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A zero-dimensional approach to compute real

radicals

Silke J. Spang

Abstract

The notion of real radicals is a fundamental tool in Real Alge-
braic Geometry. It takes the role of the radical ideal in Complex
Algebraic Geometry. In this article I shall describe the zero-
dimensional approach and efficiency improvement I have found
during the work on my diploma thesis at the University of Kaiser-
slautern (cf. [6]). The main focus of this article is on maximal
ideals and the properties they have to fulfil to be real. New theo-
rems and properties about maximal ideals are introduced which
yield an heuristic prepare max which splits the maximal ideals
into three classes, namely real, not real and the class where we
can’t be sure whether they are real or not. For the latter we have
to apply a coordinate change into general position until we are
sure about realness. Finally this constructs a randomized algo-
rithm for real radicals. The underlying theorems and algorithms
are described in detail.

1 Introduction

The original task arose from an article by Becker and Neuhaus written
in 1998 (see [1]), where they present an idea to compute the real radical
of a polynomial ideal. The following article speeds up the computation
time of the algorithm which they described there:

Becker and Neuhaus idea was a coordinate change to reduce to the
univariate case. Such coordinate changes cause a coefficient growth
which slows down the computation.

c©2008 by Silke J. Spang
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A zero-dimensional approach to compute real radicals

Our idea is to study the properties of maximal ideals M and find
a heuristic to decide whether they are real, i. e. if re

√
M = M or not.

This arose from the fact that the primary decomposition in Singular
is well implemented and very efficient in the average case.

The article is structured in three parts:
Section 1 gives a short overview of and motivation for the notion

of τ -radicals. In particular the real radical is recalled. Some theory
on how the τ

√-functor behaves and first properties of K-algebras A are
stated. The real radical commutes with intersection and localisation.
For an arbitrary ideal I EA, we know re

√
I = re

√
re
√

I, and re
√

I is a rad-
ical ideal by definition. A special form of the Real Nullstellensatz over
Q is stated. One of the fundamental statements is Theorem 1 which
tells us that the real radical of I is the intersection of all real prime ide-
als P containing I. In fact, giving rise to all real points, the real radical
of I is the intersection of all real maximal ideals M containing I. The
section finishes by sketching how the one-to-one correspondences from
algebraic geometry over algebraically closed fields are translated to real
algebraic geometry by means of the real radical. Thus a real maximal
ideal corresponds to a zero-dimensional real zero-set which can be seen
as finitely many conjugate points in the field extension of Q to Ralg (or
R by the Tarski Seidenberg principle).

Prime ideals correspond to irreducible Q-varieties in Rn and the pri-
mary decomposition is just the decomposition of a Q-variety Vre(I) ⊂
Rn into its irreducible components.

The univariate case of polynomials f ∈ Q(y1, . . . , ym)[x] which is a
special case of zero-dimensional ideals is explained in Section 2. The
main idea is the following: Let

f = ε · pα1
1 · pα2

2 · · · pαr
r .

If we could decide whether a prime polynomial pi is real or not, then
the real radical of the principal ideal 〈f〉EQ(y1, . . . , ym)[x] is

re
√
〈f〉 = 〈

∏

pi is real

pi〉.
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This provides an idea how to compute the real radical of a univariate
polynomial.

After describing the machinery for the univariate case, an algorithm
for computing the zero-dimensional radical is explained in section 3. In
contrast to the article of Becker and Neuhaus, the decision was to com-
pute the primary decomposition of the zero-dimensional input and to
give a heuristic for deciding whether a maximal ideal is real or not.
This heuristic yields a procedure prepare max which prepares a max-
imal ideal in such a way that we can avoid a coordinate change into
general position as often as possible. If a coordinate change can’t be
avoided we use the procedure GeneralPos. Its input is a list of maximal
ideals where a change can’t be avoided. Here a suitably randomised
coordinate change is computed such that we can check the properties of
prepare max for the transformed maximal ideals and afterwards we in-
tersect all real maximal ideals of this list. The procedure RealZero gets
a zero-dimensional input I and computes its primary decomposition.
Then it considers separately every maximal ideal and tests if a change
is needed to compute the real part. Afterwards it intersects the real
radicals of all these ’nice’ maximal ideals and restarts the procedure
GeneralPos for the list of ’bad’ ideals. To conclude the article section
3 is finished with one important Theorem of Becker and Neuhaus ([1]
Theorem 4.5.) which explains the computation real radicals of general
polynomial ideals via a reduction to the zero-dimensional case.

I would like to thank Dr. Anne Frühbis-Krüger and Prof. Dr. Ger-
hard Pfister for many fruitful discussions. I want to thank the Sin-
gular team of the University in Kaiserslautern, especially Dr. Hans
Schönemann, for supporting me with my Singular problems while
implementing the algorithms for my diploma thesis and giving good
advise on the computation.

2 τ-real ideals and the real radical

This section uses some basics in real algebra which can be found in [5].
We define τ -radicals for pre-orderings σ of real fields K.
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Definition 1 (τ-radicals and the real radical) Let K be a for-
mally real field and τ a pre-ordering of K. For any K-algebra A, we
define the τ -radical of an ideal I E A by

τ
√

I = {f ∈ A : f2r+
m∑

i=1

aig
2
i ∈ I with r,m ∈ N, gi ∈ A and ai ∈ τ ∀i}.

An ideal I with the property I = τ
√

I is called τ -real.
If τ =

∑
K2 =: re, then re

√
I is called the real radical of I.

We can easily verify that τ
√

I is an ideal. For the special case of subfields
K of R we get the following definition.

Definition 2 (Real radical) Let A be an affine K-algebra, IEA any
ideal. We define the real radical of I to be

re
√

I :=〈f ∈ A : ∃r,m ∈ N :

f2r +
m∑

i=1

kig
2
i ∈ I, ki ∈ K≥0, gi ∈ A〉

I is called real if and only if re
√

I = I.

