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Grobner Bases for Nonlinear DAE Systems of
Analog Circuits

Silke J. Spang

Abstract

Systems of differential equations play an important role in
modelling and analysis of many complex systems e. g. in elec-
tronics and mechanics. The following article is concerned with a
symbolic analysis approach for reduction of the differential index
of nonlinear differential algebraic equation (DAE) systems, which
occur in the modelling and simulation of analog circuits.

1 Introduction

Systems of differential equations play an important role in modelling
and analysis of many complex systems e. g. in electronics and mechan-
ics. For example, the simple oscillator circuit of figure 1, which is part
of nearly all analog electronic devices, yields the following DAE

C1(V{(H) = Va(#)) — I1a(t) = 0 (1.1)
V;T?Jr(}l(vg(t) -Vi@t) =0 (1.2)
Vi(t)+ L1-1;,(t) =0 (1.3)

where I;; denotes the current through the inductor L1 and V; the
voltage between the node 7 and the ground.

Unlike ordinary differential equation systems (short ODE), proper
DAE systems are subject to hidden constraints. These constraints are
not explicitely stated in the system of equations, but they constrain
the solution within a certain manifold. For instance, in the above DAE
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Figure 1. Analog oscillator circuit

there is no possibility to compute an explicit formula for Vi which does
not depend on V{ and vice versa using algebraic deformations only.
Deriving the whole system, we obtain:

C1 (W (0) ~ Vi) ~ Ia(t) =0 )
By ovvie - iy =0 )
Vi(t) + L1- I}, () =0 ®)
C1(R0) ~ V(1) ~ (1) =0 @
B0 | ovwge - viw) =0 ©)
Vi) + L1 Iy (8) =0 )
Adding (4) and (5) we get

B0 w =0 )

multiplying (7) with L1 and adding it to (3) we end up with
V;;(lt) CL1— V() = 0. (8)

In the same way we get another equation for V{(t) and get the following
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equation:
R1 1
I = —— —_—
Vi) =~ 35 Vi) + g - Tua() 9)
So the system can be reformulated as an ODE of the following form:
R1 1
I = —— —_—
Vi) =31 Vi) + g T () (2.1)
R1
() = —— - Wi (t 2.2
Va(t) = =77 - (1) (2.2)
Vi(t)
I = 2.
£1(t) 1 (2.3)

In general hidden constraints for such systems can be handled using
methods from commutative algebra.

The treatment of linear DAE systems using algebraic methods is
straight-forward, but this is not the case for nonlinear terms, e. g. DAEs
containing exponential functions. Here some further development of
computational methods is necessary to match the needs of this equa-
tions which arise from nonlinear circuits.

We describe a method for the detection of such hidden constraints
and reformulate the DAE in an ODE like manner. In section 2 some
background theory of differential systems and their differential index is
explained and an algebraic framework by meanings of rings, ideals and
Grobuer bases for the properties of local solvability and being formally
integrable are given. The ring of all differential equations up to order
q w.r.t. the independent variable ¢ will be reinterpreted as the polyno-
mial ring A@. In section 3 the computational development during the
work with SINGULAR and Mathematica on this subfield is described.
We will see how such problems can be tackled using polynomial sys-
tems in SINGULAR. Systems containing the latter give rise to electrical
circuits describing the behavior of transistors and diodes.

Section 4 expands our view to some new classes of functions. We
will get some feeling how to tackle exponential functions, sines and
cosines and in particular square-roots in an algebraic and polynomial
frame. Systems containing exponential functions may give rise to elec-
trical circuits describing the behavior of transistors and diodes. We
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will embed all these classes in a new ring D for which we define deriva-
tive map ¢p. To this end will see in section 5 that our gained theory
applied to some DAE systems good solutions in Analog Insydes. After
our preprocessing the last example we detected some equations which
gave sufficient counstraints to compute the solution with the nonlinear
DAE-Solver of Mathematica. Concluding with section six we will give
some outlook for further development.

