A New Attempt On The F_5 Criterion

Christian Eder

Abstract

Faugère's criterion used in the F_5 algorithm is still not understand and thus there are not many implementations of this algorithm. We state its proof using syzygies to explain the normalization condition of a polynomial. This gives a new insight in the way the F_5 criterion works.

1 Introduction

In 2002 Faugère published a new algorithm for computing Gröbner bases [2]. He found a new criterion defining when a set is a Gröbner basis. This criterion can be used to compute Gröbner bases of ideals generated by arbitrary finite sequences of polynomials.

In the F_5 algorithm additional data on the polynomials is used to detect redundant critical pairs in advance to avoid computations of zero. In this paper we give a proof of the F_5 criterion with some easier and more general arguments.

The plan of the paper is as follows: In section 2 we give briefly the basic definitions for Gröbner basis computations as well as the main terminology for the F_5 criterion. In section 3 we prove the main theorem of this paper, the F_5 criterion.

^{©2008} by Ch. Eder

2 Basic Notations

Throughout this paper ring always means a commutative ring with identity, \mathbb{N} is the set of non-negative integers. \mathbb{K} denotes the ground field, $\mathbb{K}[\underline{x}]$ the polynomial ring over \mathbb{K} in the finite sequence of n variables $\underline{x} = (x_1, \ldots, x_n)$. \mathcal{T} denotes the set of terms of $\mathbb{K}[\underline{x}]$. Furthermore let < be a total order on $\mathbb{K}[\underline{x}]$.

2.1 Gröbner basics

We briefly give the main definitions needed to define a Gröbner basis in a characterization useful for our purposes.

Definition 2.1. Let $t = x_1^{\alpha_1} \cdots x_n^{\alpha_n} \in \mathcal{T}$ where $\alpha_i \in \mathbb{N}$ for $i \in \{1, \ldots, n\}$. The total degree of t is defined to be $\deg(t) = \sum_{i=1}^n \alpha_i$.

Let

$$f = \sum_{\alpha} c_{\alpha_1, \dots, \alpha_n} x_1^{\alpha_1} \cdots x_n^{\alpha_n} = \sum_{\alpha} c_{\alpha} x^{\alpha} \in \mathbb{K}[\underline{x}] \setminus \{0\}$$

where $\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{N}^n$, $c_\alpha \in \mathbb{K}$, and only finitely many $c_\alpha \neq 0$. The total degree of f is defined as $\deg(f) = \max\{\alpha_1 + \cdots + \alpha_n \mid c_{\alpha_1,\ldots,\alpha_n} \neq 0\}$. Furthermore writing $f = c_\alpha x^\alpha + c_\beta x^\beta + \cdots + c_\gamma x^\gamma$, $x^\alpha > x^\beta > \cdots > x^\gamma$ in a unique way as a sum of non-zero terms we define

- (a) the head monomial of $f: \operatorname{HM}(f) = c_{\alpha} x^{\alpha}$,
- (b) the head term of $f: \operatorname{HT}(f) = x^{\alpha}$,
- (c) the head coefficient of $f: \operatorname{HC}(f) = c_{\alpha}$.

Definition 2.2. Let $f, g \in \mathbb{K}[\underline{x}] \setminus \{0\}$. The *S*-polynomial of f and g is defined to be

$$\operatorname{Spol}(f,g) = \operatorname{HC}(g) \frac{\tau}{\operatorname{HT}(f)} f - \operatorname{HC}(f) \frac{\tau}{\operatorname{HT}(g)} g$$

where $\tau = \operatorname{lcm}(\operatorname{HT}(f), \operatorname{HT}(g)).$

Definition 2.3. Let $P \subset \mathbb{K}[\underline{x}]$ be a finite set, $0 \neq f \in \mathbb{K}[\underline{x}]$, and $t \in \mathcal{T}$. A representation

$$f = \sum_{p \in P} \lambda_p p,$$

where $\lambda_p \in \mathbb{K}[\underline{x}], p \in P$ is called a *t*-representation of f w.r.t. P if for all $p \in P$ such that $\lambda_p \neq 0$ HT $(\lambda_p p) \leq t$.

For t = HT(f) a t-representation of f is called a standard representation

There are a lot of equivalent characterizations of Gröbner bases, see for example [1]. The one we need in this paper is stated next.