To see that both definitions do not differ for Q ⊆ K ⊆ R and the
special case τ = re =

∑
Q2 we prove the following lemma:

Lemma 1 Let K = Q, then re =
∑

K2 = K≥0 is an ordering of K.

Proof 1
∑
Q2 ⊆ Q≥0 is clear.

Let p
q ∈ Q>0. Then

p

q
=

pq

q2
=

pq∑

i=1

(
1
q

)2

∈
∑

Q2.

Hence Q has a unique real closure and this closure is Ralg := Q∩R, so
we get the following corollary.

Corollary 1 For every algebraic extension K of Q which is in R there
exists only one possible ordering, i. e.

∑
K2 = K≥0.
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2.1 Some properties of the τ
√

-functor

For this subsection see Chapter 2 of [1].

Theorem 1 Let (K, τ) be a pre-ordered field, I, J ideals in some K-
algebra A and S a multiplicative closed subset of A satisfying 1 ∈ S
and 0 6∈ S. Then we have:

(a) τ
√

I ∩ J = τ
√

I ∩ τ
√

J

(b) τ
√

IS = ( τ
√

I)S

Here τ
√

IS denotes the τ -radical of the extension ideal IS of I in the
quotient ring AS which naturally is a K-algebra.

For prime ideals and prime polynomials we get the following prop-
erties:

Lemma 2 Let (K, τ) be a pre-ordered field and I a τ -real ideal of some
K-algebra A. Then all minimal primes of I are τ -real as well.

Corollary 2 Let (K, τ) be a pre-ordered field and I an ideal of some
K-algebra A. Then τ

√
I =

⋂
P , where P ranges over all τ -real primes

containing I.

Proof 2 The τ -real ideal τ
√

I is radical and thus the intersection of its
minimal primes. These are τ -real by Lemma 2.

The most important proposition which describes the relation between
τ -realness and the possibility to extend pre-orderings is stated below.

Proposition 1 Let (K, τ) be a pre-ordered fields and P a prime ideal
of some K-algebra A. Then the following statements are equivalent:

(a) P is τ -real

(b) There is some α ∈ X(K) (which is the set of all orderings for any
formally real field K.) satisfying α ⊇ τ which can be extended to
an ordering α of the function field k(P ) := Q(A�P ).
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(c) There is some α ∈ X(K) satisfying α ⊇ τ such that P is α-real.

Moreover if A is an affine K-algebra and P a maximal ideal of A then
the statements (a)− (c) are equivalent to:

(d) There is some α ∈ X(K) satisfying α ⊇ τ such that k(P ) can be
embedded into some real closed field containing the real closure of
(K, τ).

Finally the real radical describes a real variety as a collection of all
real points respectively. conjugated points.

Proposition 2 Let (K, τ) be a pre-ordered field and I an ideal of some
affine K-algebra A. Then τ

√
I =

⋂
M , where M ranges over all τ -real

maximal ideals of A containing I.

2.1.1 The behaviour of prime polynomials

The well-known sign change criterion of D. Dubois and G. Elfroym-
son (see [5] Chapter 2 12 Theorem 4) is:

Theorem 2 Let (K, τ) be an ordered field with its unique real closure
R and f ∈ K[x1, . . . , xn] be an irreducible polynomial. Then the fol-
lowing are equivalent:

(a) The ordering τ can be extended to an ordering α over the function
field k(f) = Q(K[x1, . . . , xn]/〈f〉).

(b) f is indefinite over R, i. e. there exists a, b ∈ Rn such that f(a) ·
f(b) < 0.

This leads us directly to the following remark about the situation
over the special case that K = Q.

Remark 1 Let f ∈ Q[x1, . . . , xn] be an irreducible polynomial. Then
f is real (i. e. 〈f〉 is real) if and only if f is indefinite over Ralg and
thus by the Tarski-Seidenberg principle indefinite over R.
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Proof 3 f is real if and only if the ordering re = Q≥ can be extended
in Q(Q[x1, . . . , xn]/〈f〉) by Proposition 1. By the sign change criterion
this can be extended if and only if f is indefinite over Ralg.

As another remark for polynomials over Q(y1, . . . , ym) we get:

Remark 2 Let f ∈ Q(y1, . . . , ym)[x1, . . . , xn] be an irreducible poly-
nomial. Then f is real if and only if there exists an ordering α of
Q(y1, . . . , ym) such that f is indefinite over the corresponding real clo-
sure Rα.

Proof 4 Let F := Q(y1, . . . , ym).
Let us first observe that since f is irreducible the ideal 〈f〉 is a prime
ideal. Let now α ∈ X(F ) be an ordering such that f is indefinite
over Rα. This ordering α of F can be extended to an ordering α in
k(f) = F [x1, . . . , xn]/〈f〉. By Proposition 1 (b) this is equivalent to the
statements that 〈f〉 is real. Thus f is real.

2.2 The Real Nullstellensatz

We now state the Real Nullstellensatz which was proved by Krivine
in the 60s. We first recall the set of real points. For more detailed
information see [5] or ([1] Definition 2.7 and Theorem 2.8)

Definition 3 Let (K, τ) be a pre-ordered field and I E K[x1, . . . , xn].
For a ordering α ⊇ τ let Rα denote the unique real closure of (K, α).
Then we define the set of all τ -real points Vτ as follows:

Vτ (I) = ∪α⊇τVRα(I).

Especially the set of all real points is denoted by Vre(I).

We get the general Real Nullstellensatz:

Theorem 3 (The general Real Nullstellensatz) Let (K, τ) be a
pre-ordered field and I E K[x1, . . . , xn] be an ideal. Then we have

IK(Vτ (I)) = τ
√

I.
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The following lemma is useful for the computation in real closed
fields. Note that it is a kind of specialisation of the Weak Nullstellensatz
over algebraically closed fields.

