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On the Cancellation Rule in the
Homogenization

Victor Ufnarovski

Abstract

We consider the possible ways of the homogenization of non-
graded non-commutative algebra and show that it should be com-
bined with the cancellation rule to get the mathematically ade-
quate correspondence between graded and non-graded algebras.

1 Introduction

The homogenization is a standard instrument in the commutative alge-
bra. From the computational point of view it is useful because homo-
geneous algorithms are often more efficient, allowing to save memory
(for example cleaning a lot when the current degree is done). In the
non-commutative case the situation is much less trivial, because the
connection between non-graded algebra and graded algebra obtained
by the homogenization is not so obvious as in the commutative case.
First of all there are several ways to homogenize. If ¢ is a homogenizing
variable and one wants to homogenize a non-commutative polynomial
f of the degree k the obvious way is to multiply all the monomials in f
that have the degree less than k by the corresponding power of ¢. But
how to do it? From the left? From the right? In the middle?

The answer depends on our aim. Suppose we want to calculate the
Grobner basis G of given non-graded algebra and our goal is to obtain
it from the Grobner basis G* of the corresponding graded algebra which
we get using the homogenization of the relations. It would be nice to
get it using the dehomogenization procedure as in the commutative
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case, i.e. simply putting ¢t = 1. Is it possible? Do we really get the
Grobner basis of our non-graded algebra?

An easy example 22 = x shows that we should be careful about the
choice of the ordering: if t >  then tz > 22 and the leading word tx
in to — 22 will be not the leading word after dehomogenization. But
suppose that we have solved this problem (and it is not so difficult).
Suppose even more that we know that after the dehomogenization we
get the correct Grobner basis. There are still some problems. The
first one reflects the fact that 1 commutes with all other variables,
but t does not. From the computational point of view it means that
the calculating of Grobner basis G* may be much more complicated
than in the corresponding non-graded algebra. A couple of tests shows
that this is the case: almost any non-trivial example creates a huge
Grobner basis G*, almost always we get infinite Grobner basis even
in the case where the non-graded Grobner basis is finite. One of the
explanation of this phenomena is that though we get Grobner basis
G after dehomogenization, normally it is not minimal, because the
reduction works differently in graded and non-graded case. As example,
suppose that the leading terms of Grobner basis in our graded algebra
look as txy"t for all k > 0. It is obvious that we get a minimal Grébner
basis G*. But after dehomogenization we get the set of leading terms
zy* of Grobner basis G, which is far from being minimal. The term
xy alone should be the leading term of the minimal Grébner basis, but
how to avoid the unnecessary calculations of the infinite set in G*?

One more or less evident attempt to solve this problem is to intro-
duce extra commuting relations: tx = xt for any variable x and demand
tx > xt. Then all other words in the Grobner basis of our graded alge-
bra will have the form ft*, where the word f does not contain t. Words
in the example above should be replaced by zy*t? and we can do the
reduction already on the level G*, so zyt? be the only leading word
term remaining in the minimal Grobner basis and we achieved our goal
in this case. Can we in general hope that the minimal Grébner basis be
still minimal Grobner basis after dehomogenization? Much more often,
but it is still not the case! To see the reason, consider the following
example.
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Example 1 The algebra A = (z,y|z? — 1,2y* — 1) has the set G =
{y?> — x,2% — 1} as a Grébner basis if y > x. If we homogenize the
relations using the commuting homogenizing variable t > y > x we get
the graded algebra

(t,z,ylax? — 2, xy® — 3, te — xt, ty — yt).

Its Grobner basis is infinite. Even it contains such elements as y*t —
xt3, 22 — t2, which should be sufficient to obtain G, it contains also
infinitely many other elements, for example, of form

a2 %k =1,2,...

The reason for the trouble is the presence of ¢ in the leading word y%t.
Because of it the leading monomials containing 3> cannot be reduced
(as they are in G).

