Computer Science Journal of Moldova, vol.16, no.2(47), 2008

The representation method of a complex
software system dynamic project

Nicolae Magariu

Abstract

The system of transition diagrams having the capacity to de-
fine the dynamic links between components of complex software
system presented at different levels of specification is proposed.
The model of complex software development based on the apply-
ing of transition diagrams systems is considered. The advantages
of the model are analyzed.

Key words: software design, transition diagram, dynamic
project of software system.

1 The problem

The necessity of intensification of human society economical develop-
ment on the one hand, and advanced performances of modern com-
puters on the other hand, force automation of the most complex In-
formation Handling Processes (IHP) in the field of economics. This
automation can be realized by means of Complex Information System
(CIS) [1]. CIS development needs the big intellectual efforts of a group
of developers in the course of several years. In the context of CIS devel-
opment a special attention is given to CIS design phase, especially to
CIS dynamic aspects design: components and subcomponents behavior
specification, correlation of system’s static and physic aspects with its
dynamic aspects, etc. One of the well known means, which is applied
to specify dynamic aspects of simple programs, is the transition dia-
gram [2, 14]. An attempt to specify dynamic aspects of a CIS with the
help of single transition diagram causes serious difficulties. Applying

(©2008 by N.Magariu

223

N.Magariu

a set of transition diagrams to specify CIS dynamic aspects can be a
good solution of the posed problem. A model of applying the Systems
of Transition Diagrams (STD) in CIS dynamic projects elaboration is
proposed.

2 Preliminary

STD had been used for the first time in 1963 by American scientist
Melvin E. Conway when he had developed a separable compiler [4].
Conway had specified the syntax of COBOL language utilizing STD,
and had proposed an original algorithm of compilation which he had
named diagrammer. A diagram of the STD has a double destination.
It defines the syntax of language construction on the one hand and
specifies the model of abstract automata for this construction imple-
mentation on the other hand.

As automata model a diagram consists of nodes and edges, where
nodes represent states and edges define traunsitions from one state to
another [2,5, 14]. A diagram can have one initial node (or state), one or
more final nodes and no one or several intermediate nodes. An initial
or intermediate state defines the opportunity to respond to defined
events occurrence. A final state defines the passing interruption. The
transition from one state to other is pointed by an edge. Edges can be
marked by terminal symbols of the language or by name of a diagram.
This method of interlinking between diagrams characterizes a Conway
STD. A program unit can be associated with every edge. This unit is
executed when the corresponding edge is passed. The STD includes
the main diagram -"program” and several diagrams for presentation
of all syntactic constructions of the language. The diagrammer is to
pass full main diagram path having read the symbols of the program
which are saved in input line. It passes the full path by steps. One step
includes: - reading of one symbol from the input line and selection of
the edge for transition to the other state; - execution of the program
unit associated with the selected edge; - transition to the other state
pointed by the selected edge. It finishes passing when the current state
is a final state or the transition from current state isn’t possible. It

224

The representation method of a complex ...

starts the input line analysis from the initial state of the main diagram
and recognizes program constructions in nondeterministic way - with
returns in input line. Conway determines the possibility of STD and
diagrammer application for other languages compilation as well. The
STD can be constructed by using the formal description of the language
syntax.

David Bruce Lomet had studied the Conway diagrammer and had
proved diagrammer’s equivalence to a restricted Deterministic Push-
Down Acceptor (DPDA) called a nested DPDA [5]. He had established
that the class of nested DPDA’s is capable of accepting all deterministic
context-free languages.

The author has been studied Conway’s SD'T and diagrammer inde-
pendently of D. B. Lomet. There was elaborated a special class of STD
which allows the diagrammer functions in deterministic way. This class
of STD was applied in time of the APL interpreter construction [6].

APL is an interactive language and the syntax of its constructions
is very simple [7]. User variables can obtain as a value a numerical
array or an array of char type with arbitrary number of dimensions.
APL operators can be nullary, unary or binary. Operands of the op-
erators can be some expressions, evaluated to arrays, with arbitrary
number of dimensions. Semantics of the APL operators is very con-
sistent and it can be described in C language using tens or hundreds
of instructions. Almost all operators in APL have equal priority (with
small exceptions). The user can create and give to APL system an ex-
pression for execution or can create a User Defined Functions (UDF).
A UDF prototype has the structure similar to the APL basic opera-
tor’s structure. A UDF can be made up from expression instructions or
branching instructions. Jumps can be made inside UDF only. A UDF
can’t be defined inside another UDF. All UDFs necessary for solving
a problem or a family of problems are stored in a special Work Space
(WS). An expression can contain invocations of UDF. To solve a prob-
lem by means of APL system, one needs to create the set of UDF in
WS and give the APL expression to APL system. The execution of
this expression leads to execution of UDFs, which are invoked directly
or indirectly from this expression. So, the STD of the APL expression

225

N.Magariu

defines the order of execution of a UDF from WS. One can say that
the APL expression defines a control message to realize functionality,
which is necessary for a user and the STD of APL expression defines
the rules of execution of this expression. The diagrammer interprets
the APL expression according to the rules defined by STD.

This context suggests the idea about using the STD in designing
and construction of CIS [8]. In this case the process of data handling is
considered as the execution of an actions sequence. One event provokes
an action or an activity of data handling. A user function can be
defined as a sequence of events. The STD defines the correctness of
events sequence and the action of data handling which corresponds to
each event of the sequence. Thus the STD represents the dynamical
project of a CIS. An input line contains a sequence of events names —
specification of the functional requirement of the user. The execution
of actions of data handling which corresponds to this sequence of events
has to give the user result. The diagrammer represents the model of
interpretation control of actions corresponding to events pointed in an
input line.

Ed Yourdon had researched a software system modeling by means
of Transition Diagrams Systems of States (TDSS) [3]. He elaborated
the method of creation of TDSS in the context of modeling the software
systems oriented to data flaw. TDSS are the other form of dynamic
project representation. The events and the program units aren’t asso-
ciated to edges and the links between diagrams aren’t pointed evidently
in TDSS.

3 A transition diagrams and STD as a dynamic
projects

Two types of diagrams are used in automaton modeling: transition
diagrams and state diagrams or machine [9]. Transition diagrams are
used in modeling of G.H. Meally automaton and state diagrams are
used in modeling of E.F Moore automaton.

The diagrams application in designing of automaton for different

226

The representation method of a complex ...

objects control (for example, flying apparatus, seagoing ships, etc.)
is studded in a number of publications [10,11]. The elaboration of
such automatons begins with the specification of the object and their
states. The object is described by means of finite set of variables.
Every variable represents a property of the object. The value of each
variable can be changed in time of object activity. An object state
is specified by concrete values of a subset of variables. After this the
automata model construction follows. This model is represented by
meauns of one or several diagrams. For every state of the diagram there
are specified: - the signals (or events names) which can be received
from the object; - the procedure of control signals generation for every
received event name; - the states in which the automata can be passed.
If several diagrams are used under automata model construction then
the association of these diagrams is defined. The method of diagram
association is defined in particular way proceeding from feature of the
concrete problem. As a rule such modeling is realized by means of state
diagrams.

On the base of automata model the functional automata schema
represented by means of logical operations or the program which de-
scribes the automata behavior is constructed.

The method of program construction on the base of the automata
diagram is studied in the works [11,12]. In specification of such pro-
grams the separation of states describing from control process describ-
ing is proposed.

On the base of accumulated experience in construction of program
for objects control the original style of programming was developed —
Automaton Oriented Programming (AOP) [11,12]. In AOP the models
of data processing are represented as a model of automata and the
program unit describes the work of finite state automata. The main
features of the AOP are:

1. The model of data processing is specified as a model of automata
represented as a transition matrix, transition diagram or state
diagram. States of the automata are defined depending on the
values of subset of variables from the set of variables which is de-

227

N.Magariu

fined when problem analyzing. Thus the states of automata differ
one from another through different values of the variables which
describe the problem. In the time of automata step execution
some variables obtain new values. In modeling of composed data
processes several diagram may be used. The method of diagram
association is specified in particular way depending on problem
peculiarities.

2. The program unit contains the loop. The body of this loop repre-
sents the program code fragment which describes a work step of
the automata. This program code fragment can be represented
as a subprogram — function. The program execution is driven
by events produced by external or internal actors. AOP can bee
realized by means of structured or object oriented programming.

The methods of transition diagram application in designing of lan-
guages processors is described in many publications [2,4,14]. The
methodology of interpreter modeling by means of transition diagrams
is a good base for development of methodology of CIS dynamic project
construction.

The methodology of AOP originates a new programming paradigm
— Event-Driven Programming (EDP) [15-17]. The general static model
of event-driven application is shown in Fig 1.

v

User Interface (UI) ,| Events
Oueue

Events Processing
h Centre

Figure 1. The general static model of event-driven application

The UI component offers to user the means of event generation:
windows with menus, buttons, etc. The event generation is realized by
the user through different ways: mouse clicking a menu line, a button,

228

The representation method of a complex ...

etc. The ,,Events Queue” component ensures the events saving in a
queue. The . .Events Processing Centre” component takes the events
from the queue and processes it. The model of events processing is
specified by a transition diagram and the interpretation of this compo-
nent functions is driven by this diagram. The events can be processed
in parallel way [16].

Currently the EDP is developed by means of OOP [16]. The author
used this technique in elaboration of the “Electronic Atlas of Moldova
Republic” application prototype [18]. But EDP can be developed by
means of structured programming and STD [19]. See compartment 5.

4 Deterministic STD

From theoretical point of view STD can be considered as the association
of the transition diagrams realized by means of the standard method
of association. Therefore the STD structure can be modified easyly.

From practical point of view it is very important that the STD
should provide a deterministic transition from one to another state.

A TD of STD uses two disjoint vocabularies: vocabulary of events
names and vocabulary of diagrams names. The set of events can be
defined from specification of functional requirements to the applica-
tion. This set is finite always. Omne can define the events sequence
for each functional requirement. The detailed analysis of the construc-
tion method of STD is not provided in the context of this paper. Two
general models of STD construction may be pointed out.

Model 1 includes the following common steps:

St1) The functional requirements are defined as sequences of events
names.

St2) The transition diagrams of STD are constructed on the basis of
sequences of events names having the common prefixes or/and suffixes.

Model 2 provides for the elaboration of the events set and the STD
in the same time as the top-down functional designing of a CIS.

As a rule the STD constructed by applying any method is a non-
deterministic one. In this case it is necessary to check STD and if it
is not deterministic then transform it into deterministic one. To define

229

N.Magariu

the STD which models the deterministic process, the formal notations
were proposed [6]:

3. — vocabulary of events names;

N — vocabulary of diagrams names;

d; — the name of i-th diagram of the STD (i € 0...n—1) and d; € N;

IL — input line;

Y;j — the set of events names, which mark edges going from j-th
node of i-th diagram;

N;; — the set of diagram names, which mark edges going from j-th
node of i-th diagram;

F(d;) — the set of simple events which are the first events of the
sequences that can be interpreted under passing d; diagram (i = 0...n—
1). The construction method of F(d;) set (i = 0..n — 1) is:

F(d’L) =X U (F(dl)), for all d; € Ny

These notations helped to define exactly the limitations for dia-
grams structure which ensure the deterministic work of the diagram-
mer. The limitations for diagrams structure are:

1) N # O;

2) ¥ and N vocabularies don’t contain useless symbols;

3) STD diagrams don’t contain unmarked edges;

4) There can’t be two edges, outgoing from the same node and
marked with the same symbol;

5) For every d; diagram (d; € N;;) the intersection of ¥;; and F'(d;)
is the empty set;

6) For 2 diagrams d; and d; (d;,d; € N;j) the intersection F'(d;) N
F(d;) is the empty set.