Lemma 3 Let R be any real closed field and M C ·R[x1, . . . , xn] be a
maximal ideal. Then we have the following 2 cases.

i. M is not real, so VR(M) = ∅.

ii. M is real and VR(M) consists of only one point.

Proof 5 As M is a maximal ideal R′ := R[x1, . . . , xn]/M is a field
extension of R. As R is real closed, we know that R = R(i) and
[R : R] = 2. So we have the following 2 cases.

[R′ : R] =1 Then R′ = R and every zero of M is real thus M is real.
Let a = (a1, a2, . . . , an) ∈ Rn so a ∈ VR(M).
Now IR(a) = 〈x1 − a1, x2 − a2, . . . , xn − an〉 is a maximal
ideal which contains M as 〈x1−a1, x2−a2, . . . , xn−an〉 =
IR(a) ⊂ IR(VR(M)) = M . Thus M = 〈x1 − a1, x2 −
a2, . . . , xn − an〉. And hence VR(M) = {a} is exactly one
point.

[R′ : R] =2 Then R′ = R and R is not real, thus M is not real by
Proposition 1. Hence by the Real Nullstellensatz (Theorem
3) VR(M) = ∅.

2.3 One-to-one correspondences in real algebraic geom-
etry

Let K be any subfield of R and A = K[x1, . . . , xn]. Here the following
special form of Theorem 3 holds:

Theorem 4 (Special Real Nullstellensatz) Let J EK[x1, . . . , xn],
then:

IK(VR(J)) = re
√

J
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This yields the well-known one-to-one correspondences.

real ideals 1:1←→ K-varieties in Rn

real prime ideals 1:1←→ irreducible K-varieties in Rn

real maximal ideals 1:1←→ irreducible 0-dim. K-varieties in Rn

So every correspondence over C occurs in a natural way by means
of real radicals in real algebraic geometry.

3 The univariate case

To obtain an algorithm for the zero-dimensional case, we first consider
the univariate case, i. e. ideals in the principal ideal domain F [x] where
F = Q(y1, . . . , ym). The main idea for the univariate case is the fol-
lowing: If we compute the real radical of 〈f〉 E K[x], we know that
factorising f corresponds to a primary decomposition. So if

f = εpm1
1 · pm2

2 · · · pmr
r

then the 〈pi〉, for all i = 1, . . . , r are precisely the minimal primes of
〈f〉. Such a minimal prime is real if and only if VR(pi) 6= ∅, i. e. if p
has a real root. So 〈pi〉 is real if and only if pi is real.

Hence the real radical of 〈f〉 is:

re
√
〈f〉 = 〈

∏

pi real

pi〉.

This leads us directly to the demand of a criterion to know whether an
irreducible polynomial p is real or not.

Here we have two cases:
In the easier first case F = Q i.e. m = 0; the general case m > 0

requires more knowledge of real algebra.
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3.1 The special univariate case

Definition 4 Let p ∈ Q[x] be an irreducible polynomial. We call p
real if p has a real root α ∈ R. Then p is the minimal polynomial of
this root α.

Note that p is real if and only if VR(p) 6= ∅, that is p is real if
and only if 〈p〉 is real, since 〈p〉 is a maximal ideal and re

√
〈p〉 ⊇ 〈p〉.

Hence the decision of being real for prime polynomials reduces to a
root counting problem.

The solution to this problem is the following:
If the degree of p is odd the fundamental theorem of algebra over R
states that p has a real root. But if the degree of p is even, we can’t
be sure if p has a real root. In this case we use the theorem of Sturm,
which counts the number of all distinct real roots of a non–constant
polynomial f ∈ K[x] in an interval [a, b], where a < b. The best a and
b can be found by computing the Cauchy bound for polynomials. For
detailed description of Sturm’s theorem and its applications see [2].

3.2 The general univariate case

Contrary to the special case F = Q the general case of polynomials
in Q(y1, . . . , ym)[x] is not a real root counting problem as we do not
know about sign or when a root is real. Thus we need some tools of
real algebra.

The following special form of Lemma 4.1 in [1] gives a solution to
the decision problem of realness for prime polynomials:

Lemma 4 Let p ∈ Q[y1, . . . , ym, x], where m ∈ N0 and degx p > 0 be
an irreducible polynomial. Then the following conditions are equivalent:

(a) 〈p〉 ·Q(y1, . . . , ym)[x] is real.

(b) 〈p〉 ·Q[y1, . . . , ym, x] is real.

(c) p is indefinite over R, i. e. there are points a, b ∈ Rm+1 satisfying
p(a) · p(b) < 0.
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This reduces our problem to decision whether a polynomial has a
sign change i. e. whether it is indefinite or not. For a detailed solution
of this problem see the article of G. Zeng and X. Zeng [4].

3.3 Example for the procedure RealPoly

The algorithm RealPoly (cf. Singular Release 3-0-3) computes the
real part of a polynomial in the univariate case. We conclude this
section with some examples.

Example 1 1. Let f = x9+x7+2x6+x5+2x4−7x3+4x2−8x+4 ∈
Q[x]. Factorising yields f = (x− 1) · (x3 + x2 + x− 1) · (x3 + 4) ·
(x2 + 1) = p1 · p2 · p3 · p4. The prime factors p1, p2, p3 are real as
they have real roots by the fundamental theorem of algebra, but
p4 has no real root. Hence p4 is not real. So the real part of f is:
f = p1 · p2 · p3 = x7 + 2x4 + x3− 8x + 4.