I would like to thank the Analog Insydes Team especially Dr.
Alexander Dreyer for many fruitful discussions and their support with
problems in Analog Insydes. I also want to thank the Fraunhofer In-
stitute for Industrial Mathematics especially my department System
Analysis, Prognosis and Control with the department chief Dr. Patrick
Lang for giving my the opportunity to work this field. Last I want to
thank my advisor Prof. Dr. Gerhard Pfister for being a good friend and
advisor which always has an ear for me and my problems.

2 Basics and mathematical background

In this section we will present some algebraic and analytic basics which
shall help to understand the next sections.

Suppose a DAE (F) of order ¢ is given. We introduce the differ-
ential index (cf. [4]) of (F) to be r if a minimum of r + 1 geometric
differentiations of (#) is required until no new constraint is found. Note
that this index definition is one out of a group of indices measuring the
difficulty of solving DAE systems (cf. [6]).

As already mentioned above, proper DAE systems yield additional
constraints to the solution, which are not stated explicitely in terms of
equations.

Example 1
Consider the following system (cf. [6]) with functions z; in the inde-
pendent variable t

a:'l +x21=0 (3.1)
Tozh — 13 =0
w4z —1=0. (3.3)
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This system admits a hidden constraint 3 —x3 = 0 which appears after
a differentiation of equation (3.3) and the elimination x| and x4 -z},
by using the equations (3.1) and (3.2). The above turns out to have
differential index two as after two steps there occur no more hidden
constraints. In this case the system can be transformed to an ODE.

Systems of high index are algebraically underdetermined as they
have a gap of constraints which only appear after differentiation. These
hidden constraints may slow down numerical computations, or make
them even impossible. Systems of lower indices have less of these hidden
equations and it turns out to be desirable to transform a higher indexed
system into one of a lower index. Among the approaches to decrease
the differential index is the theory of locally solvable and involutive
systems. (cf. [5] ) Here we prolongate and project the given DAE until
no new constraint can be found.

We define the prolongation and the projection of ¢-th order
systems (cf. [3] chapter 2, [4] chapter 2-3), where the prolongation
coincides with differentiation and the projection with the elimination
of the highest order part.

Definition 2

Let f1,..,fn, € C™(T,t) be m-differentiable functions in the time
t €T C K for an interval T in o field K. If fi(J) = % denotes
the j-th derivation of f;, then we denote the space of all differential

algebraic equations up to order q of f = (f1,..., fn) over K by
AW = K[f@, fla=) f1f ]

Now we are able to give a formal definition of projection and pro-
longation in terms of ring maps and elimination.

Definition 3
Let Dy : AW — AW be g formal differentiation, i.e.:

® Di(p-q) = Di(p) - q+p-Di(q) (chain rule)
e Dy(p+q) = Di(p) + Dy(q)

o D,(f9) = £t for all {9 € AW,

1
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e Di(a) =0 forala€K.

The field Const(A) = {a € A : Dy(a) = 0} is called the field of
constants. Note that K is a subfield of Const(A), but they need not
be equal.

Now a DAE system (F) can be transformed into an ideal I of A,
Recall that an ideal is a subset which is invariant under addition and
scalar multiplication and is denoted by I << A. Note that the solutions
of (F') do not coincide with the solutions of I. Of course, every solution
of (F') corresponds to a solution in I but not vice versa. This is because
algebraically the derivative of an f; is another variable and we have no
a priori knowledge about their analytical relationship. The map D; has
its natural extension for ideals I = (g1,...¢g,) < A? given by

Dy(I) = (Di(g1), - - - » Di(gr))-

Definition 4
Let I be an ideal in A ;

e The algebraic prolongation of I is defined to be

P(1) = (I, Dy(T)) < AT+,
e The algebraic projection of I is given by
E(I)=INAT"

The next definition gives some properties of systems which have a low
index.

Definition 5
Let I < A9 pe an ideal then

1. I is called locally solvable if

EoP(I) =1
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2. 1 is called formally integrable if for all k> 0

£ o P(PF(1)) = Pr(I).

