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Constructing a uniform plane-filling path in the
ternary heptagrid of the hyperbolic plane

Maurice Margenstern

Abstract

In this paper, we distinguish two levels for the plane-filling
property. We consider a simple and a strong one. In this paper,
we give the construction which proves that the simple plane-
filling property also holds for the hyperbolic plane. The plane-
filling property was established for the Euclidean plane by J. Kari,
see [2], in the strong version. We also give an application of the
construction to devise a Peano curve in the hyperbolic plane.

Keywords: hyperbolic plane, tilings, tiling problem, plane-
filling property, Peano curve.

1 Introduction

Cousider a finite set of tiles 7" based on a regular polygon of the hyper-
bolic plane. We say that there is a solution for tiling the hyperbolic
plane with tiles of 7', if and only if there is a partition S of the hyper-
bolic plane such that the closure of each part of S is a copy of some
tile of T', where a copy of the figure F' is an isometric image of F'. We
may adjoin conditions with colours on the edges: we then require that
adjacent tiles always define the same colour on their common edge.

The simple plane-filling property consists in finding a finite set
of tiles T" with the following properties:

(1) for each tile 7 of T, exactly two edges of 7 are marked; the

mid-points of these edges define an arc in 7 which we call a path

element;

(79) there is a solution of the tiling problem of 7" such that the path

elements are abutted into a single path.
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Note that due to the condition (7), the path is not a cycle. Also
note that, in the formulation of the problem, the set T does not define
an initial tile.

In this case, the path defined by the tiling is called a uniform
plane-filling path. Note that, both for regular grids of the Euclidean
or the hyperbolic planes, it is not difficult to construct paths of the
plane which visit each tile exactly once, when starting from a distin-
guished tile of T'.

The strong plane-filling property consists in finding a finite set
satisfying the simple plane-filling property together with an additional
condition:

(791) for any solution of the tiling problem of 7', the path elements
are abutted into a single path.

In other words, in case of the strong property, any solution for tiling
the plane with 7" defines a uniform plane-filling path. Note that the
plane-filling path defined in this way may then be different from one
solution to another.

Our counstruction defines a uniform plane-filling path in the hyper-
bolic plane and the generating finite set of tiles almost possesses the
strong plane-filling property. All its solutions generate a plane-filling
path, expected in one case. In that case, the path elements constitute
a countable family of disjoint infinite paths whose union visits each tile
exactly once. However, this solution can be seen as a limit case of the
other solutions. All these paths, but two ones, 7; and 7y can be joined
at infinity and the new path and 71 join 7o at infinity. In some sense,
these paths are the trace of a unique path also visiting the points at
infinity.

As mentioned in our abstract, the Huclidean plane satisfies the
strong plane-filling property, established by J. Kari, see [2]. Accord-
ingly, the paper shows that the hyperbolic plane also possesses the
simple version of the property. Call ternary heptagrid, see [3], the
tiling of the hyperbolic plane based on the regular heptagon with the

2
angle ?ﬂ We prove the following property.
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Theorem 1 There is a uniform plane-filling path for the tiling of the
ternary heptagrid of the hyperbolic plane.

We also prove another property:

Theorem 2 There is a cellular automaton on the ternary heptagrid
which constructs a uniform plane-filling path in infinite time.

The existence of such a path was required for proving a property on cel-
lular automata. Say that a cellular automaton is reversible if and only
if its global transition function is bijective and also defined by a cellu-
lar automaton. From the plane-filling property which he established, J.
Kari proved that it is undecidable to decide whether a cellular automa-
ton on the Euclidean plane is reversible or not, see [2]. The similar
question for cellular automata in the hyperbolic plane is open.

Our construction relies on the construction which we defined in
[5, 8] in order to establish that the domino problem is undecidable
in the hyperbolic plane. We very sketchily remind this construction in
section 2, mainly reminding what is needed for the present construction.

In section 3, we indicate the construction of new triangles, the
mauve triangles which we shall use for guiding the travel of the path.
In section 4, we describe the construction of a uniform plane-filling
path. We prove that the hyperbolic plane almost possesses the strong
property. We also prove that there is a cellular automaton on the
tiling {7,3} which is able to construct a uniform plane-filling path, of
course, in infinite time.

In section 5, we give an application to an algorithmic construction
of a Peano curve in the hyperbolic plane. However, we have a simpler
construction of such a curve which we shall give in a forthcoming paper.

2 The underlying construction

The tiling which we use is based on the ternary heptagrid, the tessel-
lation {7, 3} of the hyperbolic plane. We remind that it is generated by

™
reflection of a regular heptagon with interior angle 3 in its edges and,
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recursively, of the images in their edges. An illustration of this tiling
is given by figure 1, and we refer the reader to [3] for the properties of
the tiling used in this paper.

Figure 1 The tiling {7,3} of the hyperbolic plane in the Poincaré’s disc
model.

In this tiling, we introduced an auxiliary tiling, the mantilla, which
was first defined in [4] and which is used in [5, 8] to prove the undecid-
ability of the tiling problem in the hyperbolic plane.

The construction of the mantilla is based in fixing rules to assemble
two kinds of tiles: the centres and the petals, the tiles o and § of
figure 2, respectively. By numbering the edges of the centres from 1 up
to 7, we prevent the centres to tile the plane by themselves, alone. It
is needed to put petals around them.

Now, we can rule the way in which petals are put around a centre,
making a figure which we call a flower. We define four types of flowers.
Figure 3 indicates three types of them: the types F', G and 8. Now,
the type G has two variants, which we call Gy and G,, respectively,
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which are in some sense symmetric. The distinction is a consequence
of the numbering of the edges which is the same in both cases.

a B

Figure 2 Left-hand side: the tile for the centres of the flowers. Right-hand
side: the tile for the petals.

Figure 3 Splitting of the sectors defined by the flowers. From left to right:
an F-sector, G-sector and 8-sector.

These figures also display the way in which each sector determined
by a flower is split in such a way that in each sector, the complement
of its defining flower can be expressed in F- and G-sectors, with the
help of half 8-sectors. The green rays of the three pictures in figure 3
indicate this splitting. This defines a recursive process to generate the
mantilla. The algorithmn is deterministic when we proceed downwards
and it is non-deterministic when we proceed upwards.

A last ingredient consists in introducing isoclines, which play the
role of horizontals in the Euclidean plane. The levels are illustrated by
figure 4, below. They are defined by fixing the 8-centres as black nodes
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in the sense given to the nodes of Fibonacci trees, see [3, 5]. Four other
cases appear outside those indicated in figure 4, we refer the reader
to [5].

Figure 4 Splitting of the sectors defined by the flowers. From left to right:
an F-sector, G-sector and 8-sector.

These isoclines are very important: they are the basis of the con-
struction of the interwoven triangles which we need for proving the-
orem 1. These triangles were introduced in [5, 8] in order to prove the
undecidability of the tiling problem in the hyperbolic plane.

Now, we sketchily indicate how to construct these triangles in the
Euclidean plane. First, we have a line of light blue equal triangles, as
it can be seen in figure 5. They are isosceles and their main heights are
supported by the same line, the axis. Note that triangles with thick
edges alternate with triangles with thin edges. Following [5, 8], we call
phantoms the triangles with thin edges. The triangles and phantoms
which we just described counstitute those of the generation 0. Now, the
colours of the generation will alternate between red and blue, which
will be a medium blue, and say that red and blue are opposite to
each other. Assume that we constructed the generation n. We fix a
triangle of the generation n and, at the mid-point of its main height,
on the axis, we put the vertex of a triangle of the opposite colour, with
respect to that of the generation n. Then, we construct an isosceles
triangle 1" whose height is supported by the axis, in such a way that
its basis crosses the main height of the next triangle of generation n.
For simplicity, we may assume that the legs of 1" are parallel to the
corresponding legs of the triangles of generation n which are all equal
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and whose legs are also parallel. We replicate 1" by shifts along the axis
in such a way that we obtain an alternation of triangles and phantoms

_— e
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Figure 5 An illustration for the interwoven triangles. The dark strokes are
for red and the light ones for blue.

of the same colour as 7" and such that a vertex of a phantom is on the
mid-point of a basis of a triangle and a vertex of a triangle is on the
mid-point of a basis of a phantom. These triangles and phantoms, T
being included, constitute the generation n+1. Figure 5 illustrates this
point.

Our last step is to implement these triangles in the hyperbolic plane.
We are faced with three problems.

First, the choice of the place of the triangles with respect to those
of the previous generation generates a continuous number of solutions.
Let us call infinite model a given way to fix the successive generations.

The second is to define what will be the supports of the triangles
and the phantoms and what will be their axis. We have to leave the
precise details to the quoted papers, [5, 8], but here, we still give an
idea of the situation.

First we define the supports of the triangles and the phantoms. The
isoclines which we defined are periodically numbered from 0 up to 19,
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the increasing numbers going downwards. The number 20 appears for
technical reasons which are clearly explained in [5]. Now, the candi-
dates for the support of the triangles are defined by Fibonacci trees,
see [3], rooted at the F-son of a G-flower on an isocline 0, 5, 10 or 15.
Now, not all the indicated such nodes, call them seeds, are allowed to
generate a tree, in which case we say that the seed is active. How-
ever, all seeds on an isocline 0 are active. But, for the others, they
are active only if they are inside a tree rooted at an active seed. This
induces a tree of the active seeds on the isoclines 5, 10 and 15 which
have the same ancestor inside a given tree rooted at an isocline 0. Such
branches and their upward continuations are called threads. The legs
of triangles are supported by the extremal branches of the trees rooted
at active seeds and the role of the axis is played by the threads. This
induces many problems.

It may happen that a thread traverses the hyperbolic plane. If this
happens, the corresponding threads do coincide, starting from a certain
point. We call such threads ultra-threads. All the other threads
have the structure of a ray. Now, the existence of ultra-threads or not
depends on the particular mantilla which we constructed.

The other point is that we better control the situation if the trian-
gles and the phantoms of the same generation but on different threads
have their vertices and bases on the same isoclines. In this case, we
say that the triangles are synchronized. Synchronizing the triangles,
of course, also the phantoms, boils down to consider that each thread
implements the same model of interwoven triangles. Now, something
must be made more clear. We can realize a whole infinite model along
an ultra-thread. But, as a thread is bounded from above, this is not
possible for an ordinary thread. In fact, we have to study what happens
in an infinite model if we introduce a cut: we fix a line A, orthogonal
to the axis, we erase all triangles whose vertex is on the left-hand side
of A and we keep all of them which are on its right-hand side.

In [5, 8], we proved that by observing these constraints, we can
obtain the synchronization of all the implementations of the cuts de-
fined by the threads of the same infinite model. Note that as we have
continuously many different realizations of the mantilla and continu-
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ously many different realizations of an infinite model, we have in fact
continuously many implementations of the interwoven triangles.

At this point, let us note that if we could fix the infinite model
followed by the interwoven triangle, we could skip the next section and
directly go to the following one, making it much more simple. But one
model, which cannot be avoided, requires the solution which we define
in the mauve triangles.

Before turning to what is introduced for proving theorem 1, we in-
sist on a particularity of the implementation: a triangle always contains
several triangles of the previous generation on the same set of isoclines,
which is another aspect of the synchronization.

3 The mauve triangles

Now, we turn to the construction of the regions which control the path
which is defined in the next section.

3.1 Construction of the mauve triangles

To this purpose, we keep the red triangles only, but we keep in mind
the red phantoms generated by their bases, as they play a role in the
construction.

Now, to the red triangles, we superpose new triangles, which we call
the mauve triangles. Each vertex of a red triangle is also the vertex
of a mauve triangle and conversely. The legs of the mauve triangle
are supported by the legs of the red triangles, but they go further, on
the same extremal branch of the tree which defines the red triangle.
The legs are stopped by the next isocline supporting a vertex of a red
triangle of the same generation. In some sense, the length of the height
of a mauve triangle is twice the length of the height of the red triangle
sharing its vertex.

It is not difficult to construct the mauve triangles from the red
triangles. Consider a red triangle 7'. The mauve triangle M defined
by T is constructed as follows. The vertex of M is that of T and its
legs follow those of 1. When a leg of M arrives to the corner of T,
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this corner sends a purple signal along the basis of 1" in the direction
of the other corner: this can easily be determined by the tiles which
materialize the corners of T'. When this signal reaches the first vertex
of a phantom P, necessarily a red one and of the same generation of T,
it goes on the leg of the phantom which is on the same side as the
corner of 7" which it has left and it goes down along the leg of P until
the corner of P. Then, it goes on its way on the same isocline as the

A4
/

Figure 6 An illustration for the mauve triangles.

basis of P but on the direction which goes outside P. The purple signal
goes on until it meets the mauve leg which has continued its way on
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the extremal branch of the tree supporting 7', from the corner from
which the purple signal originated.

From the point of view of the tiling, it is important to notice that
the purple signal cannot be generated by a phantom which would be
internal, in this sense that it would have a phantom on each side whose
vertices lie on the basis of the same triangle. To realize this, it is enough
to give a laterality to the purple signals: a purple signal inherits the
laterality of the triangle corner from which it is originated. It is enough
to forbid a joining tile to prevent the emission of a purple signal by a
wrong phantom. Now, as a horizontal purple signal running on the
isocline of the phantom and outside it must meet the leg of a mauve
triangle, on the inside part of the leg, always clear from the tiles, see
[5, 8], if the emitting triangle does not exist, which may happen, even if
the phantom exists, then the purple signal will meet a leg of phantom
of the opposite laterality: it is easy to rule out this.

Now, the purple signal has only a construction purpose. As it plays
no more role, we shall forget it in the representations of the mauve
triangles, see figure 6.

Presently, let us indicate the properties of the mauve triangle.

3.2 Properties of the mauve triangles

Using the terminology of the interwoven triangles, see [5, 8], we say
that the set of isoclines crossed by a mauve triangle, the basis and the
vertex being included, defines the latitude of the mauve triangle. Also,
we know that red triangles have an odd index in the generations of the
interwoven triangles. We shall say that a mauve triangle associated to
a red triangles of generation 2n+1 is of generation n. The first property
is very important for the following:

Lemma 1 Let 7 be a tile of the tiling. Then for any non-negative n,
there is a mauve latitude A of this generation such that T € A. And
then: either T falls within a mauve triangle of generation n in this lati-
tude or T falls outside two consecutive mauve triangles of generation n
and of the latitude A and in between them.
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This property follows immediately from the fact that the latitude of
a mauve triangle exactly covers that of the corresponding red triangle
and the following latitude of red phantoms.

However, there is a price to pay to this: the red triangles are either
disjoint or embedded. Mauve triangles do intersect from one genera-
tion to another. Fortunately, this intersection is not that big and we
characterize it in the following statement.

Lemma 2 A mauve triangle T of positive generation n intersects
mauve triangles of generation n—1, and it possibly intersects one mauve
triangle of generation n+h+1, with h > 0. When the intersection oc-
curs, ¢ the legs of T cut the basis of the mauve triangle of the higher
generation at a point which is on the mid-distance line of the phantoms
of generation 2(n+h~+1)+1 which share their basis with that of T'. Call
low point this point on the legs of T'. The basis of T is cut by the legs
of mauwve triangles of generation n—1 at their low points.

The proof is easy and it comes from the relations of red triangles
of consecutive generations. Representing the first three generations,
figure 6 illustrates this property.

3.3 Determination of the low points

As we shall see in the next sections, the low points of a mauve triangle
play an important role. Let us show that they can be determined from
the tiles themselves.

Consider a mauve triangle T. Let R be the red triangle which
shares its vertex with that of 7" and let P denote both, the leftmost
and rightmost phantoms generated by the basis of T'. From the above
definition, we know that the low points of 7" lie on the isocline which
supports the mid-distance line of P. Now, the leg of P which is on the
same side as the closest mauve leg of T" are covered by the purple signal
with the laterality of the signal coinciding with that of the leg. On the
part of this signal which runs on the leg of P, the mid-point is easily
found. Accordingly, the purple signal sends a dark purple signal on
the corresponding isocline, outside P. In between the leg of P and the
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leg of T', the dark purple signal will meet mauve legs of triangles of
smaller generations, see figure 6. To avoid problems connected with
possible nestings of such triangles, the purple dark signal looks at the
laterality of the first mauve leg it meets: if it is of the same laterality
as his own one, he found the appropriate leg. If not, it climbs along
the mauve triangle until it meets its vertex and goes down on the
other side: by induction, it is assumed that the low points of mauve
triangles of previous generations have been determined. Assume that
this is the case. Then the dark purple signal goes on along the right
isocline, avoiding smaller mauve triangles possibly contained on those
he jumped over. Now, it will meet a first mauve leg of its laterality
which will be the expected one and so, it will determine the low point
of this leg. And so, as the low point for the mauve generation 0 is easy
to determine because it contains no mauve triangle, this process works
and it can easily be implemented with finitely many tiles. Note that
this process is similar to the one which we used in [5, 8], in order to
synchronize horizontal signals travelling on certain isoclines.
Now, we can turn to the construction of the path.

4 A uniform plane-filling path

Until the last sub-section, we assume that all the mauve triangles of
the tiling are finite. In the last section, we shall see what happens
when this is no more the case.

The construction of the path is based upon two basic patterns which
we now define.

4.1 The guidelines

The idea is to look at things globally, at the level of latitudes of mauve
triangles. We have to check that we can construct the path as the result
of an algorithmic process, infinite in time, punctuated by times t; in
such a way that at time t;; we fill up more space in the latitudes al-
ready visited up to time ¢; and that at time 751, we access to latitudes
of higher generation with respect to those accessed up to time zy.
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We shall look at the tiling by making a rather rough approximation
which will turn out to be good enough. This consists in looking at
the mauve triangles as if there were no overlapping between different
generations: we can look at latitudes as over disjoint or embedded. We
shall call this the first approximation.

At the level of the latitudes, in first approximation, we have two
figures: the triangle and the trapeze, see figure 7. The triangle is a
mauve triangle whose height is that of the latitude and the trapeze
is the part of a latitude which lies in between two consecutive mauve
triangles of the latitude and of its generation, also delimited by the
isoclines going through the vertices and the bases of these triangles.

There are two accesses of the path into the triangle or into the
trapeze. They will be called entries or exits, depending on the way
we look at the path which, by construction, is not oriented. In fact,
looking at the figures from the left to the right, we can define two
displays for the access. There is the ascending one: an access on
the lower left-hand side corner and the other access at the vertex, for
the triangle, looking to the right, and on the upper right-hand side
corner for the trapeze. There is a descending display: an access on
the lower right-hand side corner and the other access at the vertex, for
the triangle, looking to the left, and on the upper left-hand side corner
for the trapeze.

Figure 7 The basic figures: triangle and trapeze within a latitude.

Note that the descending figures of one kind match with the ascend-
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ing ones of the other kind, also provided that they exactly fit within
the same latitudes.

Now, the path cannot remain for ever within a given latitude of the
mauve triangles. This is a consequence of lemma 1. Now, the trapezes
and triangles which we define are bigger and bigger. If we fix a tile 7y
once for all, then after a time ¢, the path completely contains a ball
of radius n around 7y at time t5,. It is enough to define the t;’s by
this condition which is satisfied by lemma 1: note that a trapeze is
much much bigger than a triangle of the same latitude.

Now, we have to define the internal structure of the triangles and
trapezes above defined. For this, we notice that inside a triangle, there
are four latitudes of mauve triangles of the previous generation, and,
in first approximation, these latitudes are disjoint.

We shall look at the way we can fulfill the requirement posed upon
the triangles and the trapezes. For this, we shall introduce an inter-
mediate picture which we call the quadrangle, as the word rectangle
would be misleading in this context. The advantage of this figure is
that we can look at it as the trace of a latitude either inside a triangle
or inside a trapeze, see figure 8. We have two kinds of such quadran-
gles, corresponding to the main motion of the path in filling up this
region. One version is the descending one, see picture (d) in figure 8.
The second version is the ascending one, see picture (a) in the same
figure. In the decomposition of a quadrangle, we again find triangles
and trapezes, but of the previous generation, which are smaller. The
decomposition is repeated until the generation 0 is reached.

Three precisions must be given about the quadrangles, see figure 8.

First, a quadrangle occurs both in a trapeze and a triangle. Note
that the lateral sides of a quadrangle determine where it is in a given
latitude. If the lateralities of these sides are identical, we are inside a
triangle and outside a smaller one. If the lateralities are different, we
have to look at whether they correspond to the position of these borders
with respect to the region which they delimit. If the lateralities of the
borders define their position, we are inside a triangle of the considered
latitude. If the lateralities of the borders are opposite to their actual
position, we are in a trapeze of the considered latitude.
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The second point is about the dotted lines in figures 7, 8 and 9. In
these figures, the blue dotted lines represent zig-zags going from one
vertical border to the other while following an isocline. The zig-zag
runs over all the isoclines of the considered areas, one after the other.
In figure 8, the green dotted line represents a path along an isocline.
The blue dotted-line is a zig-zag which is bordered by the green dotted
line and by the concerned borders: they are legs of triangles, but this
time, the place of the region bordered by the legs is defined by their
lateralities.

() (@

Figure 8 The splitting of the slices.
On the left-hand side: the descending case. On the right-hand side: the as-
cending case.

Now, these slices can again be split into four horizontal slices de-
fined by the four latitudes of mauve triangles of the just previous gener-
ation which are contained in the latitude of the slice which we consider.
Figure 9 illustrates the result of this splitting for a slice.

The third point is that the slices almost follow the same pattern,
possibly after reflection in a vertical axis. We simply notice that on
one side, the lowest slice gives access to the triangle instead of putting
the path on the next isocline. On the other side, the topmost slice
also gives access to the triangle instead of going to the next isocline.
Also, we have to note that the topmost region inside a triangle, see
figure 9 is never a triangle. The representation of the figure is due to
the distortion introduced by the Euclidean representation. The upmost
slice inside a triangle is again a slice, eveun if the part outside the triangle
seems to be much smaller. At last, we also notice that the green line

262



Constructing a uniform plane-filling path in ...

of a slice is also the green line of the topmost slice of the previous
generation which is just below the isocline of the line. As we assume
that all mauve triangles are finite, such a line will always meet a leg of
a triangle, not at a corner of the leg.

Also, a last point to notice is that inside a slice there are several
triangles of the same generation within the latitude of the slice. In the
figures, we represented a single one due to the Euclidean constraints.
But in the hyperbolic plane there are a lot of them. Hower, from the
figure itself, it is not difficult to see that the same pattern is followed
inside the region delimited by two consecutive triangles: it is simply a
trapeze.

WNV.NV\ \ A\ ALY
/AR N
/\//\\/\ /\ /\\/\
ALTUNAY DA AN

(@) (@)

Figure 9 The splitting of the slices: second generation.
On the left-hand side: the descending case. On the right-hand side: the as-
cending case.

At last, note that we have to determine the isoclines which delimit
the different slices. The latitude of the slice is that of the mauve trian-
gles of a certain generation. We proceed as follows. The first slice goes
from the vertex of the mauve triangle to the mid-point of its supporting
red triangle R. The second slice goes from this mid-point to the basis
of R: again something which is easy to determine on the mauve leg.
The third and the last slices are clearly determined by the low point
and the corners of the mauve triangle. In sub-section 3.3 we have seen
how to determine the low point on the leg of a mauve triangle.

It is not difficult to see that in this way, provided that the path
meets legs of bigger triangles, which is the case from lemma 1 and
from our assumption that there is no infinite mauve triangle, it will go
further on the latitudes which it already visited and that it enters new
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latitudes. Thus, we can define times t; satisfying the above conditions.
Accordingly, the path fills up the plane and there is no initial tile.

Now, we have to look at the schema much closer as mauve triangles
overlap, which leads us to precisely define the slices. We turn to this
point in the next sub-section.

4.2 The tuning of the slices

If we look at the yellow frames of figure 6, we can see that the border of
a triangle can be altered in different ways. First, its basis is crossed by
many mauve triangles of smaller generations. Next, it is also possibly
crossed by a mauve triangle of a bigger generation.

Assume that the mauve triangle 7' we consider is not crossed by a
mauve triangle of a bigger generation. Then, we define the new slices by
simply following the border of the mauve triangles which intersect the
basis of 1" and, recursively, for the basis of each one of such triangles.
This process terminates on a mauve-1 triangle, see figure 6. In between
two triangles of the same generation as 7', the lower border of a trapeze
is also determined in a similar way: it recursively follows the lower part
of mauve triangles crossing the isocline determined by the corner of the
mauve triangle. Also, in this case, the lower exit/entry of 7" is at its
left-hand side corner.

Now, counsider a mauve triangle 77 which is of the generation n,
where n+1 is the number of the generation of 7', and assume that the
legs of 17 cut the basis of 7. In 717, this intersection occurs along the
isocline which passes through the low point of its legs. This isocline
determines the upper border of the lowest slice of 1" up to the recursive
detours caused by mauve triangles of smaller generations. Now, as the
basis of T} is below the basis of T', placing the entry to 713 at its left-
hand side corner will force the path to cut itself. And so, to avoid this
point, we place the entry of 17 at the intersection of the left-hand side
leg of 17 with the basis of 7" it is the left-hand side low point of 7T7.
Now, it is not difficult to adapt the schemes of the figure 7, 8 and 9
to the new situation. We repeat this new definition of the entry each
time when a basis of a mauve triangle crosses the low point. Now, it
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is easy to determine whether the entry of a triangle is at its left-hand
side low point or at its corner. The signal of the entry will be present
at the low point if a basis is present. If a basis is not present, the low
point sends a signal to its corner, below, in order to trigger the signal
of the entry.

Now, it is easy to see that the same new definition of the lower
entry applies when 7' is crossed by the basis of a bigger generation: it
is namely crossed at its low points and so the left-hand side one becomes
the entry of 7. The lower border of the slice associated to 7' is the basis
of the mauve triangle of a bigger generation which cuts 7'. Also note
that, from the lower border of the slice which is just above T', we notice
that the end of 17" around its vertex is cut by possibly a mauve triangle
of a smaller generation, involving the same kind of ’embroidery’ as in
the lower border of the slice of T'.

As a last point, we have to indicate that the vertex of a mauve
triangle can no more be use for the exit from the triangle, unless it
falls within a slice of the generation 0. In the other cases, the exit of
triangle T' of positive generation is determined by the lower border of
the upper slice which cuts its legs. The exit occurs at the point which
is on the leg, just below the border. The border is determined by the
basis of a mauve triangle of the previous generation which cuts 7'

As the lower border of a slice is also the upper border of the next
slice, below, we completed the change which we had to introduce in
order to take into account the overlappings between mauve triangles.

With these modifications, we can see that the travel of the path is
globally the same as what we described in the previous sub-section.

4.3 About the tiles

To conclude the proof of theorem 1, we have to give a few details
about the implementation of the just described algorithm in a finite
set of tiles.

We remember that the tiles are heptagons on which various signals
run, defining the colours of the edges of the tiles.

We have already all the signals inherited by the mantilla and by the
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construction of the interwoven triangles. To this, we append the signals
for the construction of the mauve triangles and the determination of
their low points.

The last point is to describe how the path finds its way from which
the tiles can easily be deduced.

For this purpose, we remember that most often, the path performs
zig-zags in between vertical borders, call them walls. In between two
walls, the path runs along an isocline. It runs in one direction on one
isocline and in the opposite direction on the next isocline. We can
have the same colour for both directions. However, we shall have two
colours: one for an ascending path and the other for a descending one.
Note that in different realizations of the tiling, the colours may be
interpreted in the opposite way: what is important is that we have two
colours.

Also, to facilitate the implementation, we have to prevent going
from one isocline to another, when the path is not at a wall. The wall
is always materialized by a mauve leg. Now, the path meets the wall
on both sides: when it is inside the corresponding mauve triangle and
when it is outside. We decide that the legs of the mauve triangles
are always reached by a path which is inside the triangle. As the leg
must stop outside portions of the path going to it, in fact the tiles of a
mauve leg have a mark on the side of the tile which is in contact with
the outside of the triangle and which is on the isocline. Remember that
in [5, 8], we assign a local numbering to the sides of a tile. We number
the side shared with the father by 1 and the other sides are increasingly
numbered when counter-clockwise turning around the tile. As any tile
has a father, this fixes the local numbering of the tiles everywhere.
Accordingly, on the left-hand side border, the mark for outside parts
of the path is on the side 3 of a tile. On the right-hand side border,
the mark is on the side 7.

We also have to note that the exact definition of the slices entail
a distortion of the path. What is represented by horizontal lines in
figures 8 and 9 is not always along an isocline. A few portions of the
path go along a wall, stopped by the leg and we have to take this
into account: this does not raise big difficulties, especially when we
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are outside the leg, but we have to be careful when we are inside. This
point is masked by the Euclidean representation. We have to remember
that inside a triangle, the number of tiles on an isocline from one leg
to the other is divided by at least 2 when we go from an isocline to
the previous one, in their numbering. There is a shrinking of the space
which entails distortions. This requires to propagate the information of
the presence of the wall as long as it is needed. This is not very difficult
to realize: we have to take into account that, on each border, if the
path goes to one tile from the leg on the isocline i, it cannot go closer
than the fourth tile from the leg on the isocline i—1. The required
distortion, in order that the path visits all tile is not difficult to realize:
the 3 tiles left on the isocline 1—1 have to be visited by the path on
the isocline 7, which is easy to realize. It is important to indicate that
only one portion of the path goes in this 'parallel’ way which follows a
leg: the other parts are performed by zig-zags to which we apply the
just indicated constraint, as long as the zig-zag do not again meet the
leg, directly.

At last, we notice that the number of isoclines from a slice to an-
other is always even, as this is the case for mauve-1 triangles. From
this, there is no problem to apply the following scheme: the leaving
part is always on the right isocline.

All the marks needed by the previous indications are easy to imple-
ment and require a finite number of tiles only. As we know, from [6], the
number of tiles is huge, already for the construction of the interwoven
triangles.

This completes the proof of theorem 1.

4.4 The case of infinite triangles

As indicated in our introduction, from what we proved in the previous
sub-sections shows that each time we have a tiling which does not
generate infinite mauve triangles, we get a uniform plane-filling path
defined by the tiling.

But this is no more true if there is an infinite mauve triangle. Once
the path falls inside such a triangle, it is trapped: later, it can never
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go outside the triangle.

Now, such a situation is possible. From [5, 8], we know that in the
case of a realization of the butterfly model, there are four possible cases
for the line 0 of the model: it may be accompanied by a blue basis,
which brings no harm to our construction. It may be accompanied
by a red basis. If it is a red basis of a triangle, it is an infinite red
triangle, but the corresponding infinite mauve triangle is removed to
infinity: it has no trace in the hyperbolic plane and so, this situation
is also handled by our construction. If the line 0 is accompanied by
a basis of a red phantom, this basis gives rise to red infinite triangles
and, consequently, the red vertices of these triangles generate mauve
triangles which are also infinite. And so, in this last case, we have
infinitely many infinite mauve triangles.

Accordingly, the path is broken into infinitely many components.
However, each component is a fully filling path of the region which is
delimited by the component. Also, the infinite red basis of a phantom
is also the basis of an infinite mauve triangle. Accordingly, as this basis
never meet the leg of a mauve triangle, except at its corner, the green
part of the path always runs on this isocline without any possibility to
leave it. Above this basis, our construction provides us with a single
path which visits all tiles exactly once. Denote by m; the path which
runs along the infinite mauve basis § and by 7o the path which visits
all tiles above [ exactly once. Then, we can say that 7, joins 7y at
infinity. Similarly, the paths defined by each infinite mauve triangle
and the corresponding infinite trapezes join each other at infinity. We
have that all these paths are pairwise disjoint and that any tile of the
plane is visited by exactly one of them and once. Moreover, none of
the paths is a cycle.

5 A cellular automaton to implement a uni-
form plane-filling path

Now, we can prove that there is a cellular automaton which implