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Minimum convex partitions of
multidimensional polyhedrons*

Ion Bat

Abstract

In a normed space R™ over the field of real numbers R, which
is an a-space [26,29], one derives the formula expressing the
minimum number of d-convex pieces into which a geometric n-
dimensional polyhedron can be partitioned. The mentioned prob-
lem has been kept unsolvable for more than 30 years. The special
cases for R?, R? lead to nontrivial applications [19, 20, 23, 28, 30].
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1. Introduction

Let (X, d) be a metric space, and let z1, z9 € X be two arbitrary points
of (X,d). By analogy with the classical definition of convex sets one
introduces the notion of metric convexity depending on d [4, 6, 16, 26].
The set of points, denoted by (x,z9) and defined by

(z1,29) ={z : d(z1,29) = d(z1,z) + d(z,29)},

is called a metric segment joining the points z; and zy. A set M C X is
said to be d-convez if for any two points 1, x9 € M the metric segment
(z1,22) C M. It is easy to see that the intersection of two d-convex
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Figure 1.1.

sets is a d-convex set. For a given set M C X, the d-convex hull of
the set M, denoted by d-conv M, is defined as the intersection of all
d-convex sets containing M. In case that (X, d) is a normed space R"
over the field of real numbers R with d(z1,z2) = ||z1 — x2]| every d-
convex set is also a convex set, but not always conversely. Convexity
and d-convexity in R"™ coincide if and only if the closed unit ball of
R™ is strictly convex [4,6,16,26]. Thus this notions coincide in the
Euclidean space E". For a bounded set N C R" it can happen that
d-conv N ='R"™. We will only consider those normed spaces such that
d-conv N is bounded, that is, so-called a-spaces [26, 29].

In the papers [5, 19, 20,23, 28, 30] it is given sufficient information
of solving the following problem.

Let R? be a normed plane, and let P? be an open polygon (see
Figure 1.1) with g holes of dimension d € {0, 1,2} all of whose edges
are d-convex.

In the paper [3] R? coincide with the Euclidean plane E?, and
the edges of the polygon P? are parallel only to two perpendicular
directions while the all holes are of dimension 2. In this case it is
shown that the minimum number ¢(P?) of rectangles partitioning the
polygon P? is .

2
q(P7) =5~
where s is the total sum of interior angles of the polygon P?, measured
in radians, and A is the maximum number of mutually disjoint segments

h, (1.1)
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that can be drawn within the closure of the polygon P?, parallel to the
edges of P?, and with the endpoints at the concave vertices. This
problem appeared in VLSI engineering [25].

In the papers [5, 20, 23] the problem to partition the polygon P? (see
Figure 1.1) into a minimum number of d-convex pieces is completely
solved. The respective formula is shown to be

q(P*)=m+1—g—h, (1.2)

where m, g are the total sum of all measures of local nonconvexity of
points of local nonconvexity [5, 20], the number of holes of the polygon
P?, respectively, and h is the number of elements of a maximum con-
cordant system of dividing trees [5,20]. Considering R? with the norm
llz|| = |z1] + |z2], it is easy to obtain that ¢ in (1.1) and ¢ in (1.2) are
the same number for the case from [19].

Let P3 be an open polyhedron P? in the Euclidean space E? with
the edges parallel to the coordinate axes of E3. An approximate for-
mula expressing the minimum number of parallelepipeds ¢ (P3) into
which the polyhedron P3 can be partitioned is proposed in the paper
[28]. Moreover, it is constructed an instance of a polyhedron such that
the approximate computed number of parallelepipeds is too large with
respect to the minimum number. This polyhedron has the shape in-
dicated in Figure 1.2. The additional researches led to the fact that
the minimum estimation of ¢ (P3) required the methods of algebraic
topology to be applied, as it would be seen below.

2. Auxiliary elements

In a normed space R" it is possible to define the notion of a geometric
n-dimensional polyhedron in a simpler or more complicated way. We
will introduce a more natural notion of a polyhedron as the geometric
polyhedron in R3 [11] is defined. For a given set N C R", we will
denote by bd N,int N,N the boundary, the interior and the closure
of N, respectively. By X"(z,e) C R"™ we denote the closed ball with
center at « and radius ¢.
By analogy with [8] we propose
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Figure 1.2.

Definition 2.1. A closed n-dimensional PL manifold [13, 15, 24] which
admits a decomposition into q handles of index 1 [24] is said to be a
geometric n-dimensional polyhedron of genus q in the normed
space R"™. It is denoted by Pj'.

