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An algebraic approach to a study of

two-dimensional affine differential system

E.Naidenova∗

Abstract

In a present paper a problem of classification of Aff(2,R)-
orbits’ dimensions is considered on example of an autonomous
two-dimensional affine differential system of first order. Meth-
ods of Lie algebras are used in the work, as well as methods
of group analysis. Computer algebra systems ”Bergman” and
”Mathematica 5.0” are widely used.
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1 Introduction

In a present work we consider autonomous polynomial differential sys-
tem, written in general form as follows

dxj

dt
=

∑

mi∈Γ

P j
mi

(x), (j = 1, 2), (1)

where Γ = {mi}l
i=1 is some finite set of different non-negative integers,

and

P j
mi

(x) =
mi∑

k=0

(
mi

k

)
i
aj

k(x
1)mi−k(x2)k, (j = 1, 2; i = 1, l)
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are homogeneous polynomials with order mi in (x1, x2, ..., xn). Coef-
ficients and variables of system (1) are defined over the field of real
numbers R. Further we will denote system (1) by s2(Γ) for special Γ.
The variable t is independent one, and x1, x2 are dependent functions
(variables) on t.

System (1) will be considered with group of affine transformations
Aff(2,R) given by equalities

x1 = αx1 +βx2 +h1, x2 = γx1 +δx2 +h2,

(
∆ =

∣∣∣∣
α β
γ δ

∣∣∣∣ 6= 0
)

, (2)

where α, β, γ, δ, h1, h2 are real parameters, ever varying in R. Further

we will consider transformations (2) given by matrix q =
(

α β
γ δ

)
,

and when we say ”q belongs to group Aff(2,R)”, we write this as
q ∈ Aff(2,R).

Note that the application of group Aff(2,R) to qualitative inves-
tigation of systems (1) is remarkable as the system keeps its form after
affine transformation. And coefficients of the system are varying in ac-
cording to law of tensors, being basic geometrical objects of Invariant
Theory. Thus, we can conclude that to perform complete qualitative
investigation of system (1) it is necessary to apply the method of al-
gebraic invariants. Remark, that this method was founded in works by
K.Sibirsky [1].

Adaptation of Lie algebras of operators and techniques of group
analysis in study of systems (1) has appeared as a certain step in de-
velopment of this method. Results of such researches are quoted in
works by M.Popa [2] and his disciples. These works are devoted to
investigation of algebraic objects (finite-dimensional Lie algebras and
corresponding algebras of invariants), obtained due to representation of
linear groups of transformations in space of coefficients of systems (1).
Besides, the classification’s tasks are considered in these works, con-
cerned with dimensions of orbits, as well as with problems of existence
of invariant integrals.

As appeared, an answer to the question about existence of such in-
tegrals is thoroughly connected with classification of orbits’ dimensions
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and of invariant varieties of considering groups, particularly, group
Aff(2,R). Therefore it became necessary to construct such classifi-
cations for further investigation of systems (1).

Remark, that solution of classifications’ questions for systems (1)
with more than one homogeneity in right-hand sides requires implica-
tion of computer algebra systems and was impossible until nowadays
due to intricate calculations.

2 Basic notions and definitions

Throughout the work we will need some notions.
Definition 2.1. Call the linear space Lr over the field R a Lie al-

gebra, if for any two of its elements X, Y the operation of commutation
[X, Y ] is defined, which returns the element from Lr (commutator of
elements X, Y ) and satisfies the following axioms:

1) bilinearity: for any X, Y, Z ∈ L and α, β ∈ R
[αX + βY, Z] = α[X, Z] + β[Y,Z],

[X, αY + βZ] = α[X,Y ] + β[X,Z];

2) anti-symmetry: for any X, Y ∈ L

[X, Y ] = −[Y,X];

3) identity of Jacobi: for any X, Y, Z ∈ L

[[X,Y ], Z] + [[Y, Z], X] + [[Z, X], Y ] = 0.

It is shown in [2] that Lie algebra, corresponding to linear repre-
sentation of group Aff(2,R) in the space of coefficients and variables of
system (1), is six-dimensional Lie algebraL6 = {X1, X2, X3, X4, X5, X6}.
This algebra can be given by Lie operators [2]:

X1 = x1 ∂

∂x1
−D1, X2 = x2 ∂

∂x1
−D2, X3 = x1 ∂

∂x2
−D3,

X4 = x2 ∂

∂x2
−D4, X5 =

∂

∂x1
−D5, X6 =

∂

∂x2
−D6, (3)
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where

D1 =
l∑

i=1

mi∑

k=0


(mi − k − 1)

i
a1

k

∂

∂
i
a1

k

+ (mi − k)
i
a2

k

∂

∂
i
a2

k


 ,

D2 =
l∑

i=1

mi∑

k=0


k


 i

a1
k−1

∂

∂
i
a1

k

+
i
a2

k−1

∂

∂
i
a2

k


− i

a2
k

∂

∂
i
a1

k


 ,

D3 =
l∑

i=1

mi∑

k=0


(mi − k)


 i

a1
k+1

∂

∂
i
a1

k

+
i
a2

k+1

∂

∂
i
a2

k


− i

a1
k

∂

∂
i
a2

k


 ,

D4 =
l∑

i=1

mi∑

k=0


k

i
a1

k

∂

∂
i
a1

k

+ (k − 1)
i
a2

k

∂

∂
i
a2

k


 ,

D5 =
l∑

i=1

i−1∑

k=0

i


 i

a1
k

∂

∂
i−1
a 1

k

+
i
a2

k

∂

∂
i−1
a 2

k


 ,

D6 =
l∑

i=1

i−1∑

k=0


 i

a1
k+1

∂

∂
i−1
a 1

k

+
i
a2

k+1

∂

∂
i−1
a 2

k


 . (4)

According to [2], in order to solve the problem of classification of orbits’
dimensions, we will consider only operators D1 - D6, since they form
six-dimensional Lie algebra L6, corresponding to linear representation
of group Aff(2,R) in the space of coefficients of system (1).

Let a =
(

1
a1

0,
1
a1

1, . . . ,
l
a2

ml

)
∈ E(a), where E(a) is Euclidean space of

coefficients of right-hand sides of system (1).
Denote by a(q) a point from E(a) corresponding to a system, ob-

tained from system (1) with coefficients a after transformation q ∈
Aff(2,R).

Definition 2.2. The set O(a) = {a(q); q ∈ Aff(2,R)} is called an
Aff(2,R)-orbit of a point a for system (1).

Definition 2.3 The set M ⊆ E(a) is called an Aff(2,R)-invariant
set if for any point a ∈ M its orbits O(a) ⊆ M .
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It is known from [3] - [4] that space g(a), constructed on coordinate
vectors of operators (4), is the tangent space to Aff(2,R) - orbit O(a)
in point a ∈ E(a), such that

dimRO(a) = dimRg(a). (5)

On the other hand,
dimRg(a) = rankM1, (6)

where M1 is a matrix, constructed on coordinate vectors of operators
(4).

From (5) - (6) it is evident

dimRO(a) = rankM1. (7)

Denote by

M =




x1 0
x2 0
0 x1

0 x2

1 0
0 1




.

We will denote the matrix (M, M1) by (ξ(x), η(a)) when it repre-
sents a reflection in space of coefficients and variables E(x, a) of system
(1).

Further we will consider varieties Ψ given implicitly in finite-
dimensional space E(x, a) [4].

This means that an open set U ⊂ E(x, a) is given together with
reflection ψ : U → R of class C∞(U), and ψ(x0, a0) = 0 for some point
(x0, a0) ∈ U and the set ψ(U0) is open in R for any vicinity U0 ⊂ U
of the point (x0, a0). Variety Ψ can be defined in these conditions as
locus of (x, a) ∈ U , for which holds

ψ(x, a) = 0. (8)

Equality (8) is called the equation of variety Ψ.
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Definition 2.4. Call the variety Ψ an invariant if for any point
a ∈ Ψ its orbit O(a) ⊆ Ψ.

Definition 2.5. Call the number

r∗ = r∗(ξ, η) = max rank
(x,a)∈U

(ξ(x), η(a))

a general rang of the reflection (ξ, η) onto open set U ⊂ E(x, a).
Definition 2.6. Call the point (x, a) ∈ E(x, a) a singular point (of

group Aff(2,R) or its Lie algebra L6), if

rank(ξ(x), η(a)) < r∗,

and non-singular point (of group Aff(2,R) or its Lie algebra L6) if

rank(ξ(x), η(a)) = r∗.

Definition 2.7. Call the variety Ψ ⊂ U a singular variety of group
Aff(2,R) (or its Lie algebra L6(ξ, η)) if all its points are singular and
if the reflection (ξ, η) has the rang on Ψ, i.e. for any point (x, a) ∈ Ψ
we obtain

rank(ξ(x), η(a)) = r∗(M |Ψ) < r∗.

Definition 2.8. Call the variety Ψ ⊂ U a non-singular variety
of group Aff(2,R) (or its Lie algebra L6(ξ, η)) if all its points are
non-singular, i.e. if the following equality holds

r∗(M |Ψ) = r∗.