Let

f =x8y2z4 − 2x7y3z2 + x6y4z4 + x6y4 + x6y2z4 + 2x6yz5 − 2x5y5z2−
2x5y3z2 − 4x5y2z3 + x4y6 + x4y4 + 2x4y3z5 + 2x4y3z + 2x4yz5+

x4z6 − 4x3y4z3 − 4x3y2z3 − 2x3yz4 + 2x2y5z + 2x2y3z + x2y2z6+

x2y2z2 + x2z6 − 2xy3z4 − 2xyz4 + y4z2 + y2z2 ∈ Q(y, z)[x].

Factorising yields that

f = (x2y + z)2 · (xz2 − y)2 · (x2 + y2 + 1) = p2
1 · p2

2 · p3.

As p1 and p2 have odd degree in z (resp. in y) they are indefinite and
thus real. x2 + y2 + 1 is positive semi-definite. The real polynomial
computed from f is g = p1 · p2 = x3yz2 − x2y2 + xz3 − yz.

4 The zero-dimensional radical computation

To explain the main idea used in the algorithm for the zero-dimensional
real radical via reduction to the univariate case consider the following
example. Let F := Q(y1, . . . , ym) as in the last section.
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Example 2 Let I = 〈x1 − g1(xn), x2 − g2(xn), . . . , xn−1 − gn−1(xn),
gn(xn)〉 E F [x1, . . . , xn] be given. If gn is the real part of gn obtained
by the procedure RealPoly the real radical of I is:

re
√

I = 〈x1 − g1(xn), x2 − g2(xn), . . . , xn−1 − gn−1(xn), gn(xn)〉

Proof 6 Let gn =
∏r

i=1 pαi
i be the factorisation of gn in F [xn]. Then

every ideal 〈x1− g1, x2− g2, . . . , xn−1− gn−1, pi〉 is maximal because of
the isomorphism

F [x1, . . . , xn]/〈x1 − g1, x2 − g2, . . . , xn−1 − gn−1, pi〉 ∼= F [xn]/〈pi〉.

As pi is prime we conclude that F [x1, . . . , xn]/〈x1−g1, x2−g2, . . . , xn−1−
gn−1, pi〉 is a field.
Now 〈x1 − g1, x2 − g2, . . . , xn−1 − gn−1, pi〉 is real if and only if pi is
real because F [xn]/〈pi〉 is real if and only if pi is real by Propostion 1.
Hence

re
√

I
Cor.2=

⋂

M∈Min(I) real

M

=
⋂

pi is real

〈x1 − g1, x2 − g2, . . . , xn−1 − gn−1, pi〉

= 〈x1 − g1, x2 − g2, . . . , xn−1 − gn−1,
∏

pi is real

pi〉

= 〈x1 − g1(xn), x2 − g2(xn), . . . , xn−1 − gn−1(xn), gn(xn)〉

The most important theorem for the zero-dimensional computation
in the article of Becker and Neuhaus is the Shape lemma which gives
a detailed information on the shape of the reduced Gröbner basis of
a radical ideal satisfying the property of being in general position in
some way, so that we can obtain the position of an ideal given in the
example above.

Lemma 5 (Shape-Lemma) Let I be a zero-dimensional radical ideal
in F [x1, . . . , xn] with all d roots in F

n having distinct xn coordinates.

75



Silke J. Spang

Then the reduced Gröbner basis of I in the lexicographical ordering has
the shape

G = {x1 − g1(xn), x2 − g2(xn), . . . , xn−1 − gn−1(xn−1), gn(xn)},

where gn is a square-free polynomial of degree d and the gi, i < n, are
polynomials of degree d− 1.

Proof 7 See Lemma 4.5 of [6].

A naive idea for an algorithm could be:

1. Compute the radical
√

I of the given ideal I.

2. Test if
√

I fulfils the shape condition with respect to one variable
xi and compute a reduced Gröbner basis of re

√
I w. r. t. a lexico-

graphical ordering with lowest variable xi. If not use a random
change into general position until this condition is fulfilled.

3. Compute the real radical of
√

I as described in Example 2 and
undo the coordinate change.

As a coordinate change into general position causes a growth of co-
efficients and terms which slows down the Gröbner bases computations
it is important to avoid this change as often as possible. Therefore we
give some heuristics, i. e. some kinds of special cases in which we do
not have to apply a random coordinate change.

The idea for the algorithm due to Becker and Neuhaus ([1]) has
been presented in Example 2 and Lemma 5. In the rest of this section
I will present my own algorithm:

As in Singular the primary decomposition of zero-dimensional
ideal, in the average case, is very efficient, we can use this algorithm
as a black box. The main idea of the primary decomposition due to
Gianni/Trager/Zacharias (the command is primdecGTZ) was presented
in [3] chapter 4.2. Hence we can assume the maximality of all ideals
we are dealing with. The next subsection presents some properties for
maximal ideals I found.
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4.1 How to decide whether a maximal ideal is real

For a maximal ideal there are only two possibilities – either it is real or
its real radical is the whole ring. This is the reason why getting criteria
for maximal ideals is not difficult. The main idea of this section is to
find an heuristic which fulfils the following criteria:

1. Its costs have to be lower in the average case than the costs that
a random coordinate change would cost.

2. The decision of realness must be an easy test, i. e. it shouldn’t
cost too many operations.

3. Our heuristic must cancel out maximal ideals M which are not
real as early as possible in the computations.

Here are some properties of maximal ideals that I found during the
work on my diploma thesis ([6]). For the definition of orderings and
real closed fields I refer to [5].

One obvious property of real maximal ideals is the following corol-
lary.

Corollary 3 Let M C ·F [x1, . . . , xn] be maximal and f1, . . . , fn be the
univariate polynomials such that 〈fi〉 = M ∩ F [xi]. If M is real then
every fi is real too.

Another simple remark is:

Remark 3 If M = 〈f1, . . . fn〉C ·Q[x1, . . . , xn] is a maximal ideal with
every fi ∈ Q[xi] real, then M is real.

Proof 8 This is clear as every fi has a zero ai in the common real
closed field R. Thus (a1, . . . , an) ∈ Rn is in the real zeros of M .