Definition 2.2. [26,29] A normed space R" is called an a-space if
for every bounded set N C R"™ the d-convex hull of N is bounded.

The necessary and sufficient condition for R" to admit the men-
tioned situation consists in the fact that there exist n d-convex (n — 1)-

n
dimensional subspaces Li,..., L, C R™ such that (] Ly = 0 [26, 29].
k=1
Let R™ be an a-space, and let P* C R" be a geometric polyhedron.

Definition 2.3. The point x € bd P™" is called a point of local non-
d-convexity [4,23,30] of P" if for any sufficiently small € > 0 the
intersection d-conv X" (z,e) (| P" is a non-d-convez set.

Definition 2.4. A m-dimensional face F™ [7,24,26] of the polyhedron
P m=0,...,n—1, is called a face of local non-d-convexity if
any point in F™ 14s local non-d-convex.

Definition 2.5. [12,17,24] A finite set K of convez polytopes in R"™
15 called a polyhedral complex in R"™ if K satisfies the following two
conditions:

1. if Q1 € K and Q3 is a face of Q1, then Q2 € K;
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2. for every Q1,Q2 € K the intersection Q1) Q2 is a common face
of Q1 and Q.

Definition 2.6. [12,17] The set of all points belonging to convezx poly-
topes in the polyhedral complex K, endowed with the induced topology
of R™, will be called the underlying space of K and will be denoted
by |K]|.

Definition 2.7. The dimension of K is the maximum of the di-
mensions of its polytopes. We will denote a n-dimensional polyhedral
complex by K".

In that follows, a subscript in the name of mathematical objects
denotes their dimension. To avoid overusing the word ”convex” we
adopt the convention that polytopes are always assumed to be convex
unless otherwise stated.

It is known that any n-dimensional vector space V" has two possi-
ble orientations, the orientation of the space being determined by the
choice of a basis in this space [10, 14]. Let’s remark, that the concept
of orientation is essentially connected by that the base is considered as
the ordered system of vectors.

Definition 2.8. By an orientation of a m-polytope Q™ in R™, m =
1,...,n, we mean an orientation of the parallel subspace of the affine
hull of Q™. A polytope with one of two possible orientations is called
an oriented polytope.

By definition we counsider that a 0-polytope has also two orienta-
tions. If Q™ is an oriented polytope, then —Q™ will mean the polytope
with the other orientation. We will say that Q™ and —Q™ have op-
posite orientations. The orientation of the polytope Q™ can be given

by the vectors ey, ..., e, of some basis for the parallel subspace of the
affine hull of Q™. Let L(eq,...,e€,) denote the m-dimensional vector
space spanned by e1,...,en.

Given an oriented m-polytope Q™ in R", let Q™! be an oriented
(m—1)-face of the polytope Q™, and let ey, ..., ey, and €], ... €/, | be
the bases, respectively. Let’s expand the system of vectors €},... e,
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by adding to it a vector e/, in L(eq,...,ey) directed to the open half
space containing int Q™ and determined by the affine hull of Q™ 1. It
is obvious that the system of vectors €,...,el _;, e, forms a basis for
the vector space L(ey,...,en).

Definition 2.9. The polytopes Q™ and Q™' in R™ are said to be

/!

coherently oriented [12] if the bases e1,... e, and €, ... el | el
for the vector space L(ey,...,ey) are equally oriented, otherwise they

are noncoherently oriented.

The above definition is correct since the relation for two bases to be
equally oriented is an equivalence relation [10]. The orientation of an
(m — 1)-face of the polytope Q™ coherent with the orientation of Q™
is also called an orientation induced by the orientation of the polytope
Q™. We call a polyhedral complex with all its polytopes oriented an
oriented polyhedral complex.

Definition 2.10. [12,18] Let K™ be an oriented polyhedral com-
plex. For each pair of polytopes Qg”,Q;"_l, the incidence number

[Q:" : Q;"&] is defined as follows:

0, f Q;-nfl is not a face of the polytope Q";
+1, if Q}n_l is a face of the polytope Q7"
[Qf" : Q;"_l} = coherently oriented with Q" ;
-1, if Q}n*l 15 a face of the polytope Q7"
noncoherently oriented with Q7" .

Let K™ be an oriented polyhedral complex. We denote by £™ and
am, 0 < m < n, the set of all m-polytopes in K™ and the cardinality
of this set, respectively. Z denotes the group of integral numbers.

Definition 2.11. [12,18] By an m-dimensional chain of the com-

plex K™ we mean a mapping ¢ : L™ — 7Z. For any m-polytope
Qe L™, let ™(QT) = gi.
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Definition 2.12. The set of all m-chains of the complex K", denoted
by C™ (K™), forms an abelian group with respect to the following addi-
tion

(@' + ) (QF) =" (Q")+e" (@), o e e O (K"), Q" € LT,
called the mth chain group of the complex K.

Henceforward, because the group C™ (K™) is isomorphic to the free
abelian group [15, 31] generated by the oriented m-polytopes in K", for
simplicity, we will use the notation:

" =qQ" + 9205 + ... + ga,, Qur,, -

Definition 2.13. [18] For a polytope Qi* € K", the expression

> e erer
Qylekr

1s called the algebraic boundary of the polytope Q™ and is denoted
by O"Q™. If m =0, we define 3°QY = 0.

Definition 2.14. The algebraic boundary determines the homomor-
phism
" C™(K") = ™ (K",

namely,
o (ijgicz;“) “S g =Y (Zgi [ Q;“}) Qnt,
=1 i=1 j=1 \i=1

called the boundary operator.

Theorem 2.1. For every m-chain of the complex K",
AmLo™ (™) = 0.
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Definition 2.15. The kernel of the homomorphism 0™ is denoted by
Z™ (K™, and the image of the homomorphism 0™+ will be denoted
by B™ (K™). The group Z™ (K™) is called the mth cycle group of
the complex K™, and its elements are called m-dimensional cycles.
The group B™ (K™) is called the mth boundary group of the complex
K", and its elements are called m-dimensional boundaries.

For example, in Figure 1.2, the boundary of the polyhedron P3
regarded as the underlying space of a polyhedral complex consisting of
rectangles contains a 2-cycle.

Theorem 2.2. The groups Z™ (K™) and B™ (K"™) are free abelian
normal subgroups of the group C™ (K™). The group B™ (K") is a
normal subgroup of the group Z™ (K™).

Definition 2.16. The quotient group H™ (K™) = Z™ (K"™) /B™ (K")

is the mth direct homology group of the polyhedral complex K™ with
coefficients in the group of integral numbers.

n

Definition 2.17. The number x (K™) = > (=1)"y, is called the

m=
Euler-Poincaré characteristic of the polyhedral complex K™.

Theorem 2.3 (Euler-Poincaré). [18,21] Let 3, be the rank of the
mth direct homology group of the polyhedral compler K™ with coeffi-
cients in Z. Then it holds that

(K™ = 3 (1) = 3 (<1
m=0 m=0

3. Main theorem

Let R" be an a-space, and let P C R" be a geometric n-polyhedron of
genus ¢ all of whose 1-faces belong to the d-convex lines of R™. We will
denote by p (P;') the minimum number of d-convex pieces into which
Py can be partitioned.

Let X be the set of all local non-d-convex (n — 2)-faces of the poly-
hedron P}, and let |X| be the set of all points of the faces. By D"
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and |D""!| we will denote a finite set of cells [9, 12, 15] of dimension
< n—1 in the a-space R", belonging to the interior of P}, and the set
of all points of the cells, respectively.

Definition 3.1. A set D" ! is called a dividing [1-3,27] of the poly-
hedron P} if D" satisfies the following two conditions:

1. for every x € |D"~Y| there exists an € > 0 such that the intersec-
tion (P(;1 \ |D"*1|) () d-conv X" (z,¢) consists only of d-convex

connection components;

2. |X| c D" 1.

n—1 .
Definition 3.2. The number x (D" 1) = Y (—1)'e; will be called the
i=0
Euler-Poincaré characteristic of the dividing D"~ ', where «; is
the number of cells of dimension i of D" L.

The Euler-Poincaré characteristic is an integer invariant for ‘D"‘l ‘
This fact results from the definition of the dividing.
By dvz P! we denote the set of all dividings of the polyhedron Pj'.

2L
m//i//

/

\

74

Figure 3.1.
Figure 3.1 displays a polyhedron P§ on the left and a dividing D?
of the polyhedron on the right (the hatched area). The dividing is
composed of the four 2-cells and so x (DQ) =0-0+4=4.
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Theorem 3.1. The Euler-Poincaré characteristic of the polyhedron Py
satisfies the property:

x (bdP}) —x (P)) = (-1)""" (1 —q). (3.1)

Proof. From the definition of the Euler-Poincaré characteristic of a
finite cell complex [9,12,15], representing the given polyhedron and
containing among its (n— 1)-cells open secant balls one for each handle,
it follows immediately that

X (P7) = x (bd P}) + (=1)""'q + (=1)".
This completes the proof. ]

Theorem 3.2 (Main Theorem). For the polyhedron Pj C R" the
equality

pB) = (" () = (B) 4 i (D)

holds.

Proof. Let D" ! be a dividing of the polyhedron Pg. This dividing de-
termines a finite cell n-complex K" representing the polyhedron P}’ and
whose n-cells are open d-convex polytopes. Indeed, from the definition
of the dividing, the set of all points belonging to the closures of cells
of the dividing D"~! is the underlying space of a polyhedral (n — 1)-
complex M" 1. Moreover, the set of the faces of M™ 1, each of which
belongs to the boundary of P}, determines a division of the bound-
ary into d-convex polytopes. Denote by L™ ! the polyhedral (n — 1)-
complex formed by this division (a subdivision of this division, preserv-
ing the faces of M™ !, if it is necessary). The open d-convex polytopes
of the polyhedral complex M"~!|JL" ! together with the connection
components C; of the set int Py’ \ ‘M n-t UL”‘l‘ forms the required
cell decomposition. The connection components C; are open, local d-
convex, so they are also d-convex. Thus we have x (Pgl) = x (K™) and
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X (bd Pq”) =X (L"fl). From the Euler-Poincaré theorem, it is clear
that

n

X (E™) = (1), (3.2)

i=0
where «, is the number of d-convex pieces into which Pj is partitioned,

and q; represents the number of open d-convex i-polytopes of K™,
i=0,1,...,n — 1. Rewrite (3.2) as follows

n—1
(=) an = x (K") = Y (-1 (3.3)
i=0

Whence
n—1 ' n—1 '
(—1)"an = x (K") = > (=D =Y (=1)'ef, (3.4)
i=0 i=0

where ¢ is the number of open d-convex i-polytopes belonging to the
boundary of P, and o is the number of open d-convex i-polytopes
belonging to the dividing D™~'. Therefore we get

()" = x (K™) = x (L") = x (D7) (3.5)

Thus, both sides of the equality (3.5) being multiplied by (—1)", we
obtain

an = (=1)"x (K") — (=1)"x (L"1) = (=1)"x (D" ). (3.6)
Whence
an = (=" (x 0dP}) = x (P1) + (-1)"'x (D""). (3.7

The Euler-Poincaré characteristic of the dividing D"~! is positive for
odd n and is negative for even n in view of the fact that the rela-
tions (3.1), (3.7) and the inequality a;, > 0 hold. Therefore we get
x (D) = (=1t ‘X (D™ 1) ‘ If the dividing D™~! is chosen such
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that the value of ‘X (D"*l) ‘ to be minimum, then ¢, is minimum, too.
Hence we obtain

p(Py) = (0" (e (0d Pg) —x (P)) + | min  |x (D",

Dr-ledvz Py

and the theorem is proved. O

Corollary 3.1. Let Pi' CR" be a geometric n-polyhedron of genus q.
Then

ny _ 1 _ : n—1
p(F)=1—a+  min (D))

Applying the above formula for the polyhedron from Figure 1.2

givesus p (P3) =1-04+6=7.

References

[1]

2]

3]

[4]

[5]

1. Bat. On partition of special 3-dimensional polyhedrons into d-
convex parts. — Analele Facultatii de Matematica si Informatica,
Universitatea de Stat din Moldova, Chigindu, Vol. 2, Nr. 1, 2000,
pp. 8588

1. Bat. On partition of special 3-dimensional polyhedrons into d-
convez parts. — Seminarul Itinerant ” Tiberiu Popoviciu” de Ecuatii
Functionale, Aproximare si Convexitate, Cluj-Napoca, 2001, pp.
73-75 (in Romanian)

1. Bat. On partition of special n-dimensional polyhedrons into d-
convez parts. — Seminarul Itinerant ” Tiberiu Popoviciu” de Ecuatii
Functionale, Aproximare si Convexitate, Cluj-Napoca, 2002, pp.
35-37 (in Romanian)

V. Boltyanski, H. Martini, P. Soltan. Ezcursions into Combinato-
rial Geometry. — Springer-Verlag, Berlin, 1997

V. Boltyanski, H. Martini, V. Soltan. Geometric Methods and Op-
timization Problems. — Kluwer Academic Publishers, 1999

299



I. Bat

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]
[16]

[17]

[18]

V.G. Boltyanski, P.S. Soltan. Combinatorial geometry of various
classes of convex sets. — Stiinta, Chigindu, 1978 (in Russian)

N. Bourbaki. Topological vector spaces. — IL, Moscow, 1959 (in
Russian)

M. Bujac. The Application of Two-Dimensional Torus in the
Transmission of Information. — Annals of the Tiberiu Popoviciu
Seminar of Functional Equation, Approximation and Convexity,
Vol. 4, Mediamira Science Publisher, Cluj-Napoca, 2006, pp. 9-17

A. Dold Lectures on algebraic topology. — Moscow, 1976 (in Rus-
sian)

N.V. Efimov, E.R. Rozendorn. Linear algebra and multidimen-
sional geometry. — Nauka, Moscow, 1974 (in Russian)

Encyclopedia of elementary mathematics. — Vol. 4, Moscow, 1963
(in Russian)

Encyclopedia of mathematics. — IL, Vol. 2, Moscow, 1985 (in Rus-
sian)

Encyclopedia of mathematics. — IL, Vol. 3, Moscow, 1985 (in Rus-
sian)

Encyclopedia of mathematics. — IL, Vol. 4, Moscow, 1985 (in Rus-
sian)

Encyclopedic Dictionary of Mathematics. — MIT Press, 1993

L.F. German, V.P. Soltan, P.S. Soltan. Some properties of d-
convex sets. — Soviet Math. Dokl. 14 (1973)

Jacob E. Goodman, Joseph O’Rourke. Handbook of Discrete and
Computational Geometry. — CRC Press, Boca Raton, 1997

P.J. Hilton, S. Wylie. Homology Theory. An introduction to alge-
braic topology. — Cambridge University Press, 1960

300



Minimum convex partitions of multidimensional polyhedrons

[19]

[20]

[21]
[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

N.M. Korneenko, G.V. Matveev, N.N. Metelskij, R.I. Tyshkevich
Partitions of polygons. — Vestsi Akad. Navuk BSSR, Ser. Fiz.-Mat.
Navuk 2 (1978), pp. 25-29 (in Russian)

H. Martini, P. Soltan. On convex partitions of polygonal regions.
— Discrete Mathematics 195 (1999), pp. 167180

S.P. Novikov. Topology. — Moscow-Izhevsk, 2002 (in Russian)

L.S. Pontryagin. Foundations of combinatorial topology. — Nauka,
Moscow, 1986 (in Russian)

Ch. Prisacaru, P. Soltan. Partition of a planar domain into d-
convex parts and its application. — Dokl. Akad. Nauk SSSR 262
(1982), pp. 271-273 (in Russian)

C.P. Rourke, B.J. Sanderson. Introduction to Piecewise-Linear
Topology. — Mir, Moscow, 1974 (in Russian)

V.P. Rubtsov. Realization of VLSI topology by rectangles. — Elek-
tronnaya technika, Ser. 3 (6) (1976), pp. 54-61 (in Russian)

P.S. Soltan. Extremum problems on conver sets. — Stiinta,
Chigindu, 1976 (in Russian)

P. Soltan, 1. Bat. The division of special 3-dimensional polyhedrons
into d-convex parts. — Seminarul Itinerant ”Tiberiu Popoviciu”
de Ecuatii Functionale, Aproximare si Convexitate, Cluj-Napoca,
2000, pp. 13-14

P.S. Soltan, A.V. Prisacaru, V.D. Cepoi. On partitions of a poly-
hedron into parallelepipeds. — Dokl. Akad. Nauk BSSR 34 (1990),
pp. 876-879 (in Russian)

V.P. Soltan. On the diameter of d-convexr hulls. — Mathematical
Research, IX, 1 (31), Chisindu, 1974 (in Russian)

V.P. Soltan. Partition of a planar set into a finite number of d-
convez parts. — Kibernetika (Kiev) 6 (1984), pp. 70-74 (in Rus-
sian), Engl. translation: Cybernetics 20 (1984), pp. 855-860

301



[31] Afra J. Zomorodian. Topology for Computing. — Cambridge Uni-
versity Press, 2005

Ion Bat, Received July 17, 2007
Revised November 9, 2007

Faculty of Mathematics and Computer Science
Moldova State University, MD-2009 Chisinau
Republic of Moldova

E-mail: 1:201n3bQ@Qgmail.com

302