Theorem 2.4. Let $G = \{g_1, \ldots, g_{n_G}\}$ be a finite subset of $\mathbb{K}[\underline{x}]$ with $0 \notin G$. If for all $f \in I = \langle g_1, \ldots, g_{n_G} \rangle$ f has a standard representation, then G is a Gröbner basis of I.

Proof. See [1].

2.2 F_5 basics

We extend given definitions and state new terminology needed to understand Faugère's F_5 criterion.

In the following let $F = (f_1, \ldots, f_m)$ be a sequence of polynomials in $\mathbb{K}[\underline{x}], \mathbb{K}[\underline{x}]^m$ denotes the free $\mathbb{K}[\underline{x}]$ -module of rank m.

Definition 2.5. Let $\mathbf{g} = \sum_{k=1}^{m} g_k \mathbf{e}_k \in \mathbb{K}[\underline{x}]^m$ where \mathbf{e}_k denotes the *k*-th standard vector in $\mathbb{K}[\underline{x}]^m$. We define the evaluation map w.r.t. F $v_F : \mathbb{K}[\underline{x}]^m \to \mathbb{K}[\underline{x}]$ such that

$$v_F\left(\sum_{k=1}^m g_k \mathbf{e}_k\right) = \sum_{k=1}^m g_k f_k$$

An element $\mathbf{s} \in \mathbb{K}[\underline{x}]^m$ is called a syzygy w.r.t. F if $v_F(\mathbf{s}) = 0$. For $m \geq 2$ for each pair f_i, f_j with $1 \leq i < j \leq m$ we have a so-called principal syzygy w.r.t. $F, \pi_{i,j} = f_j \mathbf{e}_i - f_i \mathbf{e}_j$.

The set of all syzygies w.r.t. F is denoted $\text{Syz}(F) = \text{ker}(v_F)$ and generates an $\mathbb{K}[\underline{x}]$ -module. The submodule generated by all principal syzygies w.r.t. F is denoted PSyz(F).

Next we define an ordering of $\mathbb{K}[\underline{x}]^m$.

Definition 2.6. Let $\mathbf{g} = \sum_{k=1}^{m} g_k \mathbf{e}_k \in \mathbb{K}[\underline{x}]^m$. The index of \mathbf{g} , denoted by index(\mathbf{g}), is the smallest $i \in \{1, \ldots, m\}$ such that $g_i \neq 0$.

Suppose that \mathbf{g} and $\mathbf{h} \in \mathbb{K}[\underline{x}]^m$ with index $(\mathbf{g}) = i$ and index $(\mathbf{h}) = j$. Then we can write $\mathbf{g} = \sum_{k=i}^m g_k \mathbf{e}_k$ and $\mathbf{h} = \sum_{k=j}^m h_k \mathbf{e}_k$.

$$\mathbf{g} \prec \mathbf{h} :\Leftrightarrow \left\{ \begin{array}{l} i > j, \text{ or} \\ i = j \text{ and } \operatorname{HT}(g_i) < \operatorname{HT}(h_i) \end{array} \right.$$

For any $\mathbf{g} \in \mathbb{K}[\underline{x}]^m \setminus \{0\}$ it holds that $0 \prec \mathbf{g}$.

This leads to an extension of the terminology of head terms.

Definition 2.7. Let $\mathbf{g} \in \mathbb{K}[\underline{x}]^m \setminus \{0\}$ with index $(\mathbf{g}) = i$. The module head term MHT of \mathbf{g} is defined to be MHT $(\mathbf{g}) = \text{HT}(g_i)\mathbf{e}_i$.

Lemma 2.8. The module ordering \prec is well-founded.

Proof. Let $\emptyset \neq P \subset \mathbb{K}[\underline{x}]^m$. The index of any element $\mathbf{p} = \sum_{i=1}^m p_i \mathbf{e}_i \in P$ is bounded by m, and \leq is a well-ordering on the head terms of polynomials in $\mathbb{K}[\underline{x}]$. Thus

$$i_{\max} := \max\{index(\mathbf{p}) \mid \mathbf{p} \in P\} t_{\min} := \min\{HT(p_k) \mid \mathbf{p} \in P, index(\mathbf{p}) = k\}$$

are well-defined. Then

$$\emptyset \neq M := \{ \mathbf{p} \in P \mid \text{index}(\mathbf{p}) = i_{\max}, \text{HT}(p_{i_{\max}}) = t_{\min} \}$$

is the set of minimal elements of P.

Next we define a connection between polynomials in $\mathbb{K}[\underline{x}]$ and module elements in $\mathbb{K}[\underline{x}]^m$. These are the main concepts for the F_5 criterion.

Definition 2.9.

- (a) A labeled polynomial r is an element $r = (u\mathbf{e}_k, p)$ such that $u \in \mathcal{T}$, $p \in \mathbb{K}[\underline{x}]$.
- (b) The signature of r is defined by $S(r) := u\mathbf{e}_k$, the polynomial of r by poly(r) := p, and the index of r by index(r) := k. For a finite set G of labeled polynomials we define $poly(G) := \{poly(r) | r \in G\}$.
- (c) If $t \in \mathcal{T}$ then $tr := (tu\mathbf{e}_k, tp)$, if $c \in \mathbb{K}$ then $cr := (u\mathbf{e}_k, cp)$.
- (d) r is called *admissible w.r.t.* F if there exists a $\mathbf{g} \in \mathbb{K}[\underline{x}]^m \setminus \{0\}$ such that $v_F(\mathbf{g}) = p$ and $MHT(\mathbf{g}) = \mathcal{S}(r)$.
- (e) Let G be a finite set of labeled admissible w.r.t. F polynomials. r is called *normalized w.r.t.* G if $u \notin \operatorname{HT}(\langle \{p_i \in \operatorname{poly}(G) \mid \operatorname{index}(r_i) > \operatorname{index}(r)\} \rangle).$
- (f) Let (r_1, r_2) be a pair of labeled polynomials with $\tau = \operatorname{lcm}(\operatorname{HT}(\operatorname{poly}(r_1)), \operatorname{HT}(\operatorname{poly}(r_2))), \tau_i = \frac{\tau}{\operatorname{HT}(\operatorname{poly}(r_i))}$ for $i \in \{1, 2\}$. Then (r_1, r_2) is called normalized if $\tau_1 r_1, \tau_2 r_2$ are normalized and $\mathcal{S}(\tau_2 r_2) \prec \mathcal{S}(\tau_1 r_1)$. For a pair of labeled polynomials (r_1, r_2) where r_1, r_2 are admissible to $\mathbf{g}_1, \mathbf{g}_2$ respectively, we define the S-polynomial to be

$$Spol(r_1, r_2) := (MHT(\tau_1 \mathbf{g}_1 - \tau_2 \mathbf{g}_2), c_2 \tau_1 poly(r_1) - c_1 \tau_2 poly(r_2)),$$

where $c_i = \operatorname{HC}(\operatorname{poly}(r_i))$ for $i \in \{1, 2\}$.

Corollary 2.10. If r_1 and r_2 are admissible labeled polynomials w.r.t. *F* then $Spol(r_1, r_2)$ is an admissible labeled polynomial w.r.t. *F*.

3 F_5 criterion

Next we prove the F_5 criterion stated in [2]. For this purpose we need some lemmata and more notations.

Convention 3.1. In the following let $F = (f_1, \ldots, f_m), f_i \in \mathbb{K}[\underline{x}], G = \{r_1, \ldots, r_{n_G}\}$ a set of labeled admissible w.r.t. F polynomials such that

$$\{(\mathbf{e}_1, f_1), \dots, (\mathbf{e}_m, f_m)\} \subset G.$$

Let $p_i = poly(r_i)$ for all $i \in \{1, ..., n_G\}$, $poly(G) = \{p_1, ..., p_{n_G}\}$.

When we write admissible we always mean admissible w.r.t. F.

Lemma 3.2. If an admissible labeled polynomial $r = (ue_k, p)$ with $\mathbf{g} \in \mathbb{K}[\underline{x}]^m$ such that $MHT(\mathbf{g}) = ue_k$ and $v_F(\mathbf{g}) = p$ is non-normalized w.r.t. G then there exists $\mathbf{s} \in PSyz(F)$ with $index(\mathbf{s}) = k$ such that $MHT(\mathbf{g} - \mathbf{s}) \prec MHT(\mathbf{g})$.

Proof. If $r = (ue_k, p)$ is non-normalized then there exists $r_i \in G$ with $p_i = \sum_{\ell=k_0}^m \lambda_\ell f_\ell \in G$ where $\lambda_\ell \in \mathcal{K}[\underline{x}]$ such that $index(r_i) = k_0 > k$ and $HT(p_i) \mid u$. So there exists $t \in \mathcal{T}$ such that $tHT(p_i) = u$. Let $\mathbf{z} := p_i \mathbf{e}_k - f_k \sum_{\ell=k_0}^m \lambda_\ell \mathbf{e}_\ell \in Syz(F)$. Now we can rewrite

$$p_{i}\mathbf{e}_{k} - f_{k}\sum_{\ell=k_{0}}^{m}\lambda_{\ell}\mathbf{e}_{\ell} = \left(\sum_{\ell=k_{0}}^{m}\lambda_{\ell}f_{\ell}\right)\mathbf{e}_{k} - f_{k}\sum_{\ell=k_{0}}^{m}\lambda_{\ell}\mathbf{e}_{\ell}$$
$$= \lambda_{k_{0}}f_{k_{0}}\mathbf{e}_{k} - \lambda_{k_{0}}f_{k}\mathbf{e}_{k_{0}} + \lambda_{k_{0}+1}f_{k_{0}+1}\mathbf{e}_{k} - \lambda_{k_{0}+1}f_{k}\mathbf{e}_{k_{0}+1} + \dots + \lambda_{m}f_{m}\mathbf{e}_{k} - \lambda_{m}f_{k}\mathbf{e}_{m}$$
$$= \lambda_{k_{0}}\pi_{k,k_{0}} + \lambda_{k_{0}+1}\pi_{k,k_{0}+1} + \dots + \lambda_{m}\pi_{k,m}$$
$$= \sum_{\ell=k_{0}}^{m}\lambda_{\ell}\pi_{k,\ell}$$

where $\pi_{v,w}$ denotes the principal syzygy $f_w \mathbf{e}_v - f_v \mathbf{e}_w \in \mathrm{PSyz}(F)$ for $v < w \in \{1, \ldots, m\}$. Set $\mathbf{s} = t\mathbf{z} \in \mathrm{PSyz}(F)$. By construction index $(\mathbf{s}) = k$, MHT $(\mathbf{g} - \mathbf{s}) \prec \mathrm{MHT}(\mathbf{g})$ and $v_F(\mathbf{g} - \mathbf{s}) = v_F(\mathbf{g})$. \Box

Lemma 3.3. Let $r = (ue_k, p)$ and let $\tau_1, \tau_2 \in \mathcal{T}$. If $\tau_2 \tau_1 r$ is normalized w.r.t. $G \Rightarrow \tau_1 r$ is normalized w.r.t. G.

Proof. Let $\tau_2 \tau_1 r = (\tau_2 \tau_1 u e_k, \tau_2 \tau_1 p)$ be normalized w.r.t. G.

Assume for contradiction that $\tau_1 r = (\tau_1 u e_k, \tau_1 p)$ is non-normalized w.r.t. *G*. Then there exists $r_0 \in G$ such that $index(r_0) > k$ and $HT(p_0) \mid \tau_1 u$. Then $HT(p_0) \mid \tau_2 \tau_1 u$ and it follows that $\tau_2 \tau_1 r$ is nonnormalized w.r.t. *G*, which contradicts our assumption that $\tau_2 \tau_1 r$ is normalized w.r.t. *G*.

The following definition of the ordering \leq for representations of a labeled polynomials is similar to the one Faugère has stated in [2]. For a deeper insight we refer to [3].

Definition 3.4. Let $f \in I = \langle g_1, \ldots, g_{n_G} \rangle$. Then we define

$$\mathcal{R}_{f} := \left\{ (\lambda, \sigma) \in \mathbb{K}[\underline{x}]^{n_{G}} \times \operatorname{Sym}_{n_{G}} \mid f = \sum_{i=1}^{n_{G}} \lambda_{i} p_{\sigma(i)}, \mathcal{S}(\lambda_{1} r_{\sigma(1)}) \succeq \dots \\ \dots \succeq \mathcal{S}(\lambda_{n_{G}} r_{\sigma(n_{G})}) \right\}$$

to be the set of labeled representations of f w.r.t. G where Sym_{n_G} denotes the symmetric group on $\{1, \ldots, n_G\}$. Next we define the ordering \lt on labeled representations of f w.r.t. G.

For two labeled representations of f w.r.t. G, (λ, σ) and (λ', σ') , we define

$$\omega = \left(\mathcal{S}(\mathrm{HT}(\lambda_1)r_{\sigma(1)}), \dots, \mathcal{S}(\mathrm{HT}(\lambda_{n_G})r_{\sigma(n_G)}) \right), \omega' = \left(\mathcal{S}(\mathrm{HT}(\lambda'_1)r_{\sigma'(1)}), \dots, \mathcal{S}(\mathrm{HT}(\lambda'_{n_G})r_{\sigma'(n_G)}) \right),$$

respectively.

 $(\lambda, \sigma) \leq (\lambda', \sigma')$ iff one of the following conditions holds:

- (a) $\exists i \text{ such that } \forall 1 \leq j < i \leq n_G: \ \omega_j = \omega'_j \text{ and } \omega_i \prec \omega'_i,$
- (b) $\forall j: \omega_j = \omega'_j \text{ and} \max_{\ell=1,\dots,n_G} \operatorname{HT}(\lambda_\ell p_{\sigma(\ell)}) < \max_{\ell'=1,\dots,n_G} \operatorname{HT}(\lambda'_{\ell'} p_{\sigma'(\ell')}),$
- (c) $\forall j: \omega_j = \omega'_j,$ $\max_{\ell=1,\dots,n_G} \operatorname{HT}(\lambda_\ell p_{\sigma(\ell)}) = \max_{\ell'=1,\dots,n_G} \operatorname{HT}(\lambda'_{\ell'} p_{\sigma'(\ell')}) =: t$ and $\#\{\ell \mid \operatorname{HT}(\lambda_\ell p_{\sigma(\ell)}) = t\} < \#\{\ell' \mid \operatorname{HT}(\lambda_{\ell'} p_{\sigma(\ell')}) = t\}.$

Lemma 3.5. The ordering \lt is well-founded.

Proof. See [3], Lemma 3.17.

Lemma 3.6. Let $f \in I = \langle g_1, \ldots, g_{n_G} \rangle$. Let (λ, σ) be a minimal labeled representation for f w.r.t. G. Then for all indices $v \in \{1, \ldots, m\}$:

$$#\{k \mid (\lambda_k, \sigma(k)) \in (\lambda, \sigma), \lambda_k \neq 0, index(r_{\sigma(k)}) = v\} \le 1.$$

Proof. We can assume σ to be the identity by renumbering G, $f = \sum_{i=1}^{m} \lambda_i g_i$. Choose $v \in \{1, \ldots, m\}$ arbitrarily. Denote

$$I = \{k \mid (\lambda_k, \mathrm{id}(k)) \in (\lambda, \mathrm{id}), \mathrm{index}(r_k) = v\},\$$

$$I_{<} = \{k \mid (\lambda_k, \mathrm{id}(k)) \in (\lambda, \mathrm{id}), \mathrm{index}(r_k) < v\} \text{ and}\$$

$$I_{>} = \{k \mid (\lambda_k, \mathrm{id}(k)) \in (\lambda, \mathrm{id}), \mathrm{index}(r_k) > v\}.$$

Assume that #I > 1.

Each $r_k \in G$ is admissible w.r.t. F, i.e. $g_k = \sum_{j=v}^m \eta_{k,j} f_j$ with $\eta_{k,j} \in \mathbb{K}[\underline{x}]$.

Thus we get a new representation of f:

$$f = \sum_{i=1}^{m} \lambda_i g_i = \sum_{i \in I} \lambda_i g_i + \sum_{j \notin I} \lambda_j g_j$$
$$= \sum_{i \in I_{<}} \lambda_i g_i + \left(\sum_{j \in I} \lambda_j \eta_{j,v}\right) f_v + \sum_{j \in I} \lambda_j \sum_{k=v+1}^{m} \eta_{j,k} f_k + \sum_{\ell \in I_{>}} \lambda_\ell g_\ell$$

This new labeled representation $(\lambda', \sigma') \prec_{\text{lex}} (\lambda, \text{id})$: The first $\#I_{\leq}$ components remained unchanged, then there is one component $\lambda'_v f_v$ where $\lambda'_v = \sum_{j \in I} \lambda_j \eta_{j,v}$. By construction

$$\begin{aligned} \mathcal{S}(\mathrm{HT}(\lambda'_v)r_{\sigma'(v)}) &= \\ &= \max\{\mathcal{S}(\mathrm{HT}(\lambda_k)r_k) \mid (\lambda_k, \mathrm{id}(k)) \in (\lambda, \mathrm{id}), \mathrm{index}(r_k) = v\}, \end{aligned}$$

where $\operatorname{poly}(r_{\sigma'(v)}) = f_v$. So the signatures of the first $\#I_{<} + 1$ components of both labeled representations are equal. But the $\#I_{<} + 2$ th component of $(\lambda, \operatorname{id})$ has index v, as we assumed that there are at least two such components, whereas the $\#I_{<} + 2$ th component of (λ', σ') has an index < v.

Thus we received a contradiction of the minimality of (λ, id) w.r.t. \leq .

Remark 3.7. Note that a labeled representation w.r.t. G does not restrict the number of possible representations of an element $f \in I$. A labeled representation w.r.t. G just orders the components of the corresponding representation of f so that representations can be compared w.r.t. \ll .

Definition 3.8. Let $t \in \mathcal{T}$, (λ, σ) be a labeled representation w.r.t. G of a labeled polynomial r. W.l.o.g. we can assume $\sigma = \text{id. Then } (\lambda, \text{id})$ is called a *t*-representation of r if

$$p = \sum_{\ell=1}^{n_G} \lambda_\ell p_\ell$$

such that for all components $\operatorname{HT}(\lambda_{\ell} p_{\ell}) \leq t$ and $\mathcal{S}(\operatorname{HT}(\lambda_{\ell}) r_{\ell}) \preceq \mathcal{S}(r)$.

Theorem 3.9. If for all pairs (r_i, r_j) normalized w.r.t. G Spol (r_i, r_j) has a t-representation where $t < lcm(HT(p_i), HT(p_j))$ then poly(G) is a Gröbner basis of $I = \langle p_1, \ldots, p_n \rangle$.

Proof. Let $f \in I$. Then f has a labeled representation (λ, σ) w.r.t. G. W.l.o.g. we can assume $\sigma = \text{id}$ such that $f = \sum_{\ell=1}^{n_G} \lambda_\ell p_\ell$. By Lemma 3.5 let us assume (λ, id) to be a minimal labeled representation of f w.r.t. G.

If there is a component $(\lambda_k, \mathrm{id}(k)) \in (\lambda, \mathrm{id})$ such that $\lambda_k r_k$ is not normalized w.r.t. *G* then there exists a principal syzygy **s** by Lemma 3.2. $\lambda_k r_k$ is admissible, i.e. there exists $\mathbf{g} \in \mathbb{K}[\underline{x}]^m$ such that $\mathrm{MHT}(\mathbf{g}) = \mathcal{S}(\mathrm{HT}(\lambda_k)r_k)$ and $v_F(\mathbf{g}) = \lambda_k p_k$. So we can construct $\mathbf{g} - \mathbf{s}$ with $\mathrm{MHT}(\mathbf{g}-\mathbf{s}) \prec \mathrm{MHT}(\mathbf{g})$ and $\lambda_k r_k$ admissible to $\mathbf{g}-\mathbf{s}$. This gives a

labeled representation (λ', σ') of f w.r.t. G such that $(\lambda', \sigma') \leq (\lambda, \mathrm{id})$. This contradicts the minimality of (λ, id) w.r.t. \leq , so every $\lambda_k r_k$ such that $(\lambda_k, \mathrm{id}(k)) \in (\lambda, \mathrm{id})$ is normalized w.r.t. G.

By Lemma 3.6 there are no two components with the same index in (λ, id) , i.e. all $\lambda_k r_k$ have different signatures.

Assume that there exist components $(\lambda_k, id(k))$ such that $HT(\lambda_k p_k) = t'$ where $t' \ge HT(f)$. Note that $\#\{\ell \mid HT(\lambda_\ell p_\ell) = t'\} \ge 2$. Choose two such components $(\lambda_i, id(i)), (\lambda_j, id(j))$.

Let $\tau = \operatorname{lcm}(\operatorname{HT}(p_i), \operatorname{HT}(p_j)), \tau_i = \frac{\tau}{\operatorname{HT}(p_i)}$, and $\tau_j = \frac{\tau}{\operatorname{HT}(p_j)}$. Then $\tau \mid t', \tau_i \mid \operatorname{HT}(\lambda_i)$, and $\tau_j \mid \operatorname{HT}(\lambda_j)$.

Define $m_i = \text{HM}(\lambda_i)$ and $m_j = \frac{\text{HC}(\lambda_i)}{\text{HC}(\lambda_j)} \text{HM}(\lambda_j)$. Now we compute

$$m_i p_i - m_j p_j = \operatorname{HC}(\lambda_i) \operatorname{HT}(\lambda_i) p_i - \operatorname{HC}(\lambda_i) \operatorname{HT}(\lambda_j) p_j$$
$$= \operatorname{HC}(\lambda_i) \left(\frac{\tau_i t'}{\tau} p_i - \frac{\tau_j t'}{\tau} p_j \right)$$
$$= \operatorname{HC}(\lambda_i) \frac{t'}{\tau} \operatorname{Spol}(p_i, p_j).$$

Since $\lambda_i r_i$ and $\lambda_j r_j$ are normalized w.r.t. *G* it follows with Lemma 3.3 that also $\tau_i r_i$ and $\tau_j r_j$ are normalized w.r.t. *G*.

Thus we get a new labeled representation (λ'', σ'') of f w.r.t. G:

$$f = \sum_{\ell=1}^{n_G} \lambda_\ell p_\ell = \lambda_i p_i + \lambda_j p_j + \sum_{\substack{\ell=1\\\ell\neq i,j}}^{n_G} \lambda_\ell p_\ell$$
$$= m_i p_i + (\lambda_i - \operatorname{HT}(\lambda_i)) p_i - m_j p_j - \frac{\operatorname{HC}(\lambda_i)}{\operatorname{HC}(\lambda_j)} (\lambda_j - \operatorname{HT}(\lambda_j)) p_j$$
$$+ \left(1 + \frac{\operatorname{HC}(\lambda_i)}{\operatorname{HC}(\lambda_j)}\right) \lambda_j p_j + \sum_{\substack{\ell=1\\\ell\neq i,j}}^{n_G} \lambda_\ell p_\ell.$$

As $\operatorname{Spol}(r_i, r_j)$ has a *t*-representation $\operatorname{Spol}(p_i, p_j) = \sum_{\ell=1}^{n_G} \eta_\ell p_\ell$ such that $\operatorname{HT}(\eta_\ell p_\ell) < \operatorname{HT}(\operatorname{lcm}(\operatorname{HT}(p_i), \operatorname{HT}(p_j))$ and

$$\mathcal{S}(\mathrm{HT}(\eta_{\ell})r_{\ell}) \preceq \mathcal{S}(\mathrm{Spol}(r_i, r_j)).$$

Ch. Eder

It follows that $(\lambda'', \sigma'') < (\lambda, id)$. This contradicts the minimality of (λ, id) .

Acknowledgement. I would like to thank John Perry for many useful discussions.

References

- T.Becker, V.Weispfennig, and H.Kredel. *Gröbner Bases*. Springer Verlag, 1993.
- [2] J.C. Faugère. A new efficient algorithm for computing Gröbner bases without reduction to zero(F5). Symbolic and Algebraic Computation, Proc. Conferenz ISSAC 2002, pp. 75–83, 2002.
- [3] Stegers, Till. Faugère's F5 Algorithm Revisited. Thesis for the degreee of Diplom-Mathematiker, 2005.

Christian Eder,

Received November 7, 2007

Fachbereich Mathematik, TU Kaiserslautern, Postfach 3049, 67653 Kaiserslautern, Germany E-mail: ederc@rhrk.uni - kl.de