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Abstract
In 1993 Koblitz and Fellows proposed a public key cryptosys-

tem, Polly Cracker, based on the problem of solving multivariate
systems of polynomial equations, which was soon generalized to a
Gröbner basis formulation. Since then a handful of improvements
of this construction has been proposed.

In this paper it is suggested that security, and possibly e�-
ciency, of any Polly Cracker-type cryptosystem could be increased
by altering the premises regarding private - and public informa-
tion.

1 Introduction
In 1993, Koblitz and Fellows [1] proposed a public key cryptosystem,
Polly Cracker, based on the np-complete problem of solving multivari-
ate systems of polynomial equations over a �nite �eld. This was imme-
diately generalized to a Gröbner basis formulation, where the problem of
solving polynomial equations was replaced by the expspace-complete
problem of computing a Gröbner basis for an ideal. Using some general
np - or expspace-complete problem as the basis for a public key cryp-
tosystem was a daring move, since the failure of Merkle and Hellman's
knapsack-based cryptosystem from 1978 [4] had resulted in high scepti-
cism among cryptographers regarding this type of construction. Indeed,
a title like Why you cannot even hope to use Gröbner Bases in Public
Key Cryptography [3] suggests it met a harsh response. The main criti-
cism against the idea was single-break attacks (i.e. individual-message
recovery) based on linear algebra.
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However, over the years a plethora of possible countermeasures
against these attacks and others has been proposed, as well as di�er-
ent modi�cations to improve and generalize the initial idea - the most
general version as of now seeming to be Ackermann and Kreutzer's gen-
eralization to module Gröbner bases over general monoid rings, which
allows commonly used public key schemes such as RSA and ElGamal
to be formulated as special cases [9].

Rather than continuing in this direction of generalizing the setting,
V. Ufnarovski suggested author to investigate altering the rules for pri-
vate and public information in the Polly Cracker setup. This is the
subject of this paper.

To introduce the actors: Alice - intended receiver of secret messages,
Bob - sender of such messages, and Eve - enemy, who tries to recover
Bob's messages. Messages are restricted to some message space M and
encrypted by Bob using some encryption function F : M → C into
ciphertext space C. In a public-key cryptosystem (Williamson 1974 [5],
Di�e and Hellman 1976 [6]) there may be many Bob's but only one Al-
ice, i.e. F is publicly known (the public key) and anyone may encrypt
messages, but (hopefully) only Alice can decipher them. This requires
F to be a trapdoor one-way function, i.e. while encryption F (m) = c
may be computed in polynomial time, the decryption F−1(c) = m may
not - except for someone (Alice) knowing some additional trapdoor in-
formation which simpli�es the computation (the private key). As for
Eve's part of the game, one distinguishes between total break attacks, in
which she tries to �nd the secret key (or some equivalent information)
so that she may decrypt any future ciphertext, and single break attacks,
aimed at decrypting speci�c individual messages. The basic assump-
tion is always that Eve has access to any encrypted message sent by
Bob. One also has to consider the situation that she has temporary
access to some decryption black box (e.g. in the form of a compiled de-
cryption program), which she may use to decrypt any �nite number of
ciphertexts of her choosing. This is the scenario for a chosen-ciphertext
attack, where Eve's goal is to use this information for a total break
attack.
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1.1 The Polly Cracker Public Key System
Let Fq[X] be the set of multivariate polynomials over a �nite �eld Fq

generated by the alphabet X = {x1, ..., xn}. Given a subset F of poly-
nomials, let 〈F 〉 denote the ideal they generate over Fq[X]. Also, given
a Gröbner basis G ⊂ Fq[X], under some monomial ordering ¹, and
a polynomial f ∈ Fq[X], let f̄ denote the normal form of f over 〈G〉
with respect to ¹, i.e. f̄ := rG(f) is the unique remainder of f over G
under the given monomial ordering. The Gröbner basis version of Polly
Cracker may then be described like so:

Cryptosystem 1.1 (Polly Cracker).

Key generation To set up the system, Alice chooses a Gröbner
basis G ⊂ Fq[X] under some monomial ordering ¹ and selects a �nite
subset P ⊂ 〈G〉 of the corresponding ideal.

Private Key: G Public Key: P

Message space A subset of all G-normal forms:

M ⊂ { f̄ | f ∈ Fq[X] }

Encryption Bob encrypts a message m ∈ M by choosing some
p ∈ 〈P 〉 and computing the ciphertext

c := m + p ∈ m + 〈G〉

Decryption Alice decrypts c by computing its normal form over
〈G〉:

c̄ = rG(c) = rG(m) + rG(p) = m + 0

1.2 Main Attacks
A total break attack on this cryptosystem generally amounts to com-
puting an equivalent Gröbner basis G′ for the public key ideal 〈P 〉 - this
would be an equivalent secret key. The general problem of computing a
Gröbner basis for a given ideal is NP-complete (see e.g. [7]), and Alice
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may choose her P and ¹ from some class of known hard instances, for
example by encoding well-studied problems from logic, to ensure giving
Eve (the attacker) a hard time here.

Now, if Eve does not succeed in the above she could always try to ex-
ploit some possible weakness in Bob's choice of p ∈ 〈P 〉, letting her de-
cipher at least some of his messages. The most severe criticism against
Polly Cracker has been its vulnerability to such single break attacks
based on linear algebra, mentioned already in Fellows and Koblitz's
original paper [1]. With public key P = {p1, ..., ps}, Bob's p will have
the form p =

∑s
i=1 hipi for some ephemeral polynomials hi. The main

idea is then to consider

c = m +
s∑

i=1

hipi (1)

as a linear system of equations, whose unknowns are the coe�cients of
the polynomials hi's and m. By guessing the support of these, the linear
system might be solvable by usual Gaussian elimination, retrieving m.
The countermeasure here is for Alice to choose the setting parameters
so as to ensure infeasible system sizes (there is a security/e�ciency-
tradeo� here), and for Bob to choose his hi's so as to ensure a certain
amount of cancellation in the sum. This calls for quite clever construc-
tions.

1.3 E�ciency Issues
The main problem for implementing Polly Cracker instances stems from
the above mentioned security/e�ciency-tradeo�. In particular, the so
called message expansion is an issue here: a message m will be en-
crypted into a ciphertext polynomial c of, most likely, larger support,
so even though supp(m) may be as small as a single constant term,
supp(c) may be very big if parameter sizes are not properly restricted,
implying issues in storage, transfer and decryption. For example, in
[2] Koblitz presents a study-example of a Polly Cracker instance (the
Graph Perfect Code Instance) based on a perfect code problem from
graph theory, and for su�cient security suggests using a polynomial
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ring with 500 indeterminates xi. However, even narrowing it down to
200 one gets ciphertexts of about 60'000 monomials for this instance
(see [8]). All serious attempts at practical, implementable Polly Cracker
instances have to deal with this issue, which tends to make them some-
what technical.

2 Related Work
In [10] (2004), Levy-dit-Vehel and Perret describe how to construct
Polly Cracker instances based on 3-sat problems from logic, i.e. so
that a total break attack may be p-reduced to some well-studied hard
3-sat instance, while at the same time providing resistance against the
classical linear algebra attacks. The latter is achieved by the use of
an elaborate generating algorithm for p ∈ 〈P 〉, together with suggested
parameter sizes resulting in a message expansion of about 1500 terms,
which is at least manageable but still not suitable for practical use.

The e�ciency issue is addressed more directly in [11] (2002), where
Ly presents a cleverly constructed, however somewhat technical, mod-
i�cation of Polly Cracker called Polly Two. This cryptosystem can be
viewed in three di�erent polynomial settings via a ring homomorphism:
domain- goal- or quotient ring, each setting providing security in its own
way and simultaneously taking care of the e�ciency/sequrity trade-o�.
In the goal-ring setting this cryptosystem reduces to a Polly Cracker
instance with very large parameter sizes, thus handling the linear alge-
bra attacks. Legal users operate in the domain ring where parameter
sizes are quite small, with a message expansion of less than 100 terms.
This would be acceptable for practical use, however setting up con-
crete instances seems to be somewhat di�cult (e.g. �nding a suitable
homomorphism).

In [12] (2004), T. Rai generalizes Polly Cracker to noncommutative
polynomial rings, inspiration being that this allows ideals for which no
�nite Gröbner bases exist. The idea here is for Alice to take a secret key
Gröbner basis G, �nite as usual, but with a public key subset P ⊂ G so
that no �nite Gröbner basis exists for 〈P 〉. This means that Eve cannot
even theoretically succeed in the usual total break attack. Another
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bene�t comes from the use of two-sided ideals, leading to quadratic
(rather than linear) systems of coe�cients in the single break attacks.
Unfortunately, �nding suitable ideals for concrete instances turns out
to be a challenging task. Also, no experimental data is provided, so it
is unclear how e�cient instances of this system would be.

Going further along the generalizing path, Ackermann and Kreuzer
in [9] take the Polly Cracker scheme all the way up to a setting of
modules (generalizing the ideals in Polly Cracker) over general monoid
rings (generalizing the standard polynomial rings). This could be a
promising framework for future cryptosystems (no such instances are
provided), but even in its abstract formulation it is of direct interest
since most well-known public key schemes seem to let themselves be for-
mulated as special cases, e.g. RSA, ElGamal and even recent attempts
at group-based public key schemes.

3 Extending The Private Key in Polly Cracker
Studying the Polly Cracker construction (Cryptosystem 1.1), we make
the following observations:

1. The monomial ordering ¹ used is seemingly assumed to be a
public domain parameter - at least the advantages of keeping it
private is, to our knowledge, never pointed out. The idea here is
the following:

Alice could choose a Gröbner basis G under some or-
dering ¹ so that 〈G〉-normal words with respect to ¹
are not necessarily 〈G〉-normal with respect to other
orderings.

This would imply that even if Eve managed to �nd some Gröbner
basis G̃ for 〈P 〉, unless she guesses the correct monomial order-
ing, she cannot expect messages to be preserved in an attempted
decryption, i.e. it might be that

rG̃(c) = rG̃(m) 6= rG(m) = m
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2. The public setting for Polly Cracker is a polynomial ring over
some �nite �eld Fq. It is never motivated why the cardinality of
this �eld should be public information. In fact, Bob could encrypt
messages perfectly well in Z[X], with Alice taking the ciphertext
(mod p) before proceeding as usual with decryption, if we just
require the coe�cients of messages to be bounded so that they
are not destroyed by the (mod p) computation.

While the idea of private monomial ordering works with the usual
Polly Cracker scheme, keeping the �eld cardinality private requires some
adjustments of the scheme.

3.1 Polly Goes Private - With p

To concretize these ideas, let us �rst for simplicity of discussion con-
sider the case Fq = Zp for some large prime number p. For a set of
polynomials F ⊂ Zp[X], let 〈F 〉p denote the usual ideal they generate
in Zp[X], and let 〈F 〉Z denote the ideal F generates when lifted to Z[X],
i.e.

〈F 〉Z := {
∑

f∈F

fhf | hf ∈ Z[X]}

Note that
〈F 〉Z (mod p) = 〈F 〉p (2)

Cryptosystem 3.1 (Polly Cracker with Private ¹ and p).

Key generation Alice chooses some big prime p, a positive in-
teger q < p, a �nite Gröbner basis G ⊂ Zp[X] under some monomial
ordering ¹, and a �nite subset P ⊂ 〈G〉Z.

Private Key: p, G, ¹ Public Key: P

Message space M : G-normal forms under ¹ in Zp[X] with coef-
�cients bounded by q.
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Encryption Bob chooses f ∈ 〈P 〉Z and encrypts a message m ∈
M into the ciphertext

c := m + f ∈ Z[X]

Decryption Alice decrypts c by �rst computing

c′ = c (mod p) = m + fp ∈ Zp[X]

where fp := f (mod p) and then

c̄′ = rG(c′) = rG(m) + rG(fp) = m + 0

Decryption follows from (2):

f ∈ 〈P 〉Z ⇒ f (mod p) ∈ 〈P 〉p ⊂ 〈G〉p
Before proceeding with the case of higher prime-power cardinality,

let us �rst discuss the e�ects of this private key alteration.

3.1.1 Security gain
The main idea of keeping p private is that it blows up the complexity
of a total break attack. As before, this attack amounts to �nding a
Gröbner basis (under some lucky monomial ordering) for 〈P 〉p. While
this can be made hard even when p is known, without this knowledge
Eve could at best try searching through primes p′ > q, and for each try
�nding a Gröbner basis for 〈P 〉p′ .

Also, forcing users to compute over Z[X], rather than K[X] for
some �eld K, Eve cannot use scalar inverses in her attacks. Since
Gaussian elimination without using scalar inverses leads to intermediate
coe�cient swell, this means that linear algebra attacks grow more costly.

3.1.2 E�ciency possibilities
The decryption procedure now consists of two steps: �rst a modulo
operation, which is fast, and then the usual reduction, which may be
costly. Alice has a possibility to speed up the decryption procedure
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here by choosing some public key polynomials pi ≡ 0 (mod p), so that
much of the ciphertext is simpli�ed in the �rst (fast) decryption step.
While tempting for very e�cient decryption, Alice should not take every
pi ≡ 0 (mod p), however, since this would make p a common factor of
all public-key coe�cients, which could be detected by Eve.

3.1.3 Issues and countermeasures

By limiting message coe�cients to q < p, there is a trade-o� between
the size of the message space and the additional security provided by
keeping p secret. However, if q and p are large enough, this should not
be a major concern.

A more serious e�ect is that, since Bob encrypts over Z[X], the
coe�cients of the ciphertext may grow big, which can be cumbersome.
To limit this e�ect he should not choose ephemeral key polynomials
with too big coe�cients. The Chinese remainder theorem could also be
used for more e�cient transmission:

With α the largest coe�cient of a ciphertext polynomial c, Bob
multiplies relatively prime numbers ni, of manageable size, so that the
product N := n1 · · · nr ≥ α. He then computes





c1 = c (mod n1)
...

cr = c (mod nr)
(3)

and sends the ciphertext tuple

C := {(c1, ..., cr), (n1, ..., nr)}

Here coe�cients of the ci's are bounded by max{n1, ..., nr}. Al-
ice then uses the Chinese remainder theorem to solve (3), recovering
c (mod N) = c with full coe�cients, and she may proceed as before.

Note, however, that while coe�cient sizes may be controlled by this
method, we have to pay in the number r of ciphertext polynomials.
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3.1.4 Chosen-ciphertext attack
In a private letter, Rai suggests a chosen-ciphertext attack aimed at
�nding our secret p: Eve could e.g. enumerate primes qi > q and
encrypt fake messages of the form

m̃ = q1m1 + ... + qkmk

where each mi is a monomial in the message space. If it would happen
that some qi = p, the corresponding term would decrypt to zero and
the decryption black box she has temporary access to would return
m̃− qimi, revealing p = qi.

Note that such a fake message after decryption would contain some
coe�cients qj > q, which was not allowed in the message space. Hence,
to avoid this attack, the decryption black box should be set to detect
any such fake ciphertexts (decrypting to terms with coe�cients larger
than q) and return an error message if that happens.

3.2 Polly Goes Private - With pn

Now suppose Fq = Fpn for some prime p and n > 1, and let α denote a
generating element for this �eld via some primitive degree-n-polynomial
in Zp[α]. We use α-power notation as default for nonzero �eld elements.
Let us de�ne a homomorphism from the ring of univariate polynomials
f(s) over Z into Fpn by

ϕ̃ : Z[s] → Fpn ; s 7→ α

and extend it to a homomorphism from Z[s][X] into Fpn [X] as:

ϕ : Z[s][X] → Fpn [X]; f(s)w 7→ ϕ̃(f)w (4)

where w denotes a word with letters from X. This ϕ will be used by
Alice to translate Bob's messages in Z[s][X] into the ordinary Polly
Cracker setting Fpn [X]. We will need some notation here in order to
recognize corresponding key polynomials in these two settings.

Given f =
∑

αkwk in Fpn [X], let fs denote the polynomial obtained
in Z[s][X] by simply replacing every α by s. Then, corresponding to
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the de�nitions in the prime-cardinality case, for F ⊂ Fpn [X] let 〈F 〉pn

be the usual ideal generated by F over Fpn [X], i.e.

〈F 〉pn := {
∑

f∈F

fgf | gf ∈ Fpn [X]}

and let
〈F 〉Z[s] := {

∑

f∈F

fshf | hf ∈ Z[s][X]}

be the ideal generated by the corresponding polynomials fs over Z[s][X].
Since

ϕ(fshf ) = ϕ(fs)ϕ(hf ) = fϕ(hf )

we have
f ∈ 〈F 〉Z[s] ⇒ ϕ(f) ∈ 〈F 〉pn (5)

Now, Alice may keep p and n secret while letting Bob compute over
Z[s][X]. Using ϕ she may then translate his ciphertext into a standard
Polly Cracker ciphertext in Fpn [X]. By 5, this works if the message
space is restricted properly. The details are as follows:

Cryptosystem 3.2 (Polly Cracker with Private ¹ and pn).

Key generation Alice chooses a prime number p, some n > 1, a
�nite Gröbner basis G ⊂ Fpn [X] under some monomial ordering ¹, a
�nite subset P ⊂R 〈G〉Z[s] and some r < pn − 1.

Private Key: Fpn , G, ¹ Public Key: P

Message space Linear combinations of G-normal words wi ∈
Fpn [X] with coe�cients sk where k < r, i.e.

