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Abstract

Factorizing composite number n = qr, where q and r are two
large primes, and finding discrete logarithm modulo large prime
number p are two difficult computational problems which are
usually put into the base of different digital signature schemes
(DSSes). This paper introduces a new hard computational prob-
lem that consists in finding the kth roots modulo large prime
p = Nk2 + 1, where N is an even number and k is a prime
with the length |k| ≥ 160. Difficulty of the last problem is es-
timated as O(

√
k). It is proposed a new DSS with the public

key y = xk mod p, where x is the private key. The signature
corresponding to some message M represents a pair of the |p|-
bit numbers S and R calculated as follows: R = tk mod p and
S = txf(R,M) mod p, where f(R, M) is a compression function.
The verification equation is Sk mod p = yf(R,M)R mod p. The
DSS is used to implement an efficient protocol for generating
collective digital signatures.

1 Introduction

Information authentication in computer networks and information sys-
tems is usually performed with digital signature schemes (DSSes) that
are attributed to public key cryptosystems. The DSSes are based
on some well investigated hard computational problems. The upper
boundary of the DSS security level is defined by the difficulty of the
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used hard problem. To get sufficiently high security the signature gen-
eration and signature verification procedures use calculations modulo
comparatively large numbers. The modulus length defines significantly
performance of the DSSes.

The most efficient known DSSes are based on the following three
difficult problems [17]:

1. Factorization of a composite number n = qr, where q and r are
two large primes.

2. Finding discrete logarithm modulo large prime number p.

3. Finding discrete logarithm in a group of points of some elliptic
curve.

The indicated problems are hard, if the used primes and elliptic
curves satisfy special requirements [9, 17]. The first problem is used in
the following cryptosystems: RSA [19], Rabin’s DSS [18], and in DSSes
proposed in [14, 15]. The second problem is used in ElGamal’s DSS [4],
Schnorr’s DSS [24], American standard DSA [16], Russian standard
GOST R 34.10-94 [5], and in some DSSes presented in [11, 14]. The
third problem is used, for example, in American standard ECDSA [1]
and Russian standard GOST R 34-2001 [6].

In general the security level of the DSS can be estimated as number
of group operations required to forge a signature. In this paper the per-
formance is compared for different DSS in the case of minimum security
level that can be estimated at present as 280 modulo exponentiation
operations. Solving the difficult problem that is put into the base of
some considered DSS allows one to calculate signatures corresponding
to arbitrary messages. Therefore the security is less or equal to the
difficulty of the hard problem that is put into base of the DSS.

In the best case the DSS is as secure as difficulty of the used com-
putational problem. If for some DSS we can prove the last fact, then
such DSS is called provably secure. In literature the formal proof of
the security level is presented for Rabin’s DSS [18, 22] and for a class of
provably secure DSSes which generalize the Rabin’s cryptosystem [12].
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However these provably secure DSSes have not gained wide practical
application because of their comparatively low performance.

The best known algorithms for solving the first two problems have
subexponential complexity [10]. Therefore in the case of the RSA and
Rubin’s DSS the minimum length of the value n is 1024 bits. In these
DSSes the value n is used as modulus while performing computations
corresponding to signature generation and verification procedures. Re-
spectively, to provide the minimum security level the ElGamal’s DSS,
Schnorr’s DSS, DSA, and GOST R 34.10-94 should use computations
modulo 1024-bit prime number.

The best known algorithms for solving the third hard problem has
exponential complexity (for special class of elliptic curves) and its hard-
ness is estimated as O(

√
q) operations of multiplication of points, where

q is a prime order of the group of points of the considered elliptic curve
(O(·) is the order notation [3]). Operations performed on points in-
clude computations modulo prime p such that |p| ≈ |q|, where |x|
denotes the bit length of the value x. Due to exponential dependence
of the hardness of the discrete logarithm problem in a group of points
of elliptic curves the minimum security level can be provided using the
modulus p having sufficiently small length (|p| ≥ 160 bits). Therefore
the performance of the DSSes based on elliptic curves is higher against
mentioned above DSSes, addition of two points reqire perfoming several
multiplications modulo p and some auxiliary operations though.