The remedy for this trouble is far from the being trivial and the
main aim of this article is to find it. Shortly the idea is that it is
not sufficient to homogenize the relations. We should work in another
factor-algebra, where leading terms of the corresponding Groébner basis
do not contain t (commutativity relations tz = xt are the only excep-
tions). We describe this algebra below. Shortly the rule is as follows:
during the Grobner basis calculations cancel t, if it appears in all the
terms. The resulting reduced Grobner basis will be minimal after the
dehomogenization. Let us discuss all the details more carefully (but
more formally).

2 Homogenization and dehomogenization

Let K(X) be a free algebra over the field K and ¢ be an additional
(homogenizing) variable. For any homogenous element u € K(X) of
the degree k and any m > k we define u*(™) € K(X,t) as ut™ *. If u €
K(X) is an arbitrary element, written as the sum of its homogeneous
components u = ¥ u;, and still having degree k < m we define v*(™ as
u=>y. u:(m) and v* as w*®) . In other words u* = 3 u;t" %, if deg u; = 1.
So, u* = u if and only if u is homogeneous.
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To dehomogenize some element v € K (X, t) we simply replace all
occurrences of ¢ by 1. In other words, if v = v(X,t) we define v, =
v(X,1).

For example,

(22 +y)* = 22 + yt; (2% + y)*®) = 22t 4 yt?;

(2% 4+ yt)s = 2% + y; (tx — xt), = 0.
The following statement is trivial, but useful.

Lemma 1 a) The map v — v, is a homomorphism from K(X,t) to
K(X).
b) (u*)s =u for anyu € K(X). m

Note that the map v — u* is not a homomorphism and in general
not always (v.)* = v. The following definition helps to choose elements
that almost have this property.

Definition 1 A word g = ft' is canonical, if | > 0 and f does not con-
tain variable t. A canonical element of K(X,t) is a linear combination
of some canonical words of the same length.

Note that canonical elements are by the definition homogeneous. The
following lemma shows their importance.

Lemma 2 a) Every homogeneous element in K(X,t) can be uniquely
written as a sum of the canonical element and the element belonging to
the ideal, generated by the set S = {tx — zt|z € X}.

b) If v is a canonical element then v = (v.)*t?, where d is the
minimal power of t dividing some word in v. In particular, v = (v.)* if
and only if v cannot be written as wt.

Proof. a) is evident and is a trivial application of the Grobner bases
theory.
b) is sufficient to check for a canonical word: if g = ft* and |g| = k
then
g = f7 f*(m) — ftmf(kfi) — gtmfk
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for any m > k — . So, if v = };aj9; = X jfjt is a canonical
element of the degree k, then v, =3 ; a; f; has degree k — d, and

(ve)* = Z ajgjt(k*d)*k = ot74.
J

3 Homogenized ideal

Let A = K(X)/I, where I is some ideal which will be fixed for the
rest of this article. In general I (and A) are not graded and our idea is
to study A with the help of graded algebra B = K(X,t)/I*, where I'*
contains all homogenized elements of I and (to be able to work with the
canonical elements only) all the commutators tx —xt. More formally, I*
is an ideal in K (X,t), generated by all homogenized elements u*,u € I
and the set S = {tx — zt|z € X}. We want to prove some elementary
properties of I*.

Lemma 3 a) If u € I is homogeneous, then u € I*.
b) If v € I* then v, € I.
c) If ve K(X,t) is homogeneous, then v € I* < v, € 1.
d) If vt € I* then v € I*.

Proof. a) u = u* and belongs to I*.
b) Consider a map ¢ which is the composition

K(X,t) = K(X) — A= K(X)/I,

where the first arrow corresponds to the homomorphism v — v, and
the second is the natural homomorphism. Then v, € I < v € ker ¢.
Because S C ker ¢ and for every u € I, according to Lemma 1, u* €
ker ¢, we have that I* C ker ¢, which proves b).