We try to use Grobuner basis methods to obtain such forms. First of all
we define orderings and Grobner bases (cf. [2]).

Definition 6 (Ordering)
Let A = K[z1,...,2z,] be an affine K-algebra. A total ordering > on
the set of monomials of A.

Mon(A) = {z{* - z3*-- -zl : a; € N}

n

18 an antisymmetric binary relation

> @)= 0 a=p
-1 B>w «

for an ordering >nn of N, Additionally
> (2%, 4°) = > (a7 - 2,27 - 2P)
holds. For simplicity we write:
o 2> 2P if > (2%, 2P) =1
o 2@ =P if > (z*,2°) =0
o 2 < 2P if > (2*,28) = —1.

An ordering is a well- or global ordering if z* > 1 for all a €
N'N\J{(0,...,0)}, a local ordering if every z* < 1 and mized order-
tng otherwise.

Definition 7 (leading monomial and leading ideal)
Let A be an affine K-algebra and > an ordering on Mon(A), then:
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1. For every polynomial
f=ha® + fou® 4 fa®m € AN{O}

with f1 # 0 and x** > %2 > ... > % let LM(f) = ' denote
the leading monomazal, which is the biggest monomial w. r. t. >

2. For any ideal I <A let L(I) = (LM(f) : f € I) denote the leading
tdeal of I.

Now we are able to define a Grobner basis as a so called “fine form*“
of an ideal I, see [2, Def. 1.6.1].

Definition 8 (Grébner basis)

Let I = {(f1,....fr) < A be any ideal. A standard basis is
a representation (g1,...,9m) of I such that the equality L(I) =
(LM(g1),...,LM(gm)) holds. If the underlying ordering > is a global
one then we call a standard basis just Grobner basis.

To represent ideals on computers, we can use Grobner bases. This form
is suitable for computations as it provides a reduction to the monomial
case. Note that computing with monomials is only a combinatorial
problem. The so-called normal form w.r.t. to a set {g1,..,g9m} is
defined as follows:

Definition 9 (Normal form, standard representation)
Let G denote the set of all finite subsets G C A. A map

NF:AxG— A, (f,G)— NF(f|G)

is called normal form on A if NF(0|G) =0 for all G € G and for all
fERand G€G:

1. NF(f|G) #0 = LM(NF(f|G)) € L(G).
2. If G = {g1,-.-,9m}, then r := f — NF(f|G) has a standard

representation w. r.t. G, that is, either it holds r = 0, or

T
rzzai'gia aieAa
i=1

satisfying LM(r) > LM(a; - g;), such that a; - g; # 0, for all 1.
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Most of the classical problems of ideal theory, e. g. ideal membership,
variable elimination, equality of two ideals, etc. can be easily solved
using Grobner bases. To eliminate variables, we use elimination or-
derings.

Simply expressed, we can view them as a separator that makes ev-
erything we want to eliminate larger than the elements we want to keep.
The best elimination orderings for fast Grobuner basis computations are
the so called block orderings (cf. [2] Example 1.2.8.(3) ).

Because of the elimination property of Grobuer bases it seems ad-
visable to use the Grobner basis theory to obtain a good formulation
for a given DAE system. We finish this section proving the following
lemma.

Lemma 10
Let I < A9 be a linear locally solvable DAE. Then I is formally inte-
grable too.

Proor

We have to show the & o P(P*(I)) = P¥(I) for all k. As the prolon-
gation of a linear DAE is again linear we conclude that every P¥(I)
is linear. Thus it suffices to show that £ o P(P(I)) = P(I). As I is
linear all polynomials in I are of degree one. Hence D;(I) is simply a
substitution of variables. So let I be written as Grobner basis w.r. t. a
block elimination ordering > on the ring variables satisfying

(O < {1 <Dy <. < {f9).