Note that this simple remark for the rational numbers is not true
for an arbitrary real field F . This remains only true if F is an ordered
field. The problem for arbitrary real fields is the following:
A polynomial fi ∈ F [xi] is real if and only if there exist orderings
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α1, . . . , αr and the corresponding real closures Rα1 , . . . , Rαr such that
fi has zeros in every Rαi .

But these orderings αi could occur in a way that there exists no
common real closed ground field Rα and no corresponding ordering α
of F such that the polynomials fi all have a root in Rα, which would
yield that M is real. The following counter-example for arbitrary real
fields clarifies the problem:

Example 3 Let M = 〈x2 + 1 + t, y2 − t〉 C ·Q(t)[x, y]. Then m1 =
x2 +1+ t is real in every real closed extension Rα of Q(t) which admits
an ordering α in which t < −1 (note that we conclude that m1 is real
as it is indefinite over R), m2 = y2 − t is real in every real closed
extension Rβ which admits an ordering β satisfying t > 0. Both types
of orderings, the α– and β-orderings, contradict each other.
In fact M is not real as

12 + x2 + y2 = m1 + m2 ∈ M

and hence 1 ∈ re
√

M .

Analogous to the Shape Lemma, there holds a stronger property
for maximal ideals that can be tested very easily:

Proposition 3 Let M C ·F [x1, . . . , xn] be a maximal ideal and G =
{g1, . . . , gn} the reduced Gröbner basis of M with respect to any lexi-
cographical ordering with smallest variable xi. If G has the following
properties:

• g1 ∈ F [xi] and g1 is real.1

• every gi for i = 2, . . . , n has odd degree in its leading variable2.
1G is a triangular set as it is a reduced lexicographical Gröbner basis, wlog we

can assume that the univariate polynomial in smallest variable in G is g1.
2Let f ∈ Q[x1, . . . , xn]. The leading variable of f (short lvar(f)) is the largest

variable in f , i. e. if

f = as(x1, . . . , xk−1)x
s
k + as−1(x1, . . . , xk−1)x

s−1
k + . . . + a0(x1, . . . , xk−1),

as ∈ Q[x1, . . . , xk−1] \ {0}, for a k ≤ n, then lvar(f) = xk and the pseudo leading
coefficient of f is ini(f) = as(x1, . . . , xk−1).
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Then the maximal ideal M is real.

Proof 9 Assume for simplicity that G = {g1, . . . , gn} is a Gröbner
basis satisfying the properties above w. r. t. the ordering x1 < x2 <
. . . < xn.
As g1 ∈ F [x1] is real there exists a real closed field R ⊃ F such that
g1 has a zero α1 ∈ R. Now g2(x2, α1) ∈ R[x2] has odd degree and
thus has a zero α2 in R by the fundamental theorem of algebra. By
the same reason g3(x3, α2, α1) ∈ R[x3] has a zero α3 ∈ R. Inductively
there exists an α ∈ VRn(M).
Thus VR(M) 6= ∅ and hence, by the definition of the real zero-set of M ,
Vre(M) 6= ∅. Now by the Real Nullstellensatz re

√
M = IF (VR(M)) =

IF (α) ⊂ M . As M is maximal and Vre(M) 6= ∅ we conclude the
realness of M .

A last non-trivial condition to test the realness of M is:

Lemma 6 Let M = 〈m1, . . . , mn〉 be a maximal ideal in F [x1, . . . , xn]
written as a reduced lexicographical Gröbner basis w.r.t to the ordering
x1 < x2 < . . . < xn. If M is real, every generator mi is real.

Proof 10 Assume contrary: Thus let i be the smallest index such that
mi is not real. As M is a lexicographical Gröbner basis we get the
following cases:

Case 1: i = 1 then m1 ∈ F [x1] and has no real root. So

〈1〉 = re
√

m1 ⊂ re
√
〈m1, . . . , mn〉 = re

√
M.

Thus M is not real which is a contradiction.

Case 2: i > 1. Let R be an arbitrary real closure of (F, α) w. r. t. an
ordering α of F such that a = (a1, . . . , an) ∈ Rn is a real
point of M (i. e. a ∈ Vre(M)). Then we have the following
situation:

• M ′ := 〈m1, . . . , mi〉 = M ∩F [x1, . . . , xi]C ·F [x1, . . . xi] is
real since (a1, . . . , ai) ∈ VR(M ′) ⊂ Vre(M ′).
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• M ′′ := 〈m1, . . . , mi−1〉 = M ∩ F [x1, . . . , xi−1] C ·F [x1, . . .
xi−1] is real since (a1, . . . , ai−1) ∈ VR(M ′′) ⊂ Vre(M ′′).

As M ′ is real, the ordering α of F can be extended in k(M) =
F [x1, . . . , xn]/M , i. e. k(M) is a formally real field (see Propo-
sition 1). From the first isomorphism theorem, we get:

F [x1, . . . , xi]/M ′ ∼=(F [x1, . . . , xi−1, xi]/M ′′)/(M ′/M ′′)
= ((F [x1, . . . , xi−1]/M ′′)[xi])/((〈mi〉+ M ′′)/M ′′).

Now as (a1, . . . , ai−1) is a (real) root of the maximal M ′′ we
get that

F [x1, . . . , xi−1]/M ′′ ∼= F (a1, . . . , ai−1)

which is ordered by F (a1, . . . , ai−1) ∩R2. Hence

k(M) ∼= F (a1, . . . , ai−1)[xi]/〈mi(a1, . . . , ai−1, xi)〉
and k(M) is real. Thus the ordering F (a1, . . . , ai−1) ∩ R2

can be extended to F (a1, . . . , ai−1, ai) ∩ R2 (as ai is a real
root of mi(a1, . . . , ai−1, xi) by the definition of a). But then
mi(a1, . . . , ai−1, xi) is indefinite over R by the sign change cri-
terion (Theorem 2) and thus mi(x1, . . . , xi) is indefinite over
R, too. Now we get from Remark 2 that mi is real which con-
tradicts the assumption.

Lemma 6 is no equivalence as we can see in the following example:

Example 4 Let M = 〈x3−2, y2 +x2−x〉C ·Q[x, y]. Now x3−2 is real
since 3

√
2 is in R and y2 +x2−x is real by Lemma 4 as it is indefinite.

But M is not real as y2+ 3
√

2
2− 3
√

2 has no real root since 3
√

2
2− 3
√

2 > 0.

The following corollary is useful to test the realness of prime polyno-
mials f ∈ F [x1, . . . , xn].

Corollary 4 Let f ∈ Q[y1, . . . , ym, x1, . . . , xn] be an irreducible poly-
nomial. Then f is real considered as polynomial in F [x1, . . . , xn] if and
only if f considered as a polynomial in Q[y1, . . . , ym, x1, . . . , xn] is real.
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Proof 11 ⇒: As 〈f〉F [x1, . . . , xn] is real in F [x1, . . . , xn], there exists
an xi such that degxi

f > 0. Without loss of generality let xn be
this xi. By Theorem 1 we conclude that 〈f〉F (x1, . . . , xn−1)[xn] =
〈f〉Q(y1, . . . , ym, x1, . . . , xn−1)[xn] is real. Thus by Lemma 4
〈f〉Q [y1, . . . , ym, x1, . . . , xn] is real and hence f is real consid-
ered over Q[x1, . . . , xn, y1, . . . , ym].

⇐: This is clear as reality commutes with localisation (see Lemma 1).

Combining all these conditions yields a good heuristic to decide the
property of being real for maximal ideals M . Let us first consider a
large example in which it was possible to avoid the change into general
position completely.

Example 5 Let

I = 〈(y3 + 3y2 + y + 1)(y2 + 4y + 4)(x2 + 1),

(x2 + y)(x2 − y2)(x2 + 2xy + y2)(y2 + y + 1)〉EQ[x, y]

The primary decomposition of I yields 10 maximal ideals.

1. M1 = 〈y2 +1, x−y〉 which is not real as y2 +1 is not real. Hence
it does not satisfy the conditions in Proposition 3 and Corollary
3.

2. M2 = 〈y − 1, x2 + 1〉 does not satisfy the Corollary 3 and is thus
not real.

3. M3 = 〈y2 + y + 1, x2 + 1〉 does not satisfy Corollary 3 and is thus
not real.

4. M4 = 〈y2 + 1, x + y〉 does not satisfy Corollary 3 and is thus not
real.

5. M5 = 〈y + 2, x− 2〉 is real by Proposition 3 or Remark 3.

6. M6 = 〈y+2, x2−2〉 is real by Proposition 3 for the ordering x < y
with the reduced Gröbner basis G = {x2 − 2, y + 2}.
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7. M7 = 〈y + 2, x + 2〉 is real by Proposition 3 or Remark 3.

8. M8 = 〈y3 + 3y2 + y + 1, x + y〉 is real by Proposition 3 w. r. t. the
ordering y < x under which M is a reduced Gröbner bases.

9. M9 = 〈y3 + 3y2 + y + 1, x2 + y〉. Here it is not obvious to see
if M9 is real or not. So we have to compute the Gröbner bases
w. r. t. both orderings x < y and y < x.
The Gröbner basis w. r. t. to the lexicographical ordering x < y
of M9 is

GM = 〈x6 − 3x4 + x2 − 1, y + x2〉.

First we have to test if x6 − 3x4 + x2 − 1 is real. We know
that x6 − 3x4 + x2 − 1 is prime and after applying the RealPoly

procedure introduced in the last section we get that x6−3x4+x2−1
is real. Now we know that M9 is real by Proposition 3 w. r. t. to
the ordering x < y.

10. M10 = 〈y3 + 3y2 + y + 1, x− y〉 is real by Proposition 3.

So the real radical of I is

re
√

I = M5 ∩M6 ∩M7 ∩M8 ∩M9 ∩M10

= 〈y4 + 5y3 + 7y2 + 3y + 2, x4 − x2y2 + x2y − y3〉

In the next subsection I describe a procedure using the criteria
introduced above.

After giving this procedure it is easy to describe the algorithm for
the zero-dimensional case using a coordinate change into general posi-
tion.

4.1.1 The procedure prepare max

The procedure prepare max which uses the properties introduced
above acts in the following way:
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It gets as input a maximal ideal M and returns a list erg = M, j, where

M =





re
√

M if j = 1, the change into general position can be
avoided

M if j = 0, the change into general position cannot be
avoided

I explain my algorithm in pseudo-code. The proof of the correctness
of this algorithm follows from the criteria explained above. In the
algorithm itself there is no need to check Corollary 3 explicitly. This
criterion is checked implicitly in the check of Proposition 3 as we will
see.

The procedure prepare max is written as follows:

Algorithm 1
(Anheuristic to check if a coordinate change can be avoided)

proc prepare max(M)

INPUT : a maximal ideal M C ·F [x1, . . . , xn]

OUTPUT: a list erg = (M, j) s.t.:

M =





re
√

M if j = 1, the change into general position can
be avoided

M if j = 0, the change into general position can′t
be avoided

BEGIN

Initialise P := {λ : λ is a permutation of the variables {x1, . . . , xn}}
while (P 6= ∅) do {

Choose a λ = (xj1 , xj2 , . . . , xjn) ∈ P

P := P \ {λ}
Compute the lexicographical Gröbner basis Mλ = {f1, f2, . . . , fn}

of M w. r. t. the ordering xj1 < xj2 < . . . < xjn. Now f1 is
univariate in the variable xj1.
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Let f1 := RealPoly(f1) the real part of f1. As fi is prime there
are two possibilities f1 = 1 or f1 = f1.

if (f1 = 1)

{
erg := 〈1〉, 1
return(erg);

}
According to Proposition 3 search the first position k ≥ 2 such

that mk has even degree in xjk
. Set k = n + 1 if there exists

none.

if (k > n)

{
erg := M, 1; (Correctness is clear from Prop. 3)
return(erg);

}
According to Lemma 6 search from position (k + 1) in Mλ, the

first non-real generator mi.