¢) The implication v € I* = v, € I follows from b). On the other
hand, according to Lemma 2, v = w+s, where w is a canonical element
and s belongs to the ideal, generated by S. Now v, = wx + 4 = ws 50
vy € I & wy € I and, according to Lemma 2, v = w+s = (w*)*td+s IS
I*ifv, €1.

d) follows from c) because I* is a homogeneous ideal. m
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4 Eliminating ordering

Suppose that > is an admissible ordering on free monoid (X) such that
|f] > |g| = f > g, where | f| is the length of a word f. We will extend it
to the eliminating ordering on free monoid (X, ), namely for any two
words f,g € (X,t) we put

[f1>lg]
or

f>g9% |f|:|9’a Jx > g«
or

|f‘:|g’a f*:g*a f>le(lj.ga

where >, is a pure lexicographical ordering, extending > such that
the letter ¢ is larger than any letter from X. Note that t < z, but
tx > at for any x € X. This ordering is also admissible and has some
special properties that we want to use.

Lemma 4 Let v € K(X,t) be a canonical element, g be its leading
word. Then

a) If deg, g = k then v = wt®, for some canonical element w.

b) Leading term of vy is gs.

c) If u e K(X) then the leading word of w in K(X) is the same as
leading word of u* in K(X,t).

Proof. Recall that v is homogeneous.

a) If h is another word in v then deg;h > deg, g, otherwise |h.| >
|g«]. So, h = Wt with [ > k and v = wt*.

b) In the same notations, if I > k then |g.| > |h/| = |h.|. Otherwise
l=Fkand g > h< g.> h, (we can cancel tk).

¢) The leading term of u* does not contain t according to a). Be-
cause it depends only on the words of highest length in u we can use
b). m
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5 Normal words and Grobner basis

From now we fix the eliminating ordering. We want to study the rela-
tion between the Grobner basis for I and Grébner basis for I*. Let us
recall that the subset G of I is its Grobner basis if for any u € I there
exists an element g € G such that its leading word (or leading mono-
mial in another terminology) Im(g) is a subword of the leading word
Im(u). Words that are not divisible by any Im(g),g € G (or equivalent
by any Im(u),u € I) are called normal and if we denote the set of
the normal words by N then K(X) = KN @ I (direct sum of vector
spaces), so N can serve as a basis for factor-algebra A = K(X)/I (see
e.g. [2] for the details). Suppose that G is a minimal Grébner basis for
I. Our aim is to describe a minimal Grébner basis G* for I* and the
corresponding set of normal words N* in K (X, t). Note that N* is not
the same set as {n*|n € N}, which is the same as N.

Theorem 1 a) A word f € (X,t) is normal relative I* (i.e f € N*)
if and only if it is canonical and f, € N.

b) If G is a minimal Grébner basis for I then G* = SU{g*|g € G}
is a Grobner basis for I*. It is minimal, if G does not contain elements
of degree 1 or constants.

c) If G = {1} then {1} is a minimal Grébner basis for I* too.

d) If Y C X is the set of leading monomials in G that have degree
1, then to obtain a minimal Grébner basis for I* from that one in b)
we need only to take away all the commutators ty — yt,y € Y.

Proof. a) Because S is a subset of I* a normal word should be
canonical. Let f be a canonical word, f = ht*, f, = h.

If f is not normal then it is a leading word of some homogeneous
v € I* (because I* is homogeneous). Then by Lemma 3 v, € I and
according to Lemma 4 h is its leading term, so f, = h is not normal.

On the other hand if f, = h is not normal, then h is the leading
word of some u € I. According to Lemma 4 u* € I* has h as the leading
term, so f is the leading term of w*t* € I*. This conclusion finishes the
proof that f € N* if and only if f, € N.
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b) Because ¢g* € I* for every g € G the set G* is a subset of I* and
it remains to proof that every leading word f of some u € I* is divisible
by some leading term of G*. Because f is not normal it is evident for
non-canonical words: tz = Im(tz — zt) is a subword for some x € X.
If f = ht* is canonical then, according to a), h ¢ N and is divisible
by the leading word of some g € G. But g* € G* has the same leading
word by Lemma 4 and word is a subword of f too.