The sets F(d;) (1 =0..n-1) can be calculated for concrete STD
before the diagrammer starts execution.

It was proved, that if STD diagrams satisfy enumerated limitations,
then in every state and current event the diagrammer can choose only
one possible transition [6].

On the base of the diagrammer constructed in [6] the determin-
istic model of events sequence interpretation was elaborated. It was

230

The representation method of a complex ...

named AIM (Application Interpretation Model). The general descrip-
tion of the AIM was made up by means of pseudo language based on
C language. See Appendix 1.

The knowledge about limitations for diagrams structure and AIM
simplify the process of STD construction.

5 Applying of the STD in the development of
software systems

The CIS’s dynamic project representation by means of STD correlates
very well with its top-down designing. Top-down design methodology
of the complex program systems recommends initially to develop a
general structure of a system - its components (subsystems), and after
that it recommends to do detailed modeling of every subsystem. In this
case a dynamic project can be represented by a STD, which contains
a main diagram named "PS”. This diagram specifies the behavior of
program system’s subsystems. The STD also must contain at least one
diagram for every component. These diagrams specify the behavior of
subcomponents of the appropriate components.

Let us consider an example of a generalized project of complex
software system, which consists of subsystems cl, ¢2, ¢3, ¢4, ¢5. Let
these subsystemns realize the following functionalities, necessary to user:
cl — data initializations and adaptations, ¢2 — calculations according
to the method M1, ¢3 — calculations according to the method M2, ¢4
— comparative analysis of the obtained results, ¢ — report generation.
Suppose that cl, ¢2 and ¢3 components need an intensive interaction
with the user. In this case, the behavior of the systems may be specified
by the main diagram ”PS”, shown in Fig. 2.

Symbols ”another problem”, ”repeat” and ”exit” are the names
of the simple events and symbols cl, ¢2, ¢3, ¢4, ¢5 are the names of
diagrams which specify the components behavior. These names may be
considered as names of composed events. To simplify understanding,
the names of the program units associated with events are not shown
on the diagram edges.

231

N.Magariu

PB:

another problem

Figure 2. The main diagram of the SDT

Suppose that the diagram, which corresponds to component c1, has
the structure, shown in Fig.3. The symbols €0, el, €2, ..., eN are the
names of simple events in this diagram. The F(cl) set includes e0
symbol only.

The transition diagrams for components ¢2, ¢3, ¢4, ¢b of the CIS
are constructed similarly.

el o2
cl: (I] L 91\0 L :-|~||

ed

Figure 3. The transition diagram for subsystem cl

The correctuess of one diagram structure can be tested. In this case
the pointed diagram is used as a main diagram and AIM is interpreted

232

The representation method of a complex ...

for selected sequence of events names. For example, we can apply the
AIM by using the diagram cl as a main diagram. For that we must
fix the ¢l as the main diagram and we mast prepare the sequences of
events (user functionality) accepted by c1 diagram. Then it is necessary
to interpret this sequence of events according to the AIM. Let the
‘eleleledeN’ be prepared to satisfy the user function 1 and the sequence
‘e0e2ele2eledeN’ — the user function 2. We can make sure that the AIM
accepts these sequences.

It is easy to observe that to modify the application it is necessary to
modify the STD, but the AIM remains the same. It is very important
to notice that the modification of the STD which isn’t violating the
foregoing limitations don’t break the AIM work. Therefore the AIM
can be implemented one time and can be reused when constructing the
other application.

Practically it is important to outline the classes of problems which
can be solved by application of a STD. Evidently the STD can’t be used
for the systems development for parallel data handling. But it can be
used with success on elaborating the structured software systems for
management automation.

If the dynamic project is represented by a single transition diagram
and the user interaction is required not frequently then one can consider
that application of the STD and AIM is less efficient.