Then the Grobner basis G of I can be written in block form:

G= {fqlu"'7fqnq7"'7f117-"7f1,n17f017"'7f0n0}
N J/ N ~ o N ~~ -
order q order 1 order 0

Let F; = {fj1,---, fjn; }. Now Dy(G) is again a Grobmer basis as all
variables are substituted. In fact

o Di(Q) = {Dy(Fy), Dy(Fy 1), ., Dy(Fo)}
o D{(G) ={D;(Fy), D{(Fy-1), - -, D{(Fo)}.
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Now

EoP(P(I) = EoP(I + Dy(I)))
=E( + D(I) + Dy(I + Dy(1)))
= E(I + Dy(I) + D} (1))
= I+ Dy(I) + E(D2(I)) = P(I) + E(D2(D))

As P(I) C EoP(P(I)) always holds, it suffices to show the inclusion £ o
P(P(I)) € P(I). This reduces to E(D?(I)) € P(I). Now

t
= Dy({Di(Fy-1),- .., Dy(Fy), Di(Fp)))
= Dy(E(D(1))) € Di(€ o P(1))
= Dy(I) CP(I)

This proves our claim.

3 A computational approach

In the following section a computational approach for interacting the
Mathematica-based tool Analog Insydes [1] with SINGULAR is ex-
plained. One of the main difficulties is to construct a communication
bridge between both systems that come from different mathematical
application domains. SINGULAR is well optimised for polynomials and
Grobuer bases, while Analog Insydes is used for modelling and mixed
numeric/symbolic approximation of analog circuits.

3.1 Differentiation and Prolongation

A natural way to implement differentiation is dealing with word rewrit-
ing systems. The derivative of a variable is simply represented by an-
other variable. This rewriting process is obtained by the definition of
new variables df; for f!, ddf; for f] etc. Then differentiation is obtained
by a left shift to the formal derivative. So, to obtain a correct differ-
entiation we simply introduce a map ¢ defining the derivative of every
function. The core of the whole differentiation of pure polynomials in
the A9 is the product rule (see Algorithm 1).
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Algorithm 1 PROC productrule (poly f,map @)

Require: a polynomial (resp. monomial) f € A? and the derivative
map ¢ of variables
Ensure: a polynomial df which is f’ € A1
if (deg f =0) then
return 0;
if (deg f = 1) then
return ¢(f);
else
pick a prime factor p of f;
Py
df := g - ¢(p)+productrule(g, ¢) - p
return df

Using this underlying core it is possible to obtain a procedure for
the differentiation of an ideal. This procedure is called derivideal.
It gets an ideal I as input and the definition of the derivative map
@, the output is D;(I), the derivative of I. The prolongation is simply
defined by the procedure Prolongation which takes the ideal dae and a
natural number functionanz as arguments where the latter denotes the
number of involved functions and is just to generate the derivative map
automatically. The following example which is derived from Example
1 shows how the procedure Prolongation works.

Example 11

> ring r=0,(dx(1..3),x(1..3),t),dp;

> ideal dae=dx(1)+x(1),x(2)*dx(2)-x(3),
x(1)"2+x(2)"2-1;

//x(1),x(2),x(3) are the 3 functions

> def difring=Prolongation(dae,3);

> setring difring;

> dae;

dae[1]=dx(1)+x(1)

dae[2]=dx(2)*x(2)-x(3)

dae[3]=x(1)"2+x(2)"2-1
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//ddx (i) is x(i)?’

> prol;

prol[1]=dx(1)+x(1)

prol[2]=dx(2)*x(3)+x(2)*x(3)-dx(2)

prol[3]=x(2)"2+x(3)-1

prol[4]=dx(2)*x(2)-x(3)

prol[5]=x(1)"2-dx(2)*x(2)

prol[6]=ddx(2)+dx(2) ~3+dx(2) "2*x(2)
-dx(2)*dx(3)-dx(3)*x(2)

prol[7]=ddx(1)+dx(1)

The ideal prol is the Grobner basis of the prolongation from Definition
4. The equation x? —z3 = 0 (cf. Example 1) can be easily derived from
prol[4] and prol[5]. The ring difring is ordered by a block ordering
admitting {¢,z1,...dzs} < {ddzi,ddzs,ddzs}. Hence, we see that
prol[1..5] is the elimination of the highest derivatives in prol. So we see
that after defining the prolongation with Grobner bases it is an easy
task to compute the elimination.