In present paper we consider in detail the approach to designing
DSSes which has been proposed earlier in our patent application [13].
The approach is based on using a new hard computational problem.
The rest of the paper is organised as follows. In Section 2 we show
that in particular cases finding the kth roots modulo large prime num-
ber is a hard problem. Such cases correspond to prime modulus with
the structure p = Nks + 1, where N is an even number, k is a large
prime, and s ≥ 2. Difficulty of this new hard problem is estimated
as O(

√
k). In Section 3 we introduce new DSS and estimate that the

minimum security is obtained with the length of |k| ≥ 160 bits and the
modulus length of |p| ≥ 1024 bits. We also describe a modified DSS
providing reduction of the signature length and show that the proposed
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algorithms are efficient to implement protocol for generating collective
digital signatures. Section 4 concludes the paper.

Below we use the following terms.
The kth power residue modulo p is a value a for which the congru-

ence xk ≡ a mod p has solutions.
The kth power non-residue modulo p is a value b for which the

congruence xk ≡ b mod p has no solution.
These terms generalize the well known terms quadratic residue and

quadratic non-residue [3, 9, 10].
Also we use the following notations:
kRp is the set of the kth residues modulo p;
kNRp is the set of the kth non-residues modulo p;
|x| denotes the length of the binary representation of the value x;
[
√

k] means the integer part of
√

k;
|| is the concatenation operation;
ωp(a) denotes the order of the element a modulo prime p;
#{∗} denotes the number of elements in the set {∗};
{a : ∗∗} denotes a set of elements a possessing the property ∗∗;
ϕ(n) is Euler phi function of n.

2 A new hard computational problem

2.1 Computing roots modulo prime

Difficulty of finding roots modulo a composite number is used in some
of the known DSSes: RSA, Rabin’s DSS, and others [11]. Indeed, the
RSA [19, 10] is based on calculations modulo n that is a product of two
randomly chosen prime numbers r and q: n = rq. In RSA the public
key represents a pair of numbers (e, n). The signature corresponding
to some message M is a value S, which satisfies the following verifi-
cation equation: Se mod n = H, where H is the hash function value
corresponding to M . To generate a valid signature one should calculate
the eth root modulo n. This problem is difficult untill the composite
number n is factorized. The owner of the public key knows the related
private key that is a number d, which is inverse of e modulo ϕ(n), where
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ϕ(n) = (r − 1)(q − 1). Thus, we have ed mod ϕ(n) = 1. The signature
generation is performed as follows: S = Hd mod n. Security of the
RSA is based on difficulty of calculating d while ϕ(n) is an unknown
value. The ϕ(n) value can be easily calculated after factorization of
the modulus n, therefore divisors of n have to be kept in secret. Thus,
in the case of the RSA the problem of finding roots is dependent on
the factorization problem.

The signature verification equation in Rabin’s cryptosystems can
be described as follows:

S2 mod n = H||R,

where pair of numbers (S, R) is signature and H is the hash function
value corresponding to the signed message M . The second element in
the signature is the randomization value. To generate a signature one
should select at random such R that value H||R is quadratic residue
modulo n and calculate quadratic root

√
H||R mod n. The last repre-

sents a difficult problem until the value n is factorized. If the divisors q
and r are known, then the roots

√
H||R mod q and

√
H||R mod r can

be easily calculated [22]. Then, using the Chinese Remainder Theorem,
one can find the minimum value S such that S ≡ √

H||R mod q and
S ≡ √

H||R mod r, i. e. S =
√

H||R mod n. We have two different
roots modulo q and two different roots modulo r, therefore we have
four different roots modulo n. Each of the lasts satisfies the signature
verification equation. Thus, finding square roots modulo n is a difficult
problem that also depends on the factorization problem.

The main difference between the RSA and Rabin’s DSS consists in
the following. In RSA we have gcd(e, ϕ(n)) = 1, (gcd(e, q − 1) = 1
and gcd(e, r − 1) = 1), but in Rabin’s DSS gcd(2, q − 1) 6= 1 and
gcd(2, r − 1) 6= 1. Actually, the fact that 2|q − 1 and 2|r − 1 requires
to use some special algorithm to calculate the square roots. For some
random prime p and large prime divisor k|p− 1 with probability very
close to 1 the complexity of finding k roots k

√
a mod p, where a is one

of the kth power residues modulo p, is sufficiently low. Indeed, if prime
k is sufficiently large, then with high probability k does not devide p−1

k

and it is easy to find some value ∆ such that k divides p−1
k + ∆, i. e.
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p−1
k + ∆ = hk, where h is an integer (note that k does not divide ∆).

Then we have:

a
p−1

k ≡ 1 mod p ⇒ a
p−1

k
+∆ ≡ a∆ mod p ⇒ ahk ≡ a∆′d mod p,

where d = gcd(∆, p− 1). Let ∆′′ = ∆′−1 mod p− 1. Then we have:
((

a1/d
)h∆′′

)k

≡ a mod p ⇒ a1/k ≡
(
a1/d

)h∆′′
.

With high probability the value d is sufficiently small and the dth
root can be easily found, for example, using the method described in
Section 2.2.

If k2|p − 1, then the method described above does not work, i. e.
in the case of the prime p = Nks + 1, where N is an even number
and s ≥ 2, computing the kth roots is difficult. Below we estimate the
computational complexity of this hard probem. The primes p having
the indicated structure and different length |p| can be easily generated
for many different values s and |N | (some examples are presented in
Appendix 1).

2.2 Computing the kth roots modulo p = Nks + 1

The following three facts are well known [7, 20, 21]:
1. There exist p−1

k different values aj ∈ kNRp, where j =
1, 2, ..., p−1

k , each of which is the kth power residue.

2. For some value a ∈ kRp the congruence a
p−1

k ≡ 1 mod p holds.
3. For some value bi ∈ kNRp the congruence

b
p−1

k
i ≡ ei mod p,

where ei = k
√

1 mod p 6= 1 and i = 1, 2, ..., k − 1, holds.
Using these facts, it is easy to show that each of the roots ei defines

exactly p−1
k different values bij , where j = 1, 2, ..., p−1

k , such that b
p−1

k
ij ≡

ei mod p. Indeed, we have

b
p−1

k
ij ≡ b

p−1
k

ij′ mod p ⇒
(

bij

bij′

) p−1
k

≡ 1 mod p ⇒ bij

bij′
mod p = aj′′ ,
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i. e. the ratio bij

bij′
mod p is the kth power residue. There exist exactly

p−1
k different values aj′′ , hence there exist exactly p−1

k different values
bij′ . Therefore selecting at random a value t we have probabilities

Pr
(
t

p−1
k mod p = 1

)
= Pr

(
t

p−1
k mod p = ei

)

for all i = 1, 2, ..., k − 1. This fact is used while estimating the com-
plexity of the algorithm described below.

Suppose a random value a ∈ kRp is selected. It is evident that

a
p−1

k2 mod p ∈ {e1, e2, ..., ek−1, 1}. Number of the elements a ∈ kRp for

which we have a
p−1

k2 mod p = 1 is equal to Z1 = #{a : ωp(a) ≤ p−1
k2 =

N}. Number of the values a ∈ kRp for which we have a
p−1

k2 mod p 6= 1
is equal to Z2 = #{a : ωp(a) ≤ p−1

k = Nk} (see Theorem 2.10.6 in [3]).
It is known (see Theorem 2.8.4 in [3]) that

∑

d|N,d>0

ϕ(d) = N ⇒ Z1 = N and Z1 = Nk.

Probability Pr
(

a
p−1

k2 ≡ 1 mod p

)
= Z1

Z2
= k−1 is negligible. With prob-

ability 1− k−1 we have a
p−1

k2 mod p = ei 6= 1.
Taking into account that for each i there exists i′ such that ei′ =

e−1
i mod p we can write a

p−1

k2 ei′ ≡ 1 mod p, therefore

a
p−1

k2 b
p−1

k ≡ aNb
p−1

k ≡ 1 mod p, (1)

where b ∈ kNRp.
If congruence (1) is fulfilled, then we can easily calculate a root

k
√

a mod p. Indeed, congruence (1) can be represented as

akb
p−1

k2 k ≡ ak−N mod p, (2)

where with sufficiently high probability we have gcd(k − N, p − 1) =
1. Suppose that the last relation holds (in other case the problem
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is only a bit more complex). Then it is possible to compute value
N ′ = (k −N)−1 mod p− 1. Therefore we get

aN ′kbN ′ p−1

k2 k ≡ a mod p,

hence (
aN ′

bN ′ p−1

k2

)k

≡ a mod p. (3)

Congruence (3) shows that value X = aN ′
bN ′ p−1

k2 mod p represents one
of roots k

√
a mod p. Other k − 1 roots k

√
a mod p can be computed

using the formula eiX mod p, i = 1, 2, ..., k−1 (roots k
√

1 mod p can be
found computing the sequence {ε, ε2 mod p, ..., εk−1 mod p, εk mod p =
1}, where ε is the kth order element modulo p).

A value b ∈ kNRp satisfying congruence (1) can be computed as
follows. The value b can be represented as b = bibj mod p, where
bi, bj ∈ kNRp:

a
p−1

k2 b
p−1

k
i b

p−1
k

j ≡ 1 mod p ⇒

a
p−1

k2 b
p−1

k
i ≡ b

− p−1
k

j mod p. (4)

The following algorithm finds the required values bi and bj with high
probability.

1. Select at random a value bi and calculate the value Ai =

a
p−1

k2 b
p−1

k
i mod p. Construct a table with entries (Ai, bi) for

i = 1, 2, ..., [
√

k] + ∆, where ∆ ¿ [
√

k]. Complexity of this step
is O(

√
k) exponentiation operations.

2. Select at random a value bj and calculate the value Bj =

b
− p−1

k
j mod p. Construct a table with entries (Bj , bj) for j =

1, 2, ..., [
√

k] + ∆, where ∆ ¿ [
√

k]. Complexity of the second
step is O(

√
k) exponentiation operations.

3. Sort the first table by component Ai. Complexity of this step is
O(
√

k · |k|) comparison operations.
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4. For j = 1 to [
√

k]+∆ check if the value Bj is equal to the value of
the first component of some entry in the first table. Complexity
of this step is O(

√
k · |k|) comparison operations.

This algorithm requires storage for about 4
√

k (i. e. O(
√

k)) |p|-bit
numbers. For randomly selected bi and bj we have Pr (Ai = Bj) = k−1,
therefore in two tables each of which contains

√
k + ∆ random values

with probability more than 0.5 there are equal values Ai0 = Bj0 (see
birthday paradox [17, 10]). Thus, with probability about 0.5 the algo-
rithm finds values bi0 and bj0 satisfying congruence (4). Having such
values we can easily compute the value b = bi0bj0 mod p satisfying con-
gruence (1) and then compute X = k

√
a mod p. On the whole the

complexity of the algorithm can be estimated as ≈ 2
√

k modulo ex-
ponentiation operations. Trying the algorithm several times we will
get value X with probability close to 1. Hardness of this procedure is
W = O(

√
k). If |k| = 160, then W ≈ 280 exponentiation operations.

Thus, the hardness depends exponentially on the value
√

k and in the
case |k| = 160 the considered problem is computationally infeasible
(untill a new significantly more efficient algorithm is developed).

2.3 Dependence on the discrete logarithm problem

In Section 2.2 we have proposed a direct algorithm for finding the
kth roots which works for arbitrary large values |p|. In the case of
sufficiently small size of the value p the kth roots can be computed by
means of finding discrete logarithm as follows.

1. Generate a primitive element g modulo p.

2. Calculate logarithm logg a mod p.

3. Divide logg a mod p by k (at this step it gets the value logg
k
√

a mod
p; note that logarithm corresponding to some value a ∈ kRp is
multiple to the value k).

4. Exponentiate g to the power z = logg
k
√

a mod p and get the value
k
√

a = glogg z mod p.
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Let us justify the division operation that is to be performed at step 3.
If a ∈ kRp, then there exists some value x for which xk ≡ a mod p
holds. The last expression can be represented as follows

(
glogg x

)k ≡ gk·logg x ≡ a ≡ glogg a mod p,

i. e. k| logg a. For values |p| ≈ 1024 bits difficulty of finding logarithms
is approximately equal to 280 operations [8]. Therefore in the case
p = Nk2+1, |k| = 160 bits, and |N | < 704 bits the algorithm described
in this section is more efficient. If |N | > 704 bits, then the algorithm
described in Section 2.2 is more efficient.

3 New digital signature scheme

3.1 Initial design

New hard computational problem described in Section 2 is used in the
DSS described below. It uses the prime modulus having the structure
p = Nk2 + 1, where k is a large prime (|k| ≥ 160) and N is such even
number that |p| ≥ 1024 bits. A random value x is selected as a private
key. The public key y is computed using the formula y = xk mod p.
The signature represents a pair of |p|-bit numbers S and R.

Suppose a message M is given. The signature generation procedure
is performed as follows:

1. Select at random a value t < p−1 and calculate the first element
of the signature: R = tk mod p.

2. Using some specified hash function FH(M) calculate the hash
value H corresponding to the message M and compute f(R, M) =
RH mod δ, where δ is a large prime that is a part of the signature
generation algorithm. For example, it is acceptable to use a randomly
selected prime δ such that |δ| = 160. The function FH(M) is also a
part of the DSS. For example, one can use the hash function SHA-1 [17]
recommended by US National Institute of Standards and technology
(NIST).

3. Calculate the second element of the signature: S = xf(R,M)t mod
p.
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The signature verification procedure is defined by the following con-
gruence:

Sk ≡ yf(R,M)R mod p.

The signature length is |S|+ |R| ≈ 2|p|.
Accordingly to the hard problem put into base of this DSS the

direct way to attack this cryptosystem is to compute one of the kth
roots from the public key (it is not necessary to guess exactly the value
of the secret key x, since each of the values xei mod p can be used to
generate a valid signature).

The next direct attack is connected with computing one of the
kth degree roots from the signature element R. Suppose the attacker
has computed a root k

√
R mod p = t′, where the element R satisfies

the condition gcd(f(R,M), p − 1) = 1 (the respective signature can
be selected from several known valid signatures). Then the attacker
can compute integer f ′ = f−1(R, M) mod p − 1. The value t′ is con-
nected with t: t′ = tei mod p, therefore he can compute the value
x′ = (S/t′)f ′ mod p = (S/t)f ′e−f ′

i mod p = xe′i mod p that is one of the
kth roots from the secret key. These attacks are infeasible at present,
if |k| ≥ 160 bits.

Let us consider an attack that for some given values R ∈ kRp and
H allows one to generate a valid signature (R,S). Such attack can be
easily used to find the kth roots from y using the following algorithm.

1. Select at random a value t (0 < t < p).
2. Calculate R = tk mod p, E = f(R,M) = RH mod δ, and

gcd(p− 1, E). If gcd(p− 1, E) 6= 1, then go to step 1.
3. Using the attack generate the signature (R, S). Under our as-

sumption the signature (R,S) satisfies the congruence Sk ≡ yER mod
p.

4. Calculate the values E′ = E−1 mod p−1 and k
√

y = (S/t)E′ mod
p.

Thus, any attack like the considered one is as difficult as finding the
kth roots modulo p (any value a ∈ kRp can be used in the considered
algorithm as the public key value y).

There are also possible some hypothetic attacks that for some given
values y ∈ kRp, S, and H allow one to compute such value R that the
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signature (R,S) satisfies the verification congruence. This means that
attacker is able to solve the congruences like Ryf(R,M) ≡ C mod p,
where C is a constant. However the difficulty of solving such congru-
ences modulo large prime p relatively R is put into the base of the
GOST R 34.10-94, ElGamal’s, and Schnorr’s DSSes.

3.2 Modified DSS

It is possible to reduce the signature length using the value E =
f(R, M) as signature element instead of the R element. A variant of
the modified DSS is presented by the following verification procedure:

1. Using the signature (E, S) compute R = Sky−E mod p.
2. Calculate E′ = f(R, M) = RH mod δ.
3. Compare E′ with E. If E′ = E, then the signature is valid.
In the modified DSS the signature length is equal to |E| + |S| =

|δ|+|S| ≈ |p|. A numerical illustration of the modified DSS is presented
in Appendix 2.

The straightforward attacks mentioned in Section 2.1 are also ap-
plicable to the modified DSS. Let us consider another attack that is
efficient in the case of small size of the compression function f(R, M),
for example in the case of small value |δ|. It can be performed as the
following algorithm.

1. Select at random the values E < δ and S < p.
2. Compute value R′ = Sky−E mod p.
3. Calculate value E′ = f(R′,M).
4. Compare E′ and E. If E′ 6= E, then jump to step 1.
On the average the work effort of this algorithm is ≈ 2δ exponenti-

ation operations, since Pr (E′ = E) = δ−1. This attack is infeasible at
present, if |f(R, M)| ≥ 160 bits.

3.3 Collective signature protocol

Suppose the jth user owns the public key yj depending on his private
key xj < p as follows: yj = xk

j mod p, where j = 1, 2, ..., µ. Suppose
an electronic document M is given and m (m ≤ µ) users owning the
public keys yα1 , yα2 , ..., yαm should sign it simultaneusly. The following
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protocol produces a collective digital signature (CDS) and solves the
indicated problem more efficiently than the known protocols for signing
simultaneously a contract [23].

1. Each αith user selects at random a value tαi < p and computes
the public value Rαi = tkαi

mod p, where i = 1, 2, ..., m.
2. Some of the users (or one of them) calculate the common ran-

domization value
R = Rα1Rα2 ...Rαm mod p

and then calculate the first part of the CDS E = f(R, M), where
f is a specified compression function. For example, we will use the
following function E = RH mod δ, where δ is a large prime having
length |δ| = 160 and H is a hash value computed from the message M .

3. Using the values R and tαi each αith user computes its share in
the CDS:

Sαi = xE
αi

tαi mod p

that is supposed to be available to all users of the group.
4. Calculate the second element of the CDS:

S = Sα1Sα2 ...Sαm mod p.

Thus, the CDS is computed with 2m modulo exponentiations. The
CDS length is fixed and equals to |S|+ |δ|.

The CDS verification procedure is performed as follows.
1. Compute the collective public key y: y = yα1yα2 ...yαm mod p.
2. Using the CDS (E, S) compute value R′:

R′ = Sky−E mod p.

3. Compute E′ = R′H mod δ.
4. Compare values E′ and E. If E′ = E, then the signature is valid.

Otherwise the signature is false.
The proposed algorithm can be used in the collective signature pro-

tocols that are free of the participation of any trusted party that is
needed in the multisignature protocol proposed in [2] for implement-
ing the fixed size signature corresponding to some group of users. In
our algorithm we need no declosure of any user’s private key, while
generating the collective digital signature with fixed size.
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4 Conclusion

A new hard computational problem have been proposed as crypto-
graphic primitive. The problem consists in finding the kth roots modulo
large prime p = Nks+1, where k is a large prime such that k ≥ 160 bits
and N is an even number such that |N | + s|k| ≥ 1024 bits. We have
proposed an algorithm for solving this problem. The complexity W of
the algorithm depends exponentially on |k| and is described with the
formula W = O(

√
k).

Using a novel hard computational problem a new DSS has been
proposed. The proposed DSS has been used to design a collective
digital signature protocol that produces the fixed size signature shared
by arbitrary number of users m ≥ 1.

We hope that this paper will initiate other attempts aimed to devel-
oping new efficient algorithms for solving the proposed computational
problem. Such researches will contribute to the security estimation of
the presented new DSS and to evaluation of the proposed computa-
tional problem as a new cryptographic primitive.
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Appendix 1.

Examples of different primes having the structure p = Nks + 1.

