Computer Science Journal of Moldova, vol.16, no.1(46), 2008

Approaches to automated construction of
graphical shells for computer algebra systems

Alexander Colesnicov Svetlana Cojocaru
Ludmila Malahova

Abstract

The paper proposes a calculator model of the graphical shell
to be used for computer algebra systems. The calculator shell
model is described. Then the techniques of semi-automated con-
struction of such shell are discussed. The motivation of the ap-
proach based on the domain model is given. We describe also two
possible component assembly methods, static and dynamic, and
our experience with them. We motivate the selection of dynamic
component assembly.

1 Introduction

We suppose the existence of programs executing symbolic computa-
tions in computer algebra (engines) whose developers need to provide
modern graphical shell with their systems. Computer algebra is widely
used in many areas, including pure and applied mathematics, theo-
retical physics, chemistry, engineering, technology, etc. Multitude of
solved problems makes investigators to create specialized engines in
the cases when use of general purpose systens is inefficient, or the nec-
essary functionality is not implemented even in commercial systems.
As a rule, creators of such systems have not enough time, resources,
and qualification to develop shells for them. It isn’t unusual that rich
mathematical ideas implemented in an engine are enveloped in poorly
designed interface. Our own experience with the Bergman computer
algebra system (CAS) and review of other systems illustrate this [1].

(©2008 by A.Colesnicov, S.Cojocaru, L.Malahova

146

Approaches to automated construction of graphical shells for ...

The absence of the user-friendly standard shells makes such systems
less popular because of requiring special knowledge and skills, e.g., in
programming, to use them.

Another problem of computer algebra engines is multitude of their
data formats and the implied difficulty in communication between dif-
ferent engines.

Investigations show that CAS interface developer provides some or
all of the following features:

e 2-D presentation of mathematical expressions,

e Editing of mathematical expressions that includes sub-expression
manipulation,

e Windows that model sheets of paper and combine texts, formulas,
and graphics,

e Processing and presentation of long expressions,

e Simultaneous use of several CAS, which implies the necessity to
solve problems of data conversion, configuration management,
and communication protocols,

e Interface extensibility providing additions of new menus, new
fragments of on-line documentation, etc.,

e Guiding of the user during the whole period of his/her problem
solving,

e The system should be self-ex‘planatory; its operational mode
should be understandable directly from the experience of inter-
action with the system,

e Control over problem formulation correctness and over informa-
tion necessary to solve it.

The primary scope of a shell is creation of a comfortable environ-
ment for a mathematician or another specialist that uses mathematical
apparatus. It would be preferable for these users to input data and to

147

A.Colesnicov, S.Cojocaru, L.Malahova

obtain mathematical results in their natural 2-dimensional form. The
linear form of input can be used also as the linear input is faster but it
imposes additional conventions to enter powers, indices, fractions, etc.,
or uses additional characters. It is necessary also to provide possibili-
ties to edit expressions, integrate them with a usual text, and obtain
results in a form suitable for publication of an article (e.g., IXTEX) or
in Internet (e.g., MathML).

The syntactic check of the entered mathematical expressions and
the spelling check of accompanying text would be also desired features.

We see that functions of the graphical shell are almost independent
of the engine.

We propose therefore a universal shell implementing the calculator
model and constructed from the ready-made components [2]. Moreover,
we successfully used several engines at once with such shell. This solves
many problems of incompatibility of data formats in different CASs,
and solves partially the problem of their interconnection.

Sec. 2 defines and discusses the calculator model of the graphical
shell. We describe there the details of its work and its interaction with
the CAS engines.

There are two approaches to the automated construction of such
shells. Both approaches are based on the component programming
(CP) and differ mainly in the technique of component assembly that
can be static or dynamic.

At the first approach (static component assembly), we successfully
combined the CP and the aspect-oriented programming (AOP). This
technique is described in Sec. 3.

It is possible to construct the shell using dynamic component assem-
bly. This second technique was developed over the Eclipse platform.
The details are described in Sec. 4.

