Computer Science Journal of Moldova, vol.16, no.1(46), 2008

Some Remarks on Blowing-Ups in a Computer
Algebra System

Anne Frithbis—Kriiger

Abstract

The aim of this short note is to provide detailed information
on how to compute blowing ups in various settings by means of
a computer algebra system. All examples are formulated using
the system SINGULAR[3].

1 Introduction

Although the notion of blowing up is ubiquitous in algebraic geometry
and singularity theory, the most common use of it is a blowing-up at
a point. Consequently tools to compute blowing-ups at a point are
implemented in a wide range of computer algebra systems.

For more complex applications on the other hand like e.g. studying
examples of flops, considering Nash modifications or desingularization,
restricting the choice of centers to sets of points is not an option: Con-
sidering the even the simplest example of a flop, the centers of the
blow-ups for the small resolutions will be Weil divisors'; considering
resolution of singularities, the singular locus has, in general, no rea-
son to be zerodimensional. Thus implementations of blowing ups also
need to cover the general case, which will be described in section 2 of
this article. Allowing centers to be higher dimensional, we encounter
problems of efficiency, which may be countered to some extent by con-
sidering embedded blowing up, whenever the centers are non-singular
and we are using a covering by affine charts; allowing centers to even

(©2008 by A. Friihbis-Kriiger
!see section 3 for the step-by-step calculations in SINGULAR

15

A. Frithbis-Kriiger

be singular, as is necessary for Nash modifications, on the other hand,
blocks this alternative for computations.

In sections 3 and 4, we consider examples of applications of the vari-
ous variants mentioned — each time including a step by step SINGULAR-
input and output for treating the respective task.

As usual for computational methods for algebraic geometry in char-
acteristic zero, we assume the ground field to be C for all reasoning,
although actual computations are performed over the rationals.

I should like to thank Lawrence Ein, Priska Jahnke, Patrick
Popescu-Pampu, David Ploog and Ivo Radloff, whose questions on how
to compute specific examples of blowing ups by means of a computer
algebra system, led to this collection of remarks. I am also indebted
to the Freie Universitdt Berlin and the ICTP Trieste for the invita-
tions that provided the opportunity to meet the previously mentioned
colleagues.

2 Implementation of Blowing Ups

2.1 Blowing Up a Scheme

Recall that given a noetherian scheme W and a closed subscheme Y of
W, corresponding to a ideal sheaf 7 on W, the blowing-up of W along
Y is defined as

m: W= Proj(@ 1% — W.
d>0
This is a birational map, which is an isomorphism away from Y, i.e.
W\ 7 1Y) = W\Y; the inverse image 7~ 1(Y) is a Cartier divisor on
W, called the exceptional divisor of the blowing up?. Unfortunately,
this description is not well-suited for explicit calculations and imple-
mentations, which usually require objects to be represented by polyno-
mial data, i.e. a free presentation or a set of generators of an ideal over
a polynomial ring or a quotient thereof. To achieve this description, a

2For further details including the universal property of blowing up see any text-
book on algebraic geometry like [6], II or [9]

16

Some Remarks on Blowing-Ups in a Computer Algebra System

convenient way is to pass to a covering of W by finitely many affine
open sets. Then the initial situation in an affine chart U C W can be
formulated as follows: Working over the basering A := Ow (U), which
is a polynomial ring or a quotient thereof, we can describe the center
Y in this chart by the ideal I/ = Z(U) which we now assume to be
generated by fo,..., fs. Then we can consider the graded morphism of
A-algebras

v: Alyo,...,ys] —> A[t- fo,...,t- fs] C At]
yi > t-fi

whose image is obviously isomorphic to @~ [¢. Hence 77 1(U), as a
subset of U x P, allows a description by A[yo, ..., ys]/ker(¢) which is
precisely what we needed for computational purposes. The exceptional
divisor of the blowing up, i.e. the inverse image of the center Y, then
corresponds to the ideal I - Alyo, ..., ys|/ker(p).