3.2 Computing locally solvable systems

Algorithm 2 PROC LocallySolvableDAE(ideal dae, int n)

Require: a DAE dae of ¢-th order in A@, N the number of functions
Ensure: a DAE locs of ¢-th order which is locally solvable and the
differential index of dae
int difindex = 0;
ideal locs = dae;
ideal buffer = 0;
while buffer # locs do
buffer = locs;
locs = InvolutionStep(locs);
difindex = difindex + 1;
return (locs, difindex);

In the previous section we saw that the computation of £ oP(I) for
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every I can be implemented easily. This is done in the auxilliary proce-
dure InvolutionStep. The natural way to extend this to a procedure
which returns a locally solvable system is described in Algorithm 2.

To finish the computations of Example 1 we see the following ex-
ample:

Example 12

> ring r=0,(dx(1..3),x(1..3),t),dp;

> ideal dae=dx(1)+x(1),x(2)*dx(2)-x(3),

x(1)"2+x(2)"2-1;

> LocallySolvableDAE(dae,3);

[1]:
_[11=dx(3)+2*x(3)
_[2]=dx(1)+x(1)
_[31=dx(2)*x(3)+x(2)*x(3)-dx(2)
_[4]1=x(2)~2+x(3)-1
_[6]=dx(2)*x(2)-x(3)
_[6]=x(1)"2-x(3)

[2]:
2

Here we see that the differential index of our system is 2 and the equal-
ity 22 — 23 =0 (cf Example 1) appears as the sixth in the result. The
advantage is that we can now derive every hidden counstraint in the orig-
inal DAE from the resulting one. The next two sections will deal with
some extensions to new functions that may be included in the nonlinear
systems like exponential functions, sines, cosines and squareroots.

4 Integration of more function types

This section describes the main ideas how to extend the algorithmic
approach from the last section to the case of rings including more func-
tion classes like exponential functions, sines, cosines and squareroots
as extensions of A@. These allow us to formalize the concept of DAE
systems including the latter.
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4.1 Special extension rings for Exponential functions

First, let us consider systems with exponential functions. Such systems
occur in simple analog circuit consisting of transistors and diodes. The
special diode equations are called Shockley equations. They explain the
connection between current and voltage. The Shockley diode equation
is

[=1Ig-("FF — 1),

where [ is the diode current, Ig is a scalar factor called the saturation
current, ¢ - the elementary charge, Vp is the voltage across the diode,
k - the Boltzmann constant and 1" - the temperature.

The extension ring B9 is defined as follows:

Definition 13

Let n. be a natural number and arg = argi,...,arg,, be a list of
polynomials in AD. Then we define e¢; := €¢¥9%. Now the ring of
special exponential DAEs of q-th order is denoted by

B(q) = A(q)[ela---aene] :K[f(q)a"'aflaf’t7e]‘

arg °
If there is no confusion about arg, we simply write B instead of B,(Z?)g.

Note that for every list arg there is another ring. So the prolongation
and of course the index and the local solvability depend on arg. With
the additional definition

Dy(e;) = Dy(arg;) - e;

we get our natural extensions of the above discussed theory. In the
next subsection the programs defined in the previous section will be
extended for these special rings.

4.2 A solution to the computational task of exponential
functions

As written in Section 3 the core of prolongation is how to define the
derivative map. To this end we have to get a method to get the ex-
ponents of the ¢; and to define the derivatives. As we already have
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an algorithm representing a derivative map to compute derivatives in
AW callit ¢ 4 and DerivPoly(-, ), we can describe the derivative
map for B,

Definition 14
Let = be one of the variables in BY. We define the derivative map
Yp) as follows

N P A@) (.T) if z € Al
DerivPoly (arg;, p4«)) -€i if z=¢;

Now the prolongation can be extended to exponential functions easily
if we know their number and arg.