If G does not contain any element of degree less then two then no
leading term of G* can be a subword of the leading term of some s € S.
Because GG is minimal, G* should be minimal too.

¢) is evident and for d) we need only to note that ty—yt can be writ-
ten in the factor-algebra as linear combination of other commutators
and we do not need it. m

6 Rabbit Strategy in the Calculating of
Grobner basis

Now, when we get the good definition of the homogenization ideal
the question is how to get Grobner basis for the ideal I'* practically,
starting from the generating set R for the ideal I7 We know, that
we need to homogenize the elements in R, we know, that we need to
add the commuting relations xt — tx from S, but it is not sufficient to
get all the canonical elements in I*, as Example 1 shows. Fortunately
we need only to slightly modify the main algorithm for Grobner basis
calculations to get the desired result.

Definition 2 The cancellation rule: if u = vt* is a canonical element
and k > 0 is as maximal as possible then replace v by v. Formally:
replace u by (uy)*.

Theorem 2 Let R C K(X) be the generating set of the ideal I. Con-
sider the eliminating ordering (as above) and the following algorithm.
Homogenize R, add S = {tz —xt|z € X} and use the standard Grébner
basis calculation algorithm (Mora’s algorithm) with the following modi-
fication: every time when we get a new canonical element u that should
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be added to the Grobner basis add instead the element, obtained by the
cancellation rule.

The resulting set G* is the Grébner basis for the ideal I*. After
dehomogenization (setting t = 1) we get the Grobner basis G for the
ideal I. Moreover, G* is minimal if and only if G is minimal. In
particular if I has a finite Grobner basis we get it after finitely many
steps.

Proof. Consider the process of calculating the Grobner basis for I and
compare it with the modified algorithm creating G*. By the construc-
tion and according to Lemma 4 all leading monomials from G* (except
those that correspond to S) do not contain ¢. From this follows that
those two processes deal with the same leading monomials. The only
possible difference could be in the reduction, but the cancellation rule,
commutativity rules for ¢ and ordering are specially designed to take
care about this problem: the reduction process looks similar too (see
example below). So, for every g € G we get g* added to the Grébner
basis. According to the previous theorem we get Grobner basis for I*
(and no other elements, because we are always inside I*). Thus G is
obtained from G* using the dehomogenization, which proves all the
statements in the theorem. m

Let us check how this algorithm works in the Example 1. As above
we suppose that y > x > t, but work in the eliminating ordering. We
start from the same set:

tr —xt, ty — yt,a:2 — t2, $y2 — 3.
Rewriting 22y in two different ways we get the element
z(zy? —t3) — (2? — )% = 2% — 2t® — 2?1 — 213 = w.

The main difference now is that we should apply the cancellation rule
and add the cancelled element v = y? — zt to our Grobner basis. Now
we can throw away the element zy? — 3 (it is reduced to zero using v)
and we are done: no more new elements appear. The dehomogenization
gets the desired result.
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The algorithm described in this theorem was used in the Computer
Algebra package Bergman (see [3]). Initially Bergman was elaborated
for the graded algebras only. This restriction makes it more efficient.
To be able to use Bergman in the non-graded situations we introduced
so called Rabbit strategy, close to the strategy, described in the last
theorem. More exactly, dealing with non-graded algebras, Bergman
homogenize them and uses the cancellation rule during the calculations.
This means that the calculations cannot be done degree by degree as
for graded case, but sometimes (when we used the cancellation rule)
we need to go back to the lower degrees. This jumping between the
degrees explains the name of the strategy and in fact is organized using
three parameters: maximum degree, starting degree and step s. We
do all the calculations degree after degree until the maximum degree.
But when we pass the starting degree we are ready to jump. We pass
s degrees and, if we have found that the cancellation rule was used,
we jump back to the corresponding degree and pass next s degrees
and so on until the maximum degree will be achieved. In the case we
get Grobner basis completely the dehomogenized set G is the minimal
Grdébner basis for our non-graded algebra. If not, the user is informed
that obtained set G may be incomplete. The important property of
the Rabbit strategy is that if we have a finite Grébner basis in our
non-graded algebra than using sufficiently large maximum degree we
will obtain this Grobner basis and the user will be informed about this.