We have composed a computer program generating the primes p =
Nks + 1, where k is a prime. Our experiment has shown that for
some pairs of the values s and N there exist no primes k such that
p = Nks + 1 is a prime. For example, there exist no primes p for even
s and N ≡ 2 mod 6. Another interesting example of the negative cases
is presented by the pair s = 4 and N = 4. For odd values s there are
also some exceptions.

However primes p having different length exist in the majority of
the cases. The experiment has shown that there exist sufficiently large
portion of the primes p (such that 2 ≤ |k| ≤ 320 bits and 5 ≤ |p| ≤
2048 bits) for even s and N ≡ Z mod 6, where Z = 0 or Z = 4. For
odd values s we also have many positive cases corresponding to different
values N . For example, we have the following primes p.

Case N = 10, s = 2, and k = 725884693 gives prime:
p = 5269085875317042491.

Case N = 2, s = 3, and k = 1337274629 gives prime:
p = 4782905620790796691857520379.

Case N = 4, s = 2, and k = 67433803869294133 gives prime:
p = 18189271617129713532911550672886757.

Case N = 4, s = 2, and k = 534215924076685141269133 gives
prime:
p = 1141546614148426492824805789757003540711754286757.

Case N = 10000, s = 4, and k = 232667804209296877 gives prime:
p = 293052320688347046588067278364673296548243258533067691796

50044728906410001.
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Case N = 10, s = 2, and
k =
210992170315015669831165407048312242755193421562671721912463
gives prime:
p = 445176959342405796225971179632912050657688043890876918715

6270863445095751602498829760043700275865765178209495023472
63691.

Case N = 666666666666666666666664, s = 2, and
k = 353809991516667947508673 gives prime:
p = 8345434006468309665533960024044699357922019259293043

5437657420239410857.

Case N = 4444, s = 5, and
k =
634250335263436903664058267667793136668703383339035124341219
gives prime:
p = 4561183846297793094013667057268432711555442123679889164761

7160284437223018040099748245821799167074469900659476172328
7421022326800053382794865523789665384953093547280261852600
1744316926769023258923584868066826250018895519990130703971
1225083761606510103396105271426626642249210463630491712973
5122836127957.

Case N = 2222222, s = 5, and
k =
278786749998964831243188210765046251607207021302616959150353
gives prime:
p = 3742381762093988507152189447632190903649163162287335583067

1404936445168459532417824257034251542278496474548453008440
2575374798148854967611051490767707918981794830928860273675
4488895966928454234296362272519605051950977141702184978690
6574563422739262415235459932192589013385761664971623455438
97670489118447.
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Appendix 2.

A numerical example with artificially small parameters.

This example illustrates the signature generation and verification
procedures in the DSS based on difficulty of finding roots modulo large
prime p = Nk2 + 1, where k = 132104433635297779312031 is prime
and N = 238,
i. e. p = 4153476369892465269012870897623282390047400100719.

Suppose a user private key is x = 3526378981324543353612 and the
hash function value calculated from the document to be signed is H =
73568790119017231823457. Then his public key is y = xk mod p =
3864858100219352940369774847788552018367055197706.

The signature is represented by a pair of numbers (R, S) which is
generated as follows.

1. Generate a random number t = 87193323415243553115136314.
2. Calculate the value R = tk mod p:

R = 1965194394329054883669233593435354225553528543048.
3. Calculate the value E using the formula E = RH mod δ, where

δ = 35488784369499179:
E = RH mod δ = 30895498554403274.

4. Calculate the value S using the formula S = xEt mod p:
xE mod p = 4142896032174293277370541286118603008687412846512;
S = xEt mod p =
= 3459399960786475246293210038787580593601377527459.

The signature verification is performed as follows.
1. Calculate E′ = (Skyp−E−1 mod p)H mod δ:

Sk mod p = 1223628632990799695380329960945050775755031656237;
p−E − 1 mod p− 1 =
= 4153476369892465269012870897623251494548845697444;
yp−E−1 mod p =
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= 3940798203474215574106281018935399640248176139523;
R′ = Skyp−E−1 mod p =
= 1965194394329054883669233593435354225553528543048;
E′ = R′H mod δ = 30895498554403274.

2. Compare the values E′ and E.
The signature is valid, since E′ = E.
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