The ideal ker(y) unfortunately involves s + 1 additional variables
and hence it seems at first glance that e.g. the number of variables in
the resolution process might constantly rise making effective standard
bases calculations virtually impossible after just a few blow-ups. But
passing once again to an appropriate affine covering helps us keep the
number of variables sufficiently low; more precisely we use the usual
covering of the newly introduced P* by the sets D(y;), 1 < i < s.
Obviously, this is a trade-off and causes the calculations to branch
which easily leads to duplicate calculations on the intersections of sev-
eral charts and significantly increases the amount of data to be stored.
On the other hand, treating several charts at the same time on differ-
ent processors/computers allows a parallelization of e.g. the resolution
algorithm which is only rarely possible for computational tasks in com-
mutative algebra and may improve the performance.

Nevertheless, the disadvantages of passing to open covers largely
outweigh the benefits in general and it is therefore desirable to keep
the number of charts as low as possible e.g. by dropping charts which
do not contribute any new information to the considered task.

17

A. Frithbis-Kriiger

Example 1 [Blowing up of A% at the origin]

ring r=0, (t,x(1..3),y(1..3)),(dp(1),dp);
// A3 x P"2 plus extra variable
// for elimination of t
// as usual in computation of
// preimage of zero
ideal I=y(1)-t*x(1),
y(2)-t*x(2),
y(3)-t*x(3); // ideal describing map
ideal IW=eliminate(I,t);
// elimination step
ring r2=0,(x(1..3),y(1..3)),dp;

// A3 x P°2
ideal IW=imap(r,IW); // transfer the ideal to this ring
IW; // ideal of variety after blowing up

-=> IW[1]=x(3)*y(2)-x(2)*y(3)
-=> IW[2]=x(3) *y (1) -x(1)*y(3)
-=> IW[3]=x(2)*y (1) -x(1)*y(2)

subst (IW,y(1),1); // what does the chart
// D(y(1)) look like
-—> _[1]1=x(3) *y (2) -x(2) *y (3)
-=> _[2]=-x(1) *y(3)+x(3)
-=> _[3]=-x(1)*y(2)+x(2)
// As expected this is isomorphic to an A"3, getting rid
// of x(2) and x(3) using generators _[2] and _[3].
// The exceptional divisor is described by x(1)=0 in
// this chart.
//
// The same observations hold in the other charts,
// as the whole situation is blind to exchanging the roles
// of the variables x(i).

As already mentioned, we would like to blow up at more general

18

Some Remarks on Blowing-Ups in a Computer Algebra System

centers than point. Here is one such example:
Example 2 [Blowing up A3 in V(z,2? + 42 — 1)]

ring r=0, (t,x(1..3),y(1..2)),(dp(1),dp);
// A3 x P"1 plus extra variable
// for elimination of t
// as usual in computation of
// preimage of zero

ideal I=y(1)-t*x(3),

y(2)-t*(x(1)"2+x(2)"2-1) ;

// ideal describing map

ideal IW=eliminate(I,t);
// elimination step

ring r2=0,(x(1..3),y(1..2)),dp;

// A3 x P°1
ideal IW=imap(r,IW); // transfer the ideal to this ring
IW; // ideal of variety after blowing up

-=> IW[1]=x(1) "2*y (1) +x(2) "2*y (1) -x(3) *y (2) -y (1)

subst (IW,y(1),1); // what does the chart
// D(y(1)) look like
-=> _[11=x(1)"2+x(2) "2-x(3) *y (2)-1
// This is obviously non-singular, but we cannot get rid
// of a fourth variable.
subst (IW,y(2),1); // and D(y(2)) -->
_[1=x(1) "2xy (1) +x(2) "2*y (1) -x(3) -y (1)
// Here we can get rid of x(3).

This sequence of computational steps to compute blowing ups is
available as commands blowUp and blowUp2 in SINGULAR, see the SIN-
GULAR. online manual for a description.

2.2 Notions of Transforms

Considering blowing ups, we are usually not just dealing with a single
scheme, but additionally with one or several subschemes of it which are

19

A. Frithbis-Kriiger

also affected by the blowing up. This leads to the task of computing
the total and the strict transform of such a subscheme (or depending
on the context also the weak or the controlled transform).

To this end, let us recall that the total transform of a closed sub-
scheme Z C W (corresponding to an ideal sheaf Jz; C O) under
the blowing up 7 is just the inverse image 7 !(Z) and can hence be
computed as

Tz 0tal = Tz * Oy

Let us further recall that the strict transform Z of Z is obtained by
blowing up Z at the center given by Z - Oz according to the following
commutative diagram:

i

Z < W
L
7z 5 W

In the affine case, we can also obtain the strict transform of Z by
forming the closure of 7=%(Z \ (Z N Y)) in W. By using again the

previously introduced affine covering of W, this allows us to compute
the strict transform from the total transform using a saturation?:

JZ,strict = (JZ : OW(U) : I%o)a

where J is used as short hand notation of J7(U) and Iy denotes the
ideal of the exceptional divisor of 7 on our chart U. Geometrically this
saturation can be interpreted as dropping all components of the total
transform which lie in the exceptional divisor or coincide with it.

For resolving singularities by the algorithmic approaches of Vil-
lamayor [1] and Encinas/Hauser [3] two other notions of transforms
come into play which amount to ending the above saturation prema-
turely after a fixed number of ideal quotient computations. In the case

3Saturating, i.e. iterating the ideal quotient until it stabilizes (noetherian ring), is
available in most computer algebra systems for algebraic geometry and commutative
algebra as a built-in command. It is usually an expensive operation, but not if we
are saturating by a principal ideal. For a detailed discussion of saturation and its
geometric interpretation see [2] or [4]

20

Some Remarks on Blowing-Ups in a Computer Algebra System

of the weak transform, this number of iterations is the maximal order
of the ideal J prior to the blowing up (at a center contained in the
locus of maximal order); geometrically speaking, the weak transform
originates from the total transform by removing all copies of the excep-
tional divisor, but keeping the lower-dimensional components which lie
inside the exceptional divisor. In the case of the controlled transform,
the number of iterations is prescribed by the resolution algorithm and
can be anything between 1 and the number of iterations for the weak
transform.

Example 3 [Different notions of transforms of a space curve] Contin-
uing the first example, we now consider the space curve V (zz,yz, 23 —

y*) C A% and compute its different transforms:

ideal J=x(1)*x(3),x(2)*x(3),x(1)"4-x(2)"3;
// ideal of space curve
ideal Jtotal=J,IW; // ideal of total transform,
// before passing to charts
ideal Jtl=subst(Jtotal,y(1),1);
// ideal in chart D(y(1))
Jt1l;
-=> Jt1[1]=x(1)*x(3)
-—> Jt1[2]=x(2)*x(3)
-=> Jt1[3]=-x(1)"4+x(2)"3
-=> Jt1[4]=x(3) *y (2)-x(2) *y (3)
-=> Jt1[6]=—x(1) *y(3)+x(3)
-=> Jt1[6]=—x(1)*y(2)+x(2)
// 0Obviously we can get rid of x(2) and x(3) by appropriate
// reductions. As the heuristic to do this automatically is
// lengthy, it is not printed here. Instead, we use our
// knowledge of what we want to replace:
ideal Jt2=subst(Jt1,x(3),x(1)*y(3));
// replace x(3) by x(1)*y(3)
// according to Jt1[5]
Jt2=subst (Jt2,x(2) ,x(1)*y(2));
// replace x(2) by x(1)*y(2)

21

A. Frithbis-Kriiger

// according to Jt1[6]
Jt2=interred(Jt2); // drop unnecessary
// generators
Jt2;
--> Jt2[1]1=x(1) "2y (3)
-=> Jt2[2]=x(1)"3*y(2)"3-x(1)"4

ring chart=0, (x(1),y(2),y(3)),dp;

ideal Jt2=imap(r2,Jt2); // only keep necessary
// variables for this chart,
// by passing to appropriate
// ring

Jt2;

-=> Jt2[1]=x(1) ~2xy(3)

-=> Jt2[2]=x(1) "3*y(2) "3-x(1)"4

ideal Jctrll=quotient(Jt2,ideal(x(1)));
// controlled transform,
// #iterations=1

Jctrlil;

-=> Jetrl[1]=x(1)*y(3)

-=> Jctrl[2]=x(1)"2*y(2)"3-x(1)"3

ideal Jweak=quotient(quotient(Jt2,ideal(x(1))),
ideal(x(1)));
// weak transform
// #iterations=2, because
// ord(J)=ord(x(1)*x(3))=2
Jweak;
-=> Jueak[1]=y(3)
-=> Jweak[2]=x(1)*y(2)"3-x(1)"2

LIB"elim.1lib"; // saturation is in elim.lib

ideal Jstr=sat(Jt2,x(1));
// strict transform

22

Some Remarks on Blowing-Ups in a Computer Algebra System

Jstr;

[1]:
_[11=y(3) // ideal of strict transform
_[2]=y(2)~3-x(1)

[2]:
3 // number of iterations when

// stabilizing

Figure 1. These three pictures illustrate the different notions of trans-
forms computed in the example 3. From left to right, we see total
transform, weak transform and strict transform. Due to technical rea-
sons with the imaging tool surf, one additional plane is shown in each
image: V(y(3)), of which we know that it contains the two curves.

The above considerations about the definition and the computation
of the strict transform of a subscheme also imply that there are two
equivalent ways of computing the blowing up of a scheme which can be
embedded into a A* or a P at a non-singular center:

e blowing up the scheme directly

e considering the scheme as embedded in an appropriate A* (pos-
sibly after passing to an affine covering), blowing up the A¥ and
computing the strict transform

The first variant can be quite expensive in the elimination of the ad-
ditional variables — depending on how complicated the equations for

23

A. Frithbis-Kriiger

the variety are*. The latter variant has to deal with a larger amount

of data due to the affine covering; the expensive part here is the satu-
ration which is, on the other hand, cheaper than a general saturation,
because we saturate by a principal ideal.

If the center itself is singular, however, blowing up the ambient
space is not an option, because the ambient space has no reason to be
smooth after such a blowing up as the following example shows:

Example 4 [Blowing up at a singular center]

ring r=0, (t,x(1..3),y(1..2)),(dp(1),dp);
// again A3 x P"1 plus
// additional variable t
ideal I=y(1)-t*x(1)*x(2),y(2)-t*x(3);
// center is the union
// of the x- and y-axes
ideal IW=eliminate(I,t);
Iw;
-=> IW[1]=x(1)*x(2)*y(2)-x(3) *y (1)
subst (IW,y(2),1); // chart D(y(2))
-=> _[1]=x(1)*x(2)-x(3)*y (1)
// this obviously has a singular point at the origin!

3 Application 1: A Flop

As the first application, we now consider the simplest example of a flop.
It is however beyond the scope of this short note to explain exactly what
a flop is; a good reference for the minimal model program (the context,
in which the notions of flips and flops arose) and the precise definitions
of flips and flops can be found in [7]. For our purpose here, which is

4 Standard basis calculations w.r.t. elimination orderings are never really cheap,
but (like standard basis calculations in general) they tend to become very expensive,
if we are dealing with many variables and the equations are not of a particularly
simple form.

24

Some Remarks on Blowing-Ups in a Computer Algebra System

an illustration on how to use a computer algebra system to deal with
a concrete example, it suffices to consider the following situation:

Let X = V(z129 — z314) C A(4C, which obviously has one isolated
singularity at the origin. Blowing up X at this singular point, we obtain
X cC A(‘IC X P(?’C whose exceptional locus turns out to be a P! x PL. On
the other hand, blowing up at the Weil divisor V (z1,z3) C X which is
not -Cartier, we obtain X; C Aé X IP’}C. Analogously, blowing up at
V(z9,x4) yields another scheme Xo. Here it is interesting to observe
that X; and X9 may alternatively be constructed by blowing down
one (and the other resp.) of the Pl of the exceptional divisor of X.
The resulting rational map X; — — > Xy is the well-known simplest
example of a flop®. As a diagram, we have the following situation

The following sequence of SINGULAR commands mimics the main steps
of the above construction:

ring r=0, (t,x(1..4)),dp; // A"4 plus extra variable t,
// for checking singular locus,
// Weil divisors, not Cartier;
// extra variable t will be
// needed later on -
// explained there

ideal I=x(1)#*x(2)-x(3)*x(4);

LIB"sing.1lib"; // slocus is in sing.lib

std(slocus(I)); // ideal of singular locus

SConsidered abstractly, the two varieties X; and X» are isomorphic in this very
simple example. This is a coincidence and does not occur in general.

25

A. Frithbis-Kriiger

-=> _[1]=x(4)

-=> _[2]=x(3)

--> _[3]=x(2)

-=> _[4]1=x(1) // as we expected
ideal IDivi=x(1),x(3); // first divisor
ideal IDiv2=x(2),x(4); // second divisor

// as both V(IDivl) and V(IDiv2) are obviously reduced,
// irreducible, closed subsets of A4, it remains to check
// — V(IDivl) contained in V(I) and of codimension 1
// - analogously for V(IDiv2) -- not shown here
size(reduce(I,std(IDivl)));
// zero if ideal containment
// test succeeds
-—> 0
dim(std(I))-dim(std(IDivl));
// codimension of V(IDiv1)
// in V(I)
// remark: extra variable t
// causes both dimensions

// to be raised by 1
// which does not
// affect this result

-—> 1
// Hence we have prime divisors on X, which are of course
// Weil divisors.
//
// We now check that V(IDivl) cannot be Q-Cartier, i.e.
// that there cannot be a power of V(IDivl) which is
// locally principal. To this end, we pass to the
// localization at the only singular point. - If it
// fails there, this is sufficient to show that V(IDiv1l)
// is not Q-Cartier.
ring rlocal=0, (t,x(1..4)),(dp(1),ds);
// ds ordering is local!

26

Some Remarks on Blowing-Ups in a Computer Algebra System

def I=imap(r,I);

ideal Itest=I,x(1),x(3)*t-1;

reduce(1,std(Itest)); // 0, if some power of x(3) is
// in I+<x(1)>; 1 otherwise

-—> 1

Itest=I,x(3),x(1)*t-1; // as above, but roles of x(1)
// and x(3) exchanged

reduce(1,std(Itest));

-—> 1

// This implies that V(IDivl) cannot be Q-Cartier.
//
// After checking the claimed properties of X, we now
// return to blowing up and blowing down.
ring r2=0,(t,x(1..4),u(1..4)),(dp(1),dp);
// for A4 x P"3 + extra
// variable
ideal Ipt=x(1)*x(2)-x(3)*x(4),u(1)-t*x(1),u(2)-t*x(2),
u(3)-t*x(3) ,u(4)-t*x(4);
// ideal for blowing up point
ideal IWeill=x(1)*x(2)-x(3)*x(4),u(1)-t*x(1),u(3)-t*x(3);
// for Weil-divisor V(x_1,x_3)
ideal IXtop=eliminate(Ipt,t);
// I blownup at point
size(IXtop);
-->9 // 9 generators

std(IXtop+ideal(x(1..4))); // ideal of except.locus
-—> _[1]1=x(4)

-=> _[2]=x(3)
-=> _[3]=x(2)
--> _[4]=x(1)

-=> _[6]=u(1)*u(2)-u(3)*u(4) // <-- P"1 x P"1 in P"3

ideal IXl1=eliminate(IWeill,t);
// I blown up at first

27

A. Frithbis-Kriiger

// Weil divisor
IX1;
-=> IX1[1]=x(3)*u(1)-x(1)*u(3)
> IX1[2]=x(2)*u(1)-x(4)*u(3)
-=> IX1[3]=x(1)*x(2)-x(3)*x(4)

// Now we blow down contracting the P"1 specified by

// V(u(2),u(4)) to a point

// In general this can only be done, if the corresponding
// blow-up map is known - it is then a preimage

// calculation.

// Here, however, the situation is so simple that we can
// see that this contraction amounts to a projection to
// A4 x P71, i.e. to eliminating u(2) and u(4)
eliminate(IXtop,u(2)*u(4));

-=> _[1]=x(3)*u(1)-x(1)*u(3)

-=> _[2]=x(2)*u(1)-x(4)*u(3)

-=> _[3]=x(1)*x(2)-x(3)*x(4)

// As expected this is the same as IX1.

4 Application 2: A Nash Modification

As the second application, we consider Nash modifications, which are
known to locally be blowing ups. In particular, we shall consider two
examples, only one of which is a complete intersection.

Let us recall that given a reduced separated algebraic scheme X
of pure dimension 7, a Nash modification p : X — X is defined
by the following process (which, for simplicity of presentation, we de-
scribe only in the special case that X C A" and that X is defined by

(105 fm)):

Denoting by G the Grassmannian of r-planes in A", by Reg(X)
the complement of the singular locus of X, and by Tx , the tangent

28

Some Remarks on Blowing-Ups in a Computer Algebra System

space of X at a point x € Reg(X), consider the morphism

n:Reg(X) — X xGY (1)
z — (2,Tx4)- (2)

X is then defined as the closure of the image of 5 in X x G} and the Nash
modification p : X —» X is the first projection. By a result of Nobile
[8], p can locally be formulated as a blowing up at a center J C Ox
where J is generated® by appropriate elements gp of the ideal of n —r
minors of the Jacobian matrix (ng;)lSifmylfjfn' More precisely, for
each irreducible component X; of X, we can find

e an (n—r) xn submatrix of this matrix of which at least one n—r
minor does not vanish on X; (The minors of this submatrix will
be denoted by M; s where 3 indicates the columns involved in
this particular minor)

e a global section 0 # h; € T'(X,Ox) vanishing along all other
components X;, 1 <j <d, i # j.

The generators of J are then

d
93 ==§£:’Mﬂ4@g
1=1

where (3 runs through all n —r tuples of column indices of the Jacobian
matrix.

In the case of a complete intersection, the Jacobian matrix does not
have more than n — r rows, thus making the row selection and the h;
in the above construction unnecessary and implying that J is just the
ideal of the singular locus.

// As a first example we consider a complete intersection:
ring r=0,(t,x,y,z,a(1..5)),(dp(1),dp);
// A~3 plus additional variables

SUnder the above simplifications of X C A* and I(X) = (f1,. .., fm)

29

A. Frithbis-Kriiger

// for blowing up

ideal Il=x"2-y"2-z"4,yz;
// 2 lines V(x+y,z),V(x-y,z)
// 2 parabolas V(x-z"2,y),
// V(x+z"2,y)
// all meeting in (0,0,0)

// Center of blowing up is singular locus
LIB"sing.lib"; // slocus is in sing.lib
ideal sL=mstd(slocus(I1))[2];
// minimal number of generators
// of ideal of singular locus
size(sL);
-->5
ideal blowl=I1,a(1)-t*sL[1],a(2)-t*sL[2],a(3)-t*sL[3],
a(4)-txsL[4] ,a(5)-t*sL[5];
ideal Eliml=eliminate(blowl,t);
// do the blowing up

// Now we would like to check that we have indeed
// 2 single and a double point in the preimage

// of V(x,y,z)

LIB"primdec.lib";

primdecGTZ (Eliml+ideal(x,y,z));

--> [1]: // double point
-—> [1]: // the component
-—> _[11=a(5)"2

-—> _[2]1=a(3)

-=> _[31=a(4)

--> _[4]1=a(1)

--> _[5]==

-—> _[6]=y

--> _[7]=x

-—> [2]: // its radical
-—> cee // output omitted

30

Some Remarks on Blowing-Ups in a Computer Algebra System

-—>[2]: // single point
-—> [1]: // the component
-—> _[11=a(3)-a(b)

-=> _[2]=a(2)

--> _[3]1=a(4)

-=> _[4]=a(1)

-—> _[5]==

--> _Lel=y

- _[71=x

-—> [2]: // its radical
-—> cee // output omitted
-->[3]: // single point
-—> [1]: // the component
-=> _[1]1=a(3)+a(5)

--> _[2]=a(2)

-=> _[3]1=a(4)

--> _[4]=a(1)

--> _[5]==

-—> _[6]=y

--> _[7]=x

-—> [2]: // its radical
- cee // output omitted

// As a second example, we determine the center
// in the non-complete-intersection case:
ring r=0, (x,y,z) ,dp;
// A3
ideal I2=xz,yz,x"2-y"4;
// 1 line V(x,y)
// 2 parabolas V(x-y~2,z)
// and V(x+y~2,z)
// all meeting in (0,0,0)
list comps=minAssGTZ(I2);

31

A. Frithbis-Kriiger

// minimal associated primes
// of our ideal —-
// coincides here obviously
// with prim. decomp.
matrix M[3][3]=diff(I2,x),diff(I2,y),diff(I2,z);
print (M) ; // Jacobian matrix of I2
--> z,0,2x%x,
--> 0,z,-4*y"3,
--> x,y,0
// To determine the appropriate generators
// of our center, we need to construct the
// g_beta=\sum h_i M_beta,i
// Step 1: define the three submatrices
// and their respective ideals of minors:
matrix M12[2][3]1=M[1,1..3],M[2,1..3];
matrix M13[2][3]=M[1,1..3],M[3,1..3];
matrix M23[2][3]1=M[2,1..3],M[3,1..3];
ideal mini2=minor (M12,2);
ideal mini3=minor (M13,2);
ideal min23=minor (M23,2);
// Step 2: check for each component, which minors

// do not vanish along the component
size(reduce(mini2,std(comps[1])));
-->0 // all minors of M12 vanish

// along first component
size(reduce(minl2,std(comps[2])));

-->0 // as before
size(reduce(mini2,std(comps[3])));
-—>1 // this is the good component

/* Important Aside:
The numbering of the components in the output
of minAssGTZ resp. primdecGTZ is not fixed and
often changes when recomputing the decomp. */

// ... repeating these steps for the other ideals of

32

Some Remarks on Blowing-Ups in a Computer Algebra System

// minors, we obtain:
// compl: M13 or M23
// comp2: M13 or M23
// comp3: M12

// Step 3: determine the h_i:
// check which generators of intersection of compi and
// compj does not vanish identically on compk
ideal interl2=intersect(comps[1],comps[2]);
reduce(inter12,std(comps[3]));

// study compl \cap comp2

// and comp3 ==> h3

-—> _[1]==z
--> _[2]=0
--> _[3]=0
poly h3=inter12[1]; // inter12[1] does not
// vanish identically on compl
// ... repeating these steps for the other two
// components, we obtain:
// hl = y"2—=x
// h2 = y~2+x
// h3 =z

// Step 4: combine information to obtain the center:
ideal center=(hl * min13) + (h2 * min13) + (h3 * minl2);
center;

--> center[1]=z"3

-=> center[2]=x*z"2

-—> center[3]=x*y*z

-=> center[4]=x"2*y

--> center[5]=x"3

-=> center [6] =y~ 3*z-x*xy*z

-=> center[7]=x*y~3-x"2x*y

33

A. Frithbis-Kriiger

// Blowing up with this center now provides the
// desired Nash modification.

References

[1]

2]

[3]

[4]

[5]

[6]
[7]

8]

[9]

Bravo,A., Encinas,S., Villamayor,O.:A Simplified Proof of
Desingularisation and Applications, Rev. Math. Iberoameri-
cana 21 (2005), 349-458.

Decker,W., Lossen,C.: Computing in Algebraic Geometry - A
quick start using SINGULAR, Algorithms and Computation in
Mathematics 16, Springer Verlag (2006).

Encinas,S., Hauser,H.: Strong resolution of singularities in
characteristic zero, Comment. Math. Helv. 77 (2002), 821-845.

Greuel,G.-M., Pfister,G.: A SINGULAR Introduction to Com-
mutative Algebra, Springer (2002).

Greuel,G.-M., Pfister,G., Schonemann,H.: SINGULAR 3.0,
http://www.singular.uni-kl.de/.

Hartshorne,R.: Algebraic Geometry, Springer (1977).

Kollar,J., Mori,Sh.: Birational geometry of algebraic varieties,
Cambridge Univ. Press (1998).

Nobile,A.: Some Properties of the Nash Blowing-Up, Pac. J.
Math. 60 (1975), 297-306.

Shafarevich,l.: Basic Algebraic Geometry, Springer (1977).

Anne Frithbis—Kriiger, Received January 9, 2008

E-mail: anne@Qmath.uni — hannover.de

34