According to last definitions, all invariant varieties of group Aff(2,
R) can be divided into singular and non-singular Aff(2,R)-invariant
varieties.

From this viewpoint, the classification of dimensions of Aff(2,R)-
orbits of differential equations’ system can be represented as a classifica-
tion of invariant varieties of group Aff(2,R). Remark, that Aff(2,R)-
orbits of maximal dimension correspond to non-singular invariant va-
rieties of group Aff(2,R).
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From Theorem of representation [4] follows
Theorem 2.1. If non-singular variety of Lie algebra L6(ξ, η) is

given regularly by equation (8), then such invariant F : E(x, a) → R of
this algebra exists, that this variety can be given by equality F (x, a) =
0.

Definition 2.9. Call the integer rational function K(x, a), in vari-
ables x and coefficients a of system (1) an affine comitant if it meets
the condition

K(x̄, ā) = ∆−gK(x, a)

for any values of x and a and any transformations of group Aff(2,R).
Number g is called a weight of affine comitant.

Definition 2.10. If an affine comitant K(x, a) does not depend on
variables x, it is called an affine invariant of system (1).

From [2] and [4] it is known
Theorem 2.2. The integer rational function K(x,A) (I(A)) in

variables x and coefficients a of system (1) is an affine comitant (in-
variant) of this system with weight g if and only if it meets conditions

X1(K) = X4(K) = −gK, X2(K) = X3(K) = X5(K) = X6(K) = 0;
D1(I) = D4(I) = −gI, D2(I) = D3(I) = D5(I) = D6(I) = 0,

where X1 - X6 and D1 - D6 are defined in (3) and (4).

3 Classification of dimensions of Aff(2,R) - or-
bits for system s2(0, 1).

Let us apply above stated theory to investigation of affine differential
system s2(0, 1).

Consider system (1) for Γ = {0, 1}. According to [1] we will write
it in tensor form as follows

dxj

dt
= aj + aj

αxα, (j, α = 1, 2). (9)

System (9) will be considered with group Aff(2,R), defined in (2).
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Further we will use affine comitants and invariants known from
works [1], [5], [6]:

K2 = ap
αxαxqεpq, K21 = apxqεpq, K22 = aαap

αxqεpq,

I1 = aα
α, I2 = aα

βaβ
α, I21 = aαaqap

αεpq,

Q = I21 + I1K22 − I2K21 +
1
2
(I2

1 − I2)K2, (10)

where εpq and εpq are unit bi-vectors with coordinates ε11 = ε22 = 0,
ε12 = −ε21 = 1 and ε11 = ε22 = 0, ε12 = −ε21 = 1.

Remark [6], that invariants I1, I2 and comitant Q form minimal
polynomial basis of affine comitants for system (9).

In order to simplify further expressions we will use the following
notations

x1 = x, x2 = y, a1 = a, a2 = b, a1
1 = c, a1

2 = d, a2
1 = e, a2

2 = f. (11)

According to (3) - (4) and (11), we will write Lie operators for
system (9):

X1 = x
∂

∂x
−D1, X2 = y

∂

∂x
−D2, X3 = x

∂

∂y
−D3,

X4 = y
∂

∂y
−D4, X5 =

∂

∂x
−D5, X6 =

∂

∂y
−D6,

where

D1 = −a
∂

∂a
− d

∂

∂d
+ e

∂

∂e
, D2 = −b

∂

∂a
− e

∂

∂c
+ (c− f)

∂

∂d
+ e

∂

∂f
,

D3 = −a
∂

∂b
+ d

∂

∂c
− (c− f)

∂

∂e
− d

∂

∂f
, D4 = −b

∂

∂b
+ d

∂

∂d
− e

∂

∂e
,

D5 = c
∂

∂a
+ e

∂

∂b
, D6 = d

∂

∂a
+ f

∂

∂b
.(12)

Matrix M1, constructed on coordinate vectors of operators (12),
takes the form
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M1(0, 1) =




−a 0 0 −d e 0
−b 0 −e c− f 0 e
0 −a d 0 f − c −d
0 −b 0 d −e 0
c e 0 0 0 0
d f 0 0 0 0




(13)

Remark 3.1. One can verify that rank of matrix (13) is less than
5. Therefore, according to (7), the dimension of Aff(2,R)-orbit for
system (9) is less than 5.

Remark 3.2. Using (10), one can verify that K2 ≡ 0 yields Q ≡ 0.