M = {
∑

skiwi | ki ≤ r, rG(wi) = wi}

Encryption Bob chooses f ∈ 〈P 〉Z[s] and encrypts a message
m =

∑
skiwi ∈ M into the ciphertext

c := m + f ∈ Z[s][X]
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Decryption Alice decrypts c as

rG(ϕ(c)) = rG(mα + ϕ(f)) = mα + 0

where mα =
∑

αkiwi is the message m only with the symbol s replaced
by α.

Here decryption follows from 5:

f ∈ 〈P 〉Z[s] ⊂ 〈G〉Z[s] ⇒ ϕ(f) ∈ 〈G〉pn

Note that the message is preserved in two steps: First it is preserved
by ϕ since its coe�cients are of form sk for k < qn − 1 (so there is no
modulo-e�ect in the exponent), and then it is preserved in reduction
over G, as usual for Polly Cracker, being a normal form.

In this description we have, for clarity, used the di�erent symbols s
and α to distinguish Bob's computations over Z[s][X] from �eld com-
putations. Of course we might as well let Bob use the same symbol α
and compute over Z[α][X] - the important thing is that he is not able
to interpret α as the �eld element in Fpn .

Example 3.1 (Toy Example). For demonstration, we give a very
small example in F23 [x, y]. A translation table for power/polynomial
representation of the �eld elements in F23 is given by:

αk rk(α) αk rk(α)
- 0 α3 α + 1
1 1 α4 α2 + α
α α α5 α2 + α + 1
α2 α2 α6 α2 + 1

Key generation Take the Gröbner basis

G = {x− α5, y − α2} ∈ F23 [x, y]

and preliminary public key polynomials

p̂1 = x2 + αxy + 1, p̂2 = α2xy + αy2 + α3
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Over F23 we have p̂1(α5, α2) = p̂2(α5, α2) = 0, so

p̂1, p̂2 ∈ 〈G〉pn

We multiply these by some polynomials in Z[α][x, y] to form public key
polynomials p1, p2 ∈ 〈G〉Z[α], for example:

p1 = p̂1 · (5α7x + 1) = 5α7x3 + 5α8x2y + x2 + αxy + 5α7x + 1

p2 = p̂2 · (4α2y − α) = 4α4xy2 + 4α3y3 − α3xy − α2y2 + α5y − α4

For message restriction we choose r = 6 < 23 − 1.

Private Key: F23 , G = { x− α5, y − α2 }

Public Key: P = { p1, p2 } from above

Message space G-normal forms in this case are just constants:

M = {αk | k ≤ 6}

Encryption Suppose Bob wants to send us the message m = α6.
He chooses ephemeral polynomials in Z[α][x, y]:

h1 = 3y − α, h2 = xy + α2

and computes the ciphertext in Z[α][x, y]:

c = m + p1h1 + p2h2 =

4α4x2y3 + 4α3y4x− α3x2y2 − α2xy3 + (15α7 + 3)x2y+

(15α8 + 4α6 + 4α5 + 3α)xy2 + 4α5y3 − (5α8 + α)x2−
(5α9 + α5 + α4 + α2)xy − α4y2 + (19α7 + 3)y − (5α8 + α)

Note that Bob's choice of the last term α2 in h2 gives cancellation of
the message m = α6 in c.
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Decryption Upon receiving c as above, we �rst compute in F23

(using the translation table):

ϕ(c) = 0 + 0 + α3x2y2 + α2xy3 + (1 + 1)x2y+

(α + 0 + 0 + α)xy2 + 0 + (α + α)x2+

(α2 + α5 + α4 + α2)xy + α4y2 + (1 + 1)y + (α + α)

= α3x2y2 + α2xy3 + xy + α4y2

Then, with G = {x− α5, y − α2} we have:

rG(ϕ(c)) = ϕ(c)(α5, α2) = α3 + α6 + 1 + α = α6 = m

y

4 Conclusion
An extension of the private key in Polly Cracker has been suggested.
In particular, an adjustment of the scheme to private �eld cardinality
could be used to increase complexity of standard attacks (total- as well
as single break), while at the same time providing means to control ef-
�ciency of decryption by introducing a fast preliminary decryption step
before the usual reduction. This scheme adjustment is very simple in
Polly Cracker instances over Zp[X]. The case of higher prime power
coe�cient �elds requires a bit more theory, but in the end does not
increase the complexity of the system. An issue that arises is the pos-
sible occurrence of large integer coe�cients in the ciphertext. Modular
techniques could be used to handle this e�ect.

It would remain to test these ideas on realistic Polly Cracker in-
stances.
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