 2001.

D. Gannon, and A. Grimshaw, Object-Based Approaches, The
Grid: Blueprint for a New Computing Infrastructure, Ian Fos-
ter and Carl Kesselman (Eds.), pp. 205-236, Morgan—Kaufman,
1998.

Globus MDS. http://www.globus.org/toolkit/mds.

Grid Computing: http://en.wikipedia.org/wiki/Grid_computing.

D. Gannon, R. Bramley, G. Fox, S. Smallen, A. Rossi, R. Anan-
thakrishnan, F. Bertrand, K. Chiu, M. Farrellee, M. Govindaraju,
S. Krishnan, L. Ramakrishnan, Y. Simmhan, A. Slominski, Y. Ma,
C. Olariu, N. Rey—Cenvaz, Programming the Grid: Distributed
Software Components, P2P and Grid Web Services for Scientific

Applications, In Cluster Computing journal, Volume 5, Number 3,
Pp. 325-336. 2002

S. Androutsellis-Theotokis and D. Spinellis, A survey of peer-to-
peer files sharing technologies, White paper, Electronic Trading
Research Unit (ELTRUN), Athens, University of Economics and
Business, 2002.

H. Ragib, A. Zahid, A survey of peer—to—peer storage techniques
for distributed file system, National Center for Supercomputing
Applications Department of Computer Science, April 2005.

S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker,
A scalable content addressable network, TR-00-010, 2000.

A. Iftene, C. Croitoru, Graph Coloring using Peer—to—Peer Net-
works, In Proceedings, of 5th International Conference RoEduNet
IEEE. Pp. 181-185. Sibiu, Romnia. 1-3 June, 2006.

254

Using of P2P Networks for Acceleration of RTE Tasks Solving

[11]
[12]
[13]
[14]

[15]

[16]
[17]

[18]

[19]

[20]
[21]

Entropia Distributed Computing, see http://www.entropia.com.
Parabon Computation, see http://www.parabon.com.

CIFS or Public SMB Information on Common Internet File Sys-
tem: http://support.microsoft.com/kb/199072.

Server Message Block:
http://en.wikipedia.org/wiki/Server_Message_Block.

A. Iftene, A., Balahur-Dobrescu, and D. Matei, D. A Distributed
Architecture System for Recognizing Textual Entailment. In pro-
ceedings of 9th International Symposium on Symbolic and Nu-
meric Algorithms for Scientific Computing. Timisoara, Romnia.
September 26-29, 2007.

LingPipe: http://www.alias-i.com/lingpipe/.

D. Lin, Dependency-based Evaluation of MINIPAR, In Workshop
on the Evaluation of Parsing Systems, G ranada, Spain, May, 1998.
G. R. Andrews. Foundations of parallel and distributed program-
ming. Addison-Wesley Longman Publishing Co., Inc., 1999.

A. Iftene, A. Balahur-Dobrescu. Hypothesis Transformation and
Semantic Variability Rules Used in Recognizing Textual Entail-

ment. In Proceedings of the ACL-PASCAL Workshop on Textual
Entailment and Paraphrasing, Pp. 125-130, Prague, June 2007.

Globus Toolkit: http://www.globus.org/toolkit/
Globus Alliance: http://www.globus.org/alliance/

Adrian Iftene Received December 2, 2007

7 AL

I. Cuza” University,

Faculty of Computer Science,
General Berthelot Street, No. 16,
Code 700483, Iasi, Romania
E-mail: adifteneQinfo.uaic.ro

255