In the Conclusion (Sec. 5) we compare both approaches, describe
their advantages and shortcomings, and motivate our decision to use
the second approach.

148

Approaches to automated construction of graphical shells for ...

2 The calculator model of the user interface

A usual numerical calculator works step-by-step: you enter numbers,
and select one of possible operations. The calculator executes the op-
eration and shows the result that can be used as an operand for the
next operation.

The calculator model of the CAS shell behaves quite similarly. You
enter a mathematical object (e.g., an ideal that is presented as a list of
polynomials with coefficients from some field), select a possible action
(e.g., calculation of the Grobner basis of the corresponding algebra)
and start a CAS engine that executes the operation. The result is a
new object (in our example, a new list of polynomials), and it can be
used for further calculations (e.g., for reduction of polynomials).

The shell implements the input and output of mathematical object
in the form suitable for the user; the engines implement all calculations.

Fig. 1 shows one of variants of our shell that supports two CASs:
Bergman! and Singular?.

Figure 1. A graphical shell that supports Bergman and Singular

Both these engines support only the console interface. For
Bergman, it is the underlying Lisp console. For Singular, it is a console
with the Singular programming language. Our shell permits to enter
mathematical objects, converts them to the Singular or Bergman input
files, and runs the corresponding engine to execute calculations.

http://www.math.su.se/bergman/
http:/ /www.singular.uni-kl.de/

149

A.Colesnicov, S.Cojocaru, L.Malahova

The CAS shell design can have two different starting points: the
set of engine operations, or the set of processed mathematical objects.
In [5, Sec. 3.3] these approaches are called correspondingly “noun-verb”
and “verb-noun” (or “object-action” and “action-object”). V. Lépez-
Jaquero and F. Montero [4] refer to these variants as to “domain model”
and “task model”.

There is no common opinion on applicability of these two ap-
proaches. J. Raskin [5] shows several advantages of the first approach
over the second one. V. Lépez-Jaquero and F. Montero [4] motivate
the advantage of the second approach, but their argumentation applies
mainly to the case when the objects are containing in the databases.
They note also that “the derivation of the user interface out of a task
model adds an additional view to the design process: the user”.

In the beginning we built shells for the Bergman CAS originating
them from the engine operations (“the task model”). This seemed
naturally for Bergman that has only a small set of objects, but a big and
growing set of actions. Later we planned to use several CAS engines
with the same shell. We wanted to support the usage of an engine
that would not be even taken into account at the shell programming,
i.e., to make the shell as independent of the engines as possible. The
corresponding investigation permitted us to construct the calculator
model of the shell. In this case, the shell actions are restricted by
the object input, the result output, the object conversions between
different representations, the selection of the engine and its operation,
and several common tasks like the session support. We see that most
tasks are defined by objects and that user tasks are quite restricted. In
the meantime [1] the old “verb-noun” model began to hinder the shell
development.

Therefore we decided to originate the CAS shell from the mathe-
matical objects we want to proceed (“the domain model”). This ap-
proach permitted us to create a shell that is really independent of the
used engines, and to provide researchers-mathematicians with a unified
shell for several CASs.

Within the domain model, the CAS shell development begins with
the listing of used mathematical objects. For each object, we provide

150

Approaches to automated construction of graphical shells for ...

a procedure or procedures of its input that produces its internal XML
representation. The entered object is dispalyed on a tab. The current
set of tabs with objects, and the current parameter settings can be
stored as a session and restored later.

The object is displayed on a tab in one of its external representa-
tions (e.g., ITEX). A set of convertors from internal XML represen-
tation to different external representations exists for each object. The
user selects a representation of an object through a menu. There is
also a possibility to store an object in any of its representations in a
file.

Except of input procedures and convertors to external represen-
tations, each object is associated with actions that can be performed
over it by the existing engines. As the user opens object’s tab, the
associated actions became visible in a menu.

Some actions use more than one object. These additional objects
should be entered and visible on other tabs. If there are several combi-
nations of objects for one or several actions, the corresponding request
is made to select one of these variants.

So the user selects object(s) and the action. The shell converts
objects from their internal XML representation to the engine input
files and starts the necessary engine.

After the engine run termination the calculated result is kept usu-
ally in a file. After the calculation is finished a shell module converts
the result in its internal XML representation and shows it on a new tab.
Being a mathematical object, this result can be converted in different
external (visual) representations, saved in a file, and used for further
calculations.

We see that a calculator CAS shell model supposes the object-inde-
pendent part (session support, tab manipulations, dynamic menus sup-
port, etc.) and the object-dependent part. The object-dependent part
contains input modules and convertors. Most convertors are engine-
independent but the convertors used to generate input files before the
engine start are engine-dependent. There are also engine-dependent
convertors that scan output files after the engine finishes its calcula-
tions and produce internal XML representation of resulting objects.

151

A.Colesnicov, S.Cojocaru, L.Malahova

Action menus are both object- and engine-dependent. To change these
menus dynamically, the shell uses XML descriptions that exist for each
type of object, each engine, and each allowed combination of those.

3 Static shell assembly

Our technique of the static shell assembly is described in details in [3].
We combined in it the component and aspect-oriented programming.

Having a set of ready-made modules described above we need three
operations to assembly a shell:

1. to generate the glue code (the additional code that is necessary
to assemble components together);

2. to generate code that tunes adaptable components;
3. to generate variable menus.

Aspect oriented programming (AOP) is a technique to add a new
behavior to an existing program without changing its sources and even
binaries. It is mostly used to handle cross-cutting concerns like logging
or debugging. E.g., we need to add almost the same code in regularly
selected places of the program to trace it. AOP concentrates templates
of additional code and insertion points in aspects. Aspects are compiled
separately, and the code weaving is performed during the execution of
the program.

To apply AOP for the semi-automated assembly of a shell from
components, we noted that the glue code is regular and repeating, and
that it can be generated from a formal description of the shell. With
AOP, we use an unchanged shell template and unchanged components,
and generate only aspects containing the glue code or the code to tune
adaptable modules. The menu is also generated as an aspect. We have
checked this idea by implementing it.

A shell consists of the constant part and the variable part. The
constant part contains, in particular, the session management: storing
data for each session, their modification, etc. We also found useful a

152

Approaches to automated construction of graphical shells for ...

notion of environment, or partially defined session [1]. Each session can
be based on an environment where some data are already defined. The
environment management is implemented like the session management.

Other features of the constant part of a shell are possibilities to
create the list of engines, to start external programs, to check collected
data, to show help, etc.

Modules that enter the data and convertors form the variable part
of a shell.

During the assembly of a shell its constant part is taken as the base.
The developer prepares list of objects and defines how they have to be
entered in the shell (by selection from several variants, by marking,
by text editing, by 2D formula input, by entering parameters of a
mathematical object using a wizard, etc.) Each possible method of
the data input is implemented as a customizable component. The
necessary modules pass the customization and are glued together with
the constant part of the shell. Menus are also generated and included
as an aspect.

The whole system consists therefore of a pre-implemented constant
part, a set of data input components and convertors, and a shell gen-
erator that adapts and assembles all parts together producing CAS
shells.

4 Dynamic shell assembly

The shell with dynamic module assembly is based on the open source
Eclipse? platform.

An Eclipse-based application consists of the Eclipse platform and
a set of plugins. Each plugin is a module that contains in itself its
XML description as a resource. The system tunes itself (e.g., adds new
menu items) using the XML description of the new module. To add a
module, it is enough to copy its JAR archive in the plugin directory
and to restart.

The visual part of the Eclipse platform is the Eclipse workbench.

3http:/ /www.eclipse.org/

153

A.Colesnicov, S.Cojocaru, L.Malahova

The workbench provides a window that contains tabbed views (e.g.,
lists of settings) and editors. Such window is called in Eclipse the
perspective (corresponds to session as we defined before). Editors are
plugins that edit texts; a usual text editor is already provided with the
Eclipse platform. The workbench supports also projects; for a project,
we can store and restore its current perspective.

The construction and work of the CAS shell based on Eclipse re-
mains the same as described before.

The Eclipse platform will form the constant part of the shell.

Modules to input mathematical object should be implemented as
plugins-editors. Counvertors should be also implemented as plugins.
Eclipse supports the dynamic change of menus at the activation of
each editor.

A separate plugins are necessary to conduct engines. It includes
engine list support, engine start, consoles, etc., and, especially, the
support of correspondence between the engine functions and mathe-
matical objects. This last feature is new for Eclipse.

5 Conclusions

The first approach permits to implement a platform-independent sys-
tem. We work in Java with Swing graphics. The deployed shell consists
of a single executable JAR that contains the compiled classes, resources,
and additional libraries. This archive can be executed on any platform
with the suitable version of the Java VM. At the second approach we
use SWT graphic library from Eclipse that is platform dependent. We
are in this case to deploy different archives for different platforms, or
to require the user to install Eclipse or, at least, its libraries.

However the Swing graphics was criticized for its visual appearance
that does not correspond the platform standards. Eclipse uses the na-
tive graphics on each platform that can slightly accelerate the graphical
operations and guarantees the native appearance.

At the first approach we implement session support in the exact
necessary volume. With Eclipse, we are to use the Eclipse framework

154

Approaches to automated construction of graphical shells for ...

that is more general and may seem more complicated: some base fea-
tures of Eclipse are superfluous for us.

Any shell expansion (adding a new mathematical object, new engine
or new action of the existing engine, etc.) implies recompilation to
add new features at the static assembly. Eclipse adds new plugins
dynamically.

The factors listed till now balance one another; none of them is
decisive. The main advantage of Eclipse is its richness, especially in
the current Eclipse 3 “Europa”. This version of Eclipse contains more
than 900 ready-made plugins. A big part of common GUI functions is
already implemented or can be adapted from existing plugins. After the
appearance of Eclipse 3 we decided to use this approach in our project.
However the general system structure and functions are common for
both approaches.

6 Acknowledgements

The work was supported by the INTAS grant Ref. Nr. 05-104-7553
“Interface generating toolkit for symbolic computation systems”.

References

[1] S. Cojocaru, L. Malahova, and A. Colesnicov. Interfaces to sym-
bolic computation systems: Reconsidering experience of bergman.
Computer Science Journal of Moldova, 13(2(28)):232-244, 2005.

[2] S. Cojocaru, L. Malahova, and A. Colesnicov. Providing mod-
ern software environments to computer algebra systems. In V.G.
Ganzha, E.W. Mayr, and E.V. Vorozhtsov, editors, Computer Al-
gebra in Scientific Computing. 9th International Workshop, CASC
2006. Chisinau, Moldova, September 11-15, 2006. Proceedings,
number 4194, pages 129-140. Springer-Verlag, 2006.

155

A.Colesnicov, S.Cojocaru, L.Malahova

[3] A. Colesnicov and L. Malahova. Aspect oritented programming
and component assembly. Computer Science Journal of Moldova,
15(1(43)):38-53, 2007. ISSN 1561-4042.

[4] V. Lopez-Jaquero and F. Montero. Comprehensive task and dialog
modelling. In J. Jacko, editor, Human Computer Interaction, Part
1. HCII 2007. Beijing, China, July 22-27, 2007., number 4550,
pages 1149-1158. Springer-Verlag. ISSN 0302-9743.

[5] J. Raskin. The Humane Interface. New Direction for Designing In-
teractive Systems. Pearson Education, Inc. (Addison Wesley Long-
man), 2000. ISBN 0-201-37937-6.

A. Colesnicov, S. Cojocaru, L. Malahova, Received February 19, 2008

Institute of Mathematics and Computer Science,

5 Academiei str.

Chiginau, MD—2028, Moldova.

E—mail: kae@Qmath.md, sveta@math.md, mal@Qmath.md

156