To define a rank of matrix M1(0, 1) it is necessary to construct all
its minors of all possible orders. It is done using computer algebra
system ”Mathematica 5.0”. In order to find affine-invariant conditions
for rank of matrix M1(0, 1) its minors of each order are considered sep-
arately along with invariants and semi-invariants (corresponding coef-
ficients of affine comitants with each degree of variable x) of system
(9). As these objects are polynomials depending on coefficients of sys-
tem (9) and forming an ideal, the corresponding Gröbner bases [7] can
be used to obtain linear dependency among them. Namely, the set of
minors of each order is divided in subsets with respect to their types.
All possible combinations of invariants, semi-invariants and their prod-
ucts of each type are composed. The corresponding Gröbner bases
then has been constructed for them with the help of computer alge-
bra system ”Bergman” [8]. Analyzing such a bases one can figure out
its element representing linear dependency between minors of matrix
(13) and affine invariants and semi-invariants, as this element should
contain only names of minors, invariants and semi-invariants, not the
coefficients of system (9). According to this algorithm all types of
minors of matrix (13) have been treated and corresponding Gröbner
bases are constructed, therefore, desired dependencies are obtained.
This technique is used throughout the proofs of Lemmas 3.1 - 3.4.

Lemma 3.1. Rank of matrix M1(0, 1) is equal to 4 if and only if
holds

K2Q 6≡ 0, (14)
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where K2 and Q are defined in (10).
Proof. Let us prove the necessity. Assume the contradiction.

Namely, assume that for
K2Q ≡ 0 (15)

even one non-zero minor of 4th order of matrix (13) exists. Equality
(15) holds at least for K2 ≡ 0 or Q ≡ 0.

Examine K2 ≡ 0. Than, taking into consideration (10) and (11),
we obtain the following values for coefficients of system (9)

e = d = 0, c = f. (16)

After substitution of values (16) to matrix (13) one can verify that
all 4th order’s minors of this matrix are equal to zero. Thus, the
assumption is not true in this case.

Examine Q ≡ 0. Than, taking into consideration (10) and (11), we
obtain the following series of values for coefficients of system (9):

e = d = 0, c = f, (17)
a = c = d = 0, (18)
b = e = f = 0, (19)

d = f = 0, e =
bc

a
, a 6= 0, (20)

a = b = 0, d =
fc

e
, e 6= 0, (21)

c = −f, d =
af

b
, e = −bf

a
, ab 6= 0, (22)

c = e = 0, d =
af

b
, b 6= 0, (23)

c = f, d =
af

b
, e =

bf

a
, ab 6= 0. (24)

Case (17) coincides with case (16), obtained for K2 ≡ 0, and will not
be considered.

After substitution of each of series (18) - (24) to matrix (13) we
obtain that all its 4th order minors are equal to zero. So, the above
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stated assumption is not true in this case too. Therefore we conclude
the necessity of conditions (14).

Sufficiency of conditions (14) is ensured by equality

K2Q = ∆1256
1235x

4 + 2∆1256
1236x

3y + (2∆1256
1234 −∆2356

1236)x
2y2 + 2∆1356

1236xy3 +
+∆1356

1234y
4 + (∆1245

1236 + 2∆2345
1235)x

3 + (∆2345
1236 − 2∆1236

1235)x
2y + (2∆2345

1234 −
−∆1236

1236)xy2 + (∆1346
1236 − 2∆1345

1234)y
3 + ∆1234

1235x
2 −∆1234

1236xy −∆1234
1234y

2,

where ∆ijhk
lmnp is 4th order minor of matrix (13), constructed on lines i,

j, h, k (1 ≤ i, j, h, k ≤ 6) and columns l, m, n, p (1 ≤ l, m, n, p ≤ 6).
Lemma 3.1 is proved.

Lemma 3.2. Rank of matrix M1(0, 1) is equal to 3 if and only if
hold

Q ≡ 0, K2 6≡ 0, (25)

where K2 and Q are defined in (10).
Proof. Necessity of conditions (25) follows from Lemma 3.1. Let us

prove sufficiency. We will consider each of cases (18) - (24) separately.
Note, that case (17) contradicts to conditions of Lemma 3.2.

Denote by ∆ijk
lmn a 3rd order minor of matrix (13) constructed on

lines i, j, h, (1 ≤ i, j, k ≤ 6) and columns l, m, n (1 ≤ l, m, n ≤ 6).
As conditions (18) hold, comitant K2 takes the form K2 = −ex2 −

fxy. For K2 6≡ 0 non-zero 3rd order’s minors of matrix (13) will be at
least ∆125

145 = −e3 or ∆236
245 = f3.