If the IHP is very complex and his execution requires an intensive
interaction with the user or other actors, then applying the STD is
efficient enough. In this case it is very important the generation mode
of the sequence of events. There can be used three modes or strategies
of driving the AIM’s work:

(1) Any functionality of a CIS is defined preliminarily by a finite
sequence of the events. This sequence is placed in the queue at the
beginning of AIM work. The AIM interprets automatically events from
the queue.

(2) The event is placed in queue under every transition to new state
of a diagram. The AIM waits the event in every state.

(3) AIM’s work is partially driven by finite subsequences of the
events, and partially by the event generated under transition into a

233

N.Magariu

new state.

To provide the strategies (2) and (3) it needs to execute some ac-
tions under entering the state and under exiting the state. Thereby
AIM functioning can be adapted in correspondence with the strategy
of AIM driving.

To raise the efficiency of event-driven CIS elaboration process the
model of framework was proposed [19]. The static model of the frame-
work is shown in Fig. 4

The ,,UI constructor” component helps to construct the user inter-
faces of applications. The ,,Librarian” component helps to create and
modify the library of program units. The ,,STD Constructor” compo-
nent helps to construct the inner representation of deterministic STD.
The ,,CIS integrator” component integrates together three components
(AIM, UL, and STD) and creates an interpretable CIS. The “CIS in-
terpreter” component customizes and starts running the CIS.

User
A
" v
STD Constructor. CIS integrator.
Ul constructor, CIS interpreter.
T.ibrarian.
g\/—.::
Program CIS
units library (AIM, UI, STD)

Figure 4. The static model of the framework

The analysis of the functioning principles of the framework per-

234

The representation method of a complex ...

mits to affirm that the elaboration process of an event-driven CIS with
applying the STD will minimize CIS elaboration time and cost.

6 Conclusions

One can mention that using the STD on software system development
offers some important advantages:

. Application of STD represents a more systematized technique of
modeling of complex software system behavior than other known
methods. It permits the effective distribution of work among
developers and fast assembling of CIS.

. The AIM represents an invariant part of an application. There-
fore it can be constructed once and reused on developing of other
CIS. This fact provides the possibility to expand the quality of
software systems and reduces time of their construction.

. The structure of a software system can be modified and extended
fast and easy.

. The automation of the STD creation can reduce the time of CIS
construction.

. STD and AIM represent an efficient mechanism for elaborating
event-driven software systems.

To construct quickly the compound software system, the instru-
mental framework may be constructed using the results stated in this

paper.

CIS design by means of STD is based on functional refinement of

the project. To improve effectiveness of this type of modeling it needs
to be provided with an adequate systematic method of data design and
control.

235

N.Magariu

References

[1]

2]

3]

[4]

[5]

[6]

[7]

8]

[9]

Stepan A., Petrov Gh., lordan V. The fundamental for design and
implementation of software systems. /MIRTON ed., Timisoara,
1995. 282 p. (In Romanian)

Ciubotaru C.S., Magariu N.A. Scanners elaboration. (The work-
book.) /State university of Moldova, Chisinu, 1984. 28p. (In Rus-
sian)

http://yourdon.com/strucanalysis/wiki/index.php?title=Chapter
13, #STATE-TRANSITION DIAGRAM NOTATION, Retrieved
January, 2008

Melvin E. Conway. Design of a separable transition-diagram com-
piler. //Communications of the ACM, Volume 6, Issue 7 (July
1963). pp. 396—408.

David Bruce Lomet. A Formalization of Transition Diagram Sys-
tems. //Journal of the ACM (JACM) V. 20 , Issue 2 (April 1973).
PP. 235-257.