If there exists a position i ≤ n set erg = 〈1〉, 1 and return erg.

}
If F is non parametric, i. e. F = Q and every generator of M is

univariate use Remark 3 and return erg := M, 1.

erg := M, 0;

return(erg);

END

In many cases the realness of maximal ideals can be checked only
using the procedure prepare max. But it may happen that an ideal
fails this test, i. e. the result of prepare max(M) is erg = M, 0. In this
case we have to apply a coordinate change into general position.
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Here I used the already well-optimised coordinate change imple-
mented in the primdec.lib.

The method I implemented during my diploma thesis is called
GeneralPos. It gets a list of maximal ideals which failed the test
prepare max as input and returns the intersection of all real maximal
ideals of this input.

Let us consider an example. An ideal in which we have to apply
a coordinate change into general position was presented in Example 3.
Lets have a look at this.

Example 6 Let M = 〈x2 + 1 + t, y2 − t〉 C ·Q(t)[x, y]. Choosing the
coordinate change

ϕ : Q(t)[x, y] → Q(t)[x, y]
x 7→ x

y 7→ y + x + t

we get:

ϕ(M) = 〈x2 + 1 + t, (y + x + t)2 − t〉
= 〈x2 + 1 + t, x2 + 2xy + 2tx + y2 + 2ty + t2 − t〉

Its lexicographical Gröbner basis w. r. t. the ordering y < x is:

Gϕ = {y4 + 4ty3 + (6t2 + t)y2 + (4t3 + 4t)y + (t4 + 6t2 + 4t + 1),

(−4t− 2)x− y3 + (−3t)y2 + (−3t2 − 2t− 3)y + (−t3 − 2t2 − 3t)}.

Now y4 +4ty3 +(6t2 +2)y2 +(4t3 +4t)y +(t4 +6t2 +4t+1) is not real
in Q(t)[y] as y4 + 4ty3 + (6t2 + 2)y2 + (4t3 + 4t)y + (t4 + 6t2 + 4t + 1)
is positive semi-definite (which can be seen using Lemma 4). Hence as
in Example 3 we get that M is not real.

In all my tests it didn’t happen often that I had to change into
general position for the test of being real. In fact the only examples
I found in which there is a need to apply this change are ideals over
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transcendent extensions of Q which are of the form in Example 3, i. e.
every generator is univariate and real. For these cases I have not yet
found any property to check realness without applying this change. A
simple example for an ideal in which this change yields the realness of
a maximal ideal is the following:

Example 7 Let M = 〈x2 + 1− t, y2 − t〉C ·Q(t)[x, y]. Here the same
coordinate change as in the example above yields:

ϕ(M) = 〈x2 + 1− t, (y + x + t)2 − t〉
= 〈x2 + 1− t, x2 + 2xy + 2tx + y2 + 2ty + t2 − t〉

Here the Gröbner basis w. r. t. the lexicographical ordering y < x is:

Gϕ ={y4 + 4ty3 + (6t2 − 4t + 2)y2 + (4t3 − 8t2 + 4t)y + (t4 − 4t3+

+ 2t2 + 1), 2x + y3 + 3ty2 + (3t2 − 4t + 3)y + (t3 − 4t2 + 3t)}.
Now y4 +4ty3 +(6t2−4t+2)y2 +(4t3−8t2 +4t)y+(t4−4t3 +2t2 +1) is
real as it is indefinite and the degree of 2x+y3 +3ty2 +(3t2−4t+3)y+
(t3 − 4t2 + 3t) in x is odd. Hence ϕ(M) is real by Proposition 3, thus
M is real. In fact M is α-real in every ordering α of Q(t) satisfying
the condition t ≥ 1.

To see the algorithm GeneralPos I recommend looking at Algo-
rithm 4.2 in [6].

4.2 An algorithm to compute the zero-dimensional rad-
ical

From the explanation in the last subsections, it is not difficult to get an
algorithm which computes the real radical of a zero-dimensional ideal
J in F [x1, . . . , xn].

Algorithm 2

proc RealZero(I)

INPUT : a zero-dimensional ideal I E F [x1, . . . , xn]

86



A zero-dimensional approach to compute real radicals

OUTPUT: an ideal J s.th. J = re
√

I

Simplify the ideal I = 〈f1, . . . , fr〉 to J = 〈g1, . . . , gr〉 as described in
[6] Remark 4.16,4

Compute the associated primes of Max := Min(I) with primdecGTZ

or primdecSY. (This depends on which algorithm is faster.4).

Initialise Prep := ∅ and NonPrep := ∅

while Max 6= ∅ do

{

Choose an M ∈ Max

Max := Max \ {M}
Compute erg = M, j with Algorithm 1.

If j = 1 and M 6= 〈1〉
{

Prep := Prep ∪ {M}
}
else

{
NonPrep := NonPrep ∪ {M}

}

Prepared :=
⋂

M∈Prep M :

NonPrepared := GeneralPos(NonPrep);5

4These operations are applied with a time limit by the aid of the watchdog

command. watchdog(command, timer) returns the result of the command if the
time for the command finishes before the timer.

5The idea of this approach was explained with 2 examples in the previous sub-
section.
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According to Theorem 1 we get that

re
√

I = re
√

J = Prepared ∩NonPrepared =: J.

return(J);

To finish this chapter I give an example in which every path of Algo-
rithm 2 is taken.

Example 8 Let

I = 〈(x2y3 − tx2y + y6 − y5 − ty4 + t2 + 1) · (y3 − t2y2 + (−t3 + t2−
− t)y + t3), (−2t)x4 − 4tx2 + (−t + 1)y6 + (−t2 + t)y5 + (t2−
− t)y4 + (−t4 + t3)y2 + (t4 − t3)y + (t5 − t4 + 2t3 − 2t), y7+

+ t2y4 − t2y3 − t4, (−t)x2y2 + t2x2 − y6 − ty5 + ty4 + (−t3+

+ t2 − t)y2 + t3y + (t4 − t3 + t2)〉.

Then every generator of I is simplified in the sense of Remark 4.16.

1. The primary decomposition of I provides 4 minimal primes which
are

• M1 = 〈x2 + 1− t, y3 + t2〉
• M2 = 〈x2 + t2 + 1, y2 + t〉
• M3 = 〈x2 + 1− t, y2 − t〉
• M4 = 〈x2 + 1 + t, y2 − t〉

We set Max := {M1,M2, M3,M4}.

2. Prep := ∅ and NonPrep := ∅

3. As Max is not empty choose M1 ∈ Max and set

Max := Max \ {M1} = {M2,M3, M4}.

88



A zero-dimensional approach to compute real radicals

4. prepare max(M1) = M1, 1 because of Proposition 3. Hence set:

Prep := Prep ∪ {M1} = {M1}
NonPrep := NonPrep = ∅

5. As Max is not empty choose M2 ∈ Max and set

Max := Max \ {M2} = {M3, M4}.

6. prepare max(M2) = 〈1〉, 1 by [6] Lemma 3.2 w. r. t. the lexicograph-
ical ordering y < x. Hence set:

Prep := Prep = {M1}
NonPrep := NonPrep = ∅

7. As Max is not empty choose M3 ∈ Max and set

Max := Max \ {M3} = {M4}.

8. prepare max(M3) = M3, 0. Hence we have to apply a coordinate
change and set:

Prep := Prep = {M1}
NonPrep := NonPrep ∪ {M3} = {M3}

9. As Max is not empty choose M4 ∈ Max and set

Max := Max \ {M4}.

10. prepare max(M4) = M4, 0. Hence we have to apply a coordinate
change and set:

Prep := Prep = {M1}
NonPrep := NonPrep ∪ {M4} = {M3,M4}

11. Now Max is empty and we set Prep = {M1}.
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12. From the examples 6 and 7 we conclude with the coordinate change
ϕ satisfying ϕ(x) = x, ϕ(y) = y + x + t that M3 is real and M4 is
not real. Hence

NonPrep = {M3}

13. Set

J = Prep ∩NonPrep = M1 ∩M3

= 〈y5 − ty3 + t2y2 − t3, x2 + (−t + 1)〉

Hence the real radical of I is

J = 〈y5 − ty3 + t2y2 − t3, x2 + (−t + 1)〉.

4.3 The general case as reduction

To conclude I shall explain shortly how to compute the real radical
with the preparations of this article.

The main theorem for the higher dimensional computation, adapted
from [1] Theorem 4.5., is:

Theorem 5 Let I E F [x1, . . . , xn]. For any S ( {x1, . . . , xn} let J (S)

denote an ideal of the quotient ring F [x1, . . . , xn] · F (S) satisfying

dim J (S) ≤ 0 and I · F (S) ⊆ J (S) ⊆ (I · F (S))Iso.

Then
re
√

I =
⋂

S({x1,...,xn}
(

re
√

J (S) ∩ F [x1, . . . , xn])

As every J (S) has a dimension less then equal zero we are able to
compute there real radicals. Theorem 5 now tells us how to intersect
all these ideals properly so that our result will be the real radical. The
theory of finding the J (S) uses real isolated points for arbitrary formally
real fields. It is explained in detail in [1] chapter 4 or in chapter 5 of
[6].
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5 Conclusions

Following a short introduction of the basics on real algebra and real
radicals, I described how to compute the real radical in the univariate
case and in the zero-dimensional case. The univariate case corresponds
to the leaves of the reduction tree for computing real radicals. While
the univariate case uses theory which can already be found in literature,
like Sturm’s Theorem (cf. [2]) or the decision of indefiniteness (cf. [4]),
section 4, the zero-dimensional case, introduces newly found properties.
The decision was to compute the primary decomposition of the zero-
dimensional input and to give a heuristic for deciding whether a max-
imal ideal is real or not. This heuristic yield a procedure prepare max
which prepares a maximal ideal in such a way that we can avoid a
coordinate change into general position as often as possible. If we can
not avoid a coordinate change we use the procedure GeneralPos. Its
input is a list of maximal ideals where a change can’t be avoided. Here
a suitably randomised coordinate change is computed such that we
can check the properties of prepare max for the transformed maximal
ideals and afterwards we intersect all real maximal ideals of this list.
Finally, the procedure RealZero gets a zero-dimensional input I and
computes its primary decomposition. Then it considers separately ev-
ery maximal ideal and tests if a change is needed to compute the real
part. Afterwards it intersects the real radicals of all these ’nice’ maxi-
mal ideals and restarts the procedure GeneralPos for the list of ’bad’
ideals. Since the primary decomposition is well-optimised in Singular
the advantage of this is a time improvement during the computations.
This is because coordinate changes into general position cause a growth
of coefficients and terms which slows the Gröbner bases computations
down. The idea presented in this abstract avoid such changes as often
as possible. Finally the article closes with the description how to com-
pute the arbitrary radical as a reduction to the zero-dimensional case.
We have presented an algorithm to compute real radicals which uses the
new introduced heuristic prepare max and is thus a time improvement
to the algorithm presented by Becker and Neuhaus in [1].
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