As conditions (19) hold, comitant K2 takes the form K2 = cxy+dy2.
For K2 6≡ 0 non-zero 3rd order’s minors of matrix (13) will be at least
∆136

134 = −d3 or ∆235
145 = c3.

As conditions (20) hold, comitant K2 takes the form K2 = c(− b
ax2+

xy). For K2 6≡ 0 non-zero 3rd order’s minor of matrix (13) will be at
least ∆235

145 = c3.
As conditions (21) hold, comitant K2 takes the form K2 = −ex2 +

(c − f)xy + cf
e y2. Remark, that e 6= 0. So, K2 6≡ 0 and non-zero 3rd

order’s minor of matrix (13) will be at least ∆125
145 = −e3.

As conditions (22) or (24) hold, comitant K2 takes the form K2 =
f(− b

ax2−2xy+ a
b y2) or K2 = f(− b

ax2 + a
b y2), correspondingly. In both
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cases for K2 6≡ 0 non-zero 3rd order’s minor of matrix (13) will be at
least ∆125

134 = f3.
As conditions (23) hold, comitant K2 takes the form K2 = f(−xy+

a
b y2). For K2 6≡ 0 non-zero 3rd order’s minor of matrix (13) will be at
least ∆236

245 = f3.
Sufficiency of conditions (25) is proved completely. Lemma 3.2 is

proved.
Lemma 3.3. Rank of matrix M1(0, 1) is equal to 2 if and only if

hold
K2 ≡ 0, K2

21 + I2
1 6≡ 0, (26)

where K2, K21, I1 are defined in (10).
Proof. Denote by ∆ij

hk a 2nd order minor of matrix (13) con-
structed on lines i, j (1 ≤ i, j ≤ 6) and columns h, k (1 ≤ h, k ≤ 6).

Necessity of equality from (26) follows from Lemmas 3.1 - 3.2 and
Remark 3.2. Let us prove necessity of inequality from (26). Assume
the contradiction. Namely, assume that for

K2
21 + I2

1 ≡ 0 (27)

at least one non-zero 2nd order’s minor of matrix (13) exists. For
K2 ≡ 0, taking into consideration (10) and (16), invariant I1 takes the
form

I1 = 2f. (28)

According to (10) and (11), comitant K21 can be written as follows

K21 = −bx + ay. (29)

As K2 ≡ 0 holds, all non-zero 2nd order’s minors of matrix (13) will
coincide to sign with one of the following

∆13
12 = a2, ∆14

12 = ab, ∆24
12 = b2, ∆16

12 = af, ∆26
12 = bf, ∆56

12 = f2. (30)

As (27) holds, from (28) and (29) follows that a = b = f = 0 and all mi-
nors (30) are equal to zero. This contradiction confute our assumption
and confirms the necessity of inequality from (26).
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Sufficiency of conditions (26) is ensured by equality

K2
21 + I2

1 = ∆24
12x

2 − 2∆14
12xy + ∆13

12y
2 + 4∆56

12.

Lemma 3.3 is proved.
From Lemmas 3.1 - 3.3 evidently follows

Lemma 3.4. Rank of matrix M1(0, 1) is equal to 0 if and only if
hold

K2 ≡ 0, K2
21 + I2

1 ≡ 0, (31)

where K2, K21, I1 are defined in (10).
From Lemmas 3.1 - 3.4, Remark 3.1 and equality (7) follows

Theorem 3.1. Aff(2,R) - orbit of system (9) has the dimension

4 for QK2 6≡ 0; (32)
3 for Q ≡ 0, K2 6≡ 0; (33)
2 for K2 ≡ 0, K2

21 + I2
1 6≡ 0; (34)

0 for K2 ≡ 0, K2
21 + I2

1 ≡ 0, (35)

where K2, K21, Q, I1 are defined in (10).
According to Definition 2.3 from Theorem 3.1 follows

Theorem 3.2. Sets M1, M2, M3, M4, defined by expressions (32),
(33), (34) and (35) correspondingly, form Aff(2,R)-invariant parti-
tion of space E(a) of coefficients of system (9), i.e.

4⋃

i=1

Mi = E(a), Mi

⋂
Mj = ∅

and each set M1 (i = 1, 4) is Aff(2,R)-invariant.

Remark 3.3. Set M1 with conditions (32) represents non-singular
invariant variety of group Aff(2,R).

Remark 3.4. Sets M2-M4 with conditions (33) - (35) correspon-
dingly represent singular invariant varieties of group Aff(2,R).

Some results of this paper were announced in a common report with
V.Orlov at the Conference ”Algebraic systems and their applications
in differential equations and other domains of mathematics”, see [9].
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