Magariu N.A. The application of transition diagrams on inter-
active programming system implementation. //Mathematical re-
searches of Moldova Science Academy, issue 107. The theory and
practice of programming. Chisinau, Stiinta, 1989. pp.100-110. (In
Russian)

Magariu N.A. The APL programming language. /Radio i sviazi,
Moscva, 1983. 87 p. (In Russian)

Magariu N. The using of transition diagrams on systems construc-
tion of data processing. |/Proceedings of republican scientific con-
ference “Informatics and computer engineering”, Chisinau, 1993,
pp. 61-62. (In Romanian)

Ziubin V.E. The programming of information and management
systems based on finite automaton. (The workbook.)/ State uni-
versity of Novosibirsck. Novosibirsk, 2006. 96 p. (In Russian)

236

The representation method of a complex ...

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

David Harel. Statecharts: A visual formalism for complex systems.
//Science of Computer Programming 8, North Holand, 1987. pp.
231-374.

The software technology based on finite automaton |/
http://www.softcraft.ru/auto.shtml#ap. Retrieved January,
2008

The programming based on automaton / http://is.ifmo.ru/. Re-
trieved January, 2008 (In Russian)

Cuznetov B. P. The psychology of programming based
on automaton. // BYTE/Russian, 11, 2000 and
www.softcraft.ru/design/ap/ap0l.shtml. Retrieved January,
2008 (In Russian)

Hopcroft J., Motwani R., Ullman J. Introduction to Automata
Theory, Languages and Computation. /MA: Addison-Wesley,
2001. 521 p.

Shalito A. A., Tokkeli N.I. The automaton implementation under
programming of event-driven sytems. // A Programer, 4. St. Pe-
tersburg State institute of fine mechanics and optics, 2002. pp.
74-80. (In Russian)

Stephen Ferg. FEwvent-Driven Programming: Introduc-
tion, Tutorial, History. Version 0.2 - 2006-02-08. /
http://Tutorial_EventDrivenProgramming.sourceforge.net. Re-
trieved January, 2008

N.N.Nepeivoda. Programming styles and methods. Internet Uni-
versity of Information Technologies intuit.ru, 2005, 320p. (In Rus-
sian)

Magariu N., Grico 1. The design dimension of the electronic ge-
ographic atlas of Moldova Republic. //Scientific annals of “A.L
Cuza” university of lagi. Number 6. The proceedings of GIS sym-
posium. V. XLVL Tasgi, 2000. pp.55-60. (In Romanian)

237

N.Magariu

[19] Magariu N. Some modern peculiarities of development of complex
application. // Microelectronics and Computer Science, int. conf.
(5, 2007, Chisinau), Proceeding of the 5 International Conference
on ,,Microelectronics and Computer Science”, sept.19-21. 2007,
Chisginau, Moldova/ com. or: 1. Balmusg, V. Ababii,... Ch., U.T.M,
2007. ISBN 978-9975-45-047-8 (vol2). pp. 149-152. (In Romanian)

APPENDIX 1. The Application Interpretation Model.

// AIM

//The initial work state of the AIM is fixed.

i = 0; //The main diagram was selected

Jj = 0; // The initial nod of diagram was selected

{The content of the input line IL is fixed};

k = 1; //k — the index of a symbol from the IL.

while (the current node is not the final node of the main diagram)

{ while (ILk F(dl) and dl Nij)

{The current state is memorized in stack;

The initial state of diagram d;is fixed as current state; // Values
of 7and jvariables are modified.

}

if (ILy Xij)

{ The program unit associated with the edge, marked with ILj is
executed;

The transition through the edge, marked with ILj is realized and
the value of j variable is modified;
k=k+1;

}

else

{ Message delivery “The sequence of control symbols is wrong”;
exit (1)}

while (The current node is the final node of a diagram that differs
from the main diagram)

{ The state from the top of the stack is determined as the current
state;

238

The representation method of a complex ...

The transition through the edges, marked with name of passed di-
agram, is made;

}

}

{The interpretation is stopped};

Nicolae Magariu Received February 4, 2008

State University of Moldova,

Mathematics and Computer Science Department,
Research Laboratory ”Software System Designing”
E-mail: magariuQusm.md

239