4.3 How to expand to sines and cosines

As sine and cosine depend on each other by means of their derivatives

(g)

we extend our ring Bgrg simultaneously with both sine and cosine on

arguments in Bé?n)g as follows:

Definition 15
Let nyrig be any natural number and trigerg = trigargy, - - - ,trigargnmg

a list of polynomials in BéZlg. We define s; = sin(trigarg;) and c¢; :=

cos(trigarg;) as the ring of special trigonometric functions of q-th order

cw .= B [51,...,snm.g,cl,...,cnm.g] =

tTigarg:earg €arg
= K[f(q)7"' 7fl7f7t’eﬂs7c:|'

If there is no confusion about trige.y and eqq we simply write c(a)

instead of Ct(Q)

rig,earg’

To extend our theory of locally solvable systems we have to extract our
derivative map.
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Definition 16
Let x be one of the variables in C\9. We define the derivative map
Yo as follows

Yot :CW = ¢latl)

o) (.T) if z € B(Q)
z + { DerivPoly(trigeg;, ¥pw) - ¢ if z=s;
DerivPoly(tm’gmgi, Ypw) (=) ifr=¢

As a last extension we present squareroots.

4.4 Extension to square-roots

As we consider polynomials and no rational functions we need to adjoint

both, the squareroot /- and its multiplicative inverse % to the ring
C9). This yields the following definition:

Definition 17

Let Ce,,,trigary a5 i Definition 15 and let sqrigg = $qriargys-- -,

sqrtargnsqrt € C9 be the list of the arguments Ngqrt Of the squareroot

functions \/-;. We define for the list mf = eqrg, tTigarg, Sqrtarg the
ring of special functions including exponential functions, sines, cosines
and squareroots as follows:

1 1
\/?17. o \/._'nsqrt

Additionally extracting the derivative map for the new ring D with

Dmf = Ct(;]i)gmg,earg [\/?17 ey \/?'nsq'rt7 ]

. 1 1
‘PD(\/?i) = DerIVPOIy(Sq'rtargia ‘PC(q)) e T
2V
1 -1 /1)
¢p(—=) = DerivPoly(sqrte,g;. ¢c@) - — - <_>
\/?1' arg; q 9 \/—1

we get the desired prolongation.
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4.5 The structure of D

D fits to all algebraic combinations that are possible with exponential
functions, sines, cosines and square-roots. Unfortunately, we have no
a priori knowledge about their analytical and geometric relationship.
The following subsection tries to fill this gap. First of all let us recall
the geometric relationship between sines and cosines, that is

sin(z)? 4 cos(x)? = 1 Va.

Therefore, we have naturally s? + ¢ = 1 for all i € {1,...,nyg}-
Because of the multiplicative relation between the square-roots and
their reciprocal we have additionally the conditions /-; - % = 1 for
every i. Hence we get the following definition:

Definition 18
Let Dy,y be defined as above (Definition 17), then we define the ideal
Iy to be

e

(S {17 e 7ntrig}7j € {17 .- 7nsqrt}>

1 2
Iy = (s2+c — 1,\[]- C— = 1,\[]- — sqriarg;
J

The ideal I represents every algebraic combination which is trivially
zero for this special classes. The main question is: does this suffice in
general? Hence we want to show that Iy is already locally solvable.
Therefore we consider the following lemma.

Lemma 19

Let D and Iy be defined as above, then Iy is formally integrable, es-
pecially for the theory of locally solvable set in D it is sufficient to
compute the normal forms w. r. t. 1y after every prolongation step.

PROOF
We will show that D;(Iy) C Iy. Therefore we show that D,(g) € I, for
every generator g of I5. We have the following cases:
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1. g = s?+ ¢ — 1 for some suitable 5. Then

Dy(g) = Dy(si +¢i — 1)
= Dy(s?) + Dy(c}) — Dy(1)
=2-8;-Dy(s;) +2-¢;- Dy(c;) — 0
= 2 DerivPoly (trigarg;, Ppw) - 8i - ¢i—
-2 DerivPoly(trigargi, @B(q)) “ Gt S
=0€l

— — 1 for a suitable j. Then

V'
Dilg) = Dilv/5;- ==~ 1)
t\g) =L\ —F —
Ve
1
= Dy(V; - Tj) — Dy(1)
1 1
=Di-;)-— ++-;-D —) =0
t( j) \/'_j J t(\/'_j
DerivPoly (sqrt )1—1 —t
= berivioly(sqrigrg,, $o@) - = - )
94> ¥ Cl4 2 - \/?j
-1 (1}*
+ \[j - DerivPoly (sqrte g, 0cw) - = - <\/>

1 : LY’
= 5 . DeI‘]VPOIy(Sthargia ‘pC(Q)) ’ [<—) B

G
= % - DerivPoly (sqrtargs Pow) - <L>2 = <

1 . LY
_ _5 ) DeerPOl)’(SthaTgi’ @C(q)) . —> -g €l
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3. g= \/3 — 8qrtarg; for a suitable j. Then

2
Dy(g) = Dy(v-5 — Sqrtarg ;)
2
= Dy(V+5) — Dy(sqrtarg,)
—9. \[j . Dt(\[j) — DerivPoly(sqrtarg;; @)
. 1 1
=2. \[j . DeerPOIy(Sthargiu @c(q)) Yo T T T
2 V5
— DerivPoly(qu’targ,-a Yow)
= DerivPoly(Sthargia Yow) 2
= DerivPoly(sqrtargi, o) -9 €l

Hence P(Iy) = (Io, Di(Io)) = Iy and thus P*(Iy) = I, for all
k € N and especially £ o P(P*(Iy)) = I = P*(Iy) for all k and
thus Iy is formally integrable.

Algorithm 3 extends Algorithm 2 following Lemma 19.

Algorithm 3 PROC LocallySolvableDAE(ideal dae,ideal 1)

Require: a DAE dae of ¢-th order in D@ and the ideal I from Defi-
nition 18
Ensure: a DAE locs of ¢-th order which is locally solvable and the
differential index of dae
int difindex = 0;
ideal locs = dae;
Iy=groebner(Ij);
ideal buffer = 0;
while buffer # locs do
buffer = locs;
locs = NF(InvolutionStep(locs),l);
difindex = difindex + 1;
return (locs, difindex);

111



Silke J. Spang

D1
1 2

N .
vo| (D CIJ—
T

L
Figure 2. Analog rectifier circuit
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5 Computational examples and outlook

To finish this article with the last section we will see how the gained
theory applies to the following two examples. This section will be
concluded with an outlook for further development.

5.1 Analog rectifier circuit

Example 20

We have given the analog circuit in figure 2. This circuit contains
both nonlinear as well as dynamic components, namely the diode D1
and the capacitor C1. Given numerical element values and a cus-
tom input voltage waveform Vi = Viy(t) we shall compute the tran-
sient response Voui(t) across the load resistor R1. The model parame-
ters Is (saturation current) and Vp = kT'/q (thermal voltage) are given
as Is = 1pA and Vp = 26 mV. The values of the circuit elements are
assumed to be R1 = 1002 and C'1 = 100nF. This yields the following
DAE system (F'):

Ibacapi(t) + Ibye(t) =0 (4.1)
Via(t)  V7o(8)
—1 T = 4.2
bacapi(t) + =55~ + o7 =0 (4.2)
WO v
e T — 14+ _
1012 = MRS = Ibacapi(t) (4.3)

and the input condition Vi1 (t) = Vip(t).
The three equalities are transferred from Analog Insydes to SIN-
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GULAR, which continues with computations in the polynomial ring
QV, 1, Vo, Iy, IV a1 Vats Va2, Ibvo, Ibacapi, ts €1

Now the procedure LocallySolvable DA FE returns the following sys-
tem to Mathematica

Ibscap1(t) + Ibyo(t) =0 (5.1)

IVscap1 () + Tbyo(t) = 0 (5.2)

14 10" Tbacapi(t) + Via(t) — e = Vi (2) (5.3)
10° - (100 - Tbacapi(t) — Via(t)) = Via(t) (5.4)

(e1 +1)(=10° - (100 - Tbacap (t)—
Va2 (1)) + Vi1 (8)) = 10" - Vi - Iby0qpy (t) - (5.5)

Vp1 (8) = Vo (t) i
where e] = e Vr . Using normal forms and our knowledge about

Va1 the system can be written as

Var(t) = Vi (1) (6.1)
Vao(t) = f(2) (6.2)
Wicam(t) = AT DIOL ‘_/’{ﬁT(t)) —Val (g
¥y (t) = =164 capy (t) (6.4)
Vi (t) = Vin(t) (6.5)
Ibacapi(t) = —1by(2) (6.6)

where f(t) = 105 - (100 - Ibacap1(t) — Via(t)). This constrains the
equations of an explicit ODE formulation in the wvariables Vi1, Vya
and Ibgcapi- This is because Vin(t), and hence V; (t), have to be
explicitly pmvided by the user. Therefore, the first three equations give
formulas for V. Vo and IV 4 p1, which do not depend on unknown
derivatives.
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5.2 A system including sines and cosines

Example 21
Ibaparc(t) + Ibyo(t) =0 (7.1)
Drarc(t) = IV parc(t) .
—16 cos(Ibyparc(t)) + Drarc(t) = 4 (7.3)

Although the system contains all necessary conditions, it can hardly
be solved numerically without preprocessing. Processing the equation
system above with the approach of locally solvable sets described earlier,
we find the following equations:

16 COS(IbABdL()(t)) + 4 :DIdLC(t) (8'1)
Ibaparc(t) + Ibyo(t) = 0 (8.2)
16 cos(Ibaparc(t)) +4 =Ibyparc(t)

3)
Ibaparc(t) + 1byo(t) +4=0 (8.4)
64(sin(Ibaparc(t)) + 2sin(2Ibaparc(t))) + Digre(t) = 0 (8.5)

If we look at the system, we see that constraint (8.4) is redundant, as it
is implicitly given by (8.2) and (8.3). If we additionally cut constraint
(8.1) which is implicitly given in constraint (8.5), we get the following
system (F):

IbABch(t) + Ibvg(t) =0 (91)
16 COS(IbABch(t)) +4= Ib;&BdLC(t) .
64(Sin(IbABch(t)) + 2 Sin(2IbABdLC (t))) = DIIdLC’(t) (93)

With the initial conditions Drgc(0) = 1,Ibaparc(0) = 0 and
Ibyo(0) = O the solution to the system computed by Analog Insydes
can be seen in figure 3.
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..................................................
.......

Figure 3. Time integration of9.1-9.3, where Ibspqrc (- ), Digre (—-),
and Ibvg (7)

5.3 Conclusion and outlook

We have embedded an important class of nonlinear DAE systems into a
polynomial frame. This enables us to apply the theory of commutative
algebra and Grobner bases for modelling problems arising from ana-
log circuit analysis. Therefore, we recalled some algebraic basics. We
introduced algorithmic procedures for transforming DAEs to systems
which are as close as possible to ODEs. After discussing polynomial
nonlinear DAEs our approach was extended to systems containing ex-
ponential terms. This is an improvement of the known theory of local
solvability and formal integrability (cf. [5], [4], [3]). This enables the
analysis of important nonlinear components like diodes and transistors.

In further developments, because integrating further function types
in Singular would only entail unnecessary work, we have decided to
move the prolongation implementation to Mathematica. On one hand,
this allows us to consider a larger spectrum of DAEs, and on the other
hand, the prolongation process may use the specialized Mathematica
differentiation functions. To transform between Mathematica and Sin-
gular representation, we define a mapping between Mathematica DAEs
and Singular ideals.

The initial results of my research are very promising, more practical
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applications will be tackled in the future by using more sophisticated
approaches. This will be published in a forthcoming article.
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