7 n-chains and Anick resolution

As we have seen above the ideal I* is the correct way to work with the
homogenization. We want to underline this fact even more by showing
(without complete proofs) that in fact we can use I* and G* to work
with the homological properties. For simplicity we restrict ourselves by
the case when Grobner basis G has no elements of the degree less then
two, so both G and G* are minimal. We also suppose that the elements
in I have no constant terms, so K be a trivial module both for graded
and non-graded algebra. We want to compare Anick resolutions for
them.

142



On the Cancellation Rule in the Homogenization

Let us recall that the sets C), of n-chains are defined recursively.
First of all, C_1 = 1,Cy = {X}, where X is our alphabet and for every
x € X its tail is x itself.

The set Cj11 consists of those words fr with f € C,,,1 #r € N
which have the following properties:

o If f = gs, where s is the tail of f then sr & N.
e If r = 7'z, where z € X then sr’ € N.

The normal word r is uniquely determined by the word fr and is its
tail.

Recall that the set C is exactly the set of the leading words of any
minimal Grobner basis (and depends on ideal I and ordering only).
Now we want to describe the set of n-chains for the ideal I*.

Theorem 3 a) The set of n-chains for the ideal I* is the union of two
different sets forn > 0: C = Cp UtCy_1.

b) Every element of C,, has the same tail as for ideal I.

c) If f =tg € tCp—1 then for n > 0 it has the same tail as g and
for n =0 the tail is the word t itself.

Proof. Easy induction. Base for n = 0 is trivial, for n = 1 follows
from the Theorem 1. In general, if fr is (n+1)-chain for I* with n > 1,
then f = gs is n-chain for I* and 7, s are normal (for I*), but sr is not.
If r =r'y,y € X Ut, then s’ is normal. According to Theorem 1 a) we
have y # t (otherwise sr and sr’ are normal simultaneously). Because
r is normal r’ does not contain ¢ neither. At last, by the induction, the
tail s does not contain ¢. So we decide the question of normality exactly
as in I. If g € C,, we can conclude that f € C,41, but if g € tC,, say
g =th,h € C,_1, then th and h have the same tale and the fact that
ths is (n + 1)-chain is equivalent to the fact that hs is n-chain for 7. m

Let us recall that n-chains are used for the constructing of Anick

resolution (see [1, 2]), namely for the trivial module K over algebra
A= K(X)/I. It looks as

o Cp®A—=Cho1®A---—-C1®A—- K
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The differentials d,, are recursively defined for any n-chain f, which
we identify with f ® 1. The last theorem allow us to see how in fact
Anick resolution is lifted from the non-graded algebra A to the graded
algebra B = K (X,t)/I*. We skip the proof of the technical details of
this process, and only formulate its most important properties.

Theorem 4 If d), are differentials in the Anick resolution for trivial
B—module K then

WIf f € C then di(f) = (du(f))"

bIf f =tg € tC,—1 then dj(tf) =td}_1(g9) + (—1)"gt.

c)v e Ker d) < v, € Ker d,, for any canonical element v.

This and previous theorem gives also some hint how to extract
the information about the homology of A from the homology of B.
We see for example that in the monomial case the Betti numbers are
nothing else than the differences of the corresponding Betti numbers
for B, because in the monomial case the Betti numbers are equal to the
number of the corresponding n-chains. Of course, we do not need to
homogenize monomial algebras, but the last theorem shows that we can
calculate the Betti numbers in the similar way in general case. It does
not work if we only homogenize the relations. This again shows that the
homogenization should be combined with the cancellation rule to get
the correct mathematical connection between non-graded and graded
algebras.

This article takes its origin from the discussion of the properties of
Anick resolution with Ed Green and the author is very grateful to him
for all his ideas that have helped to write this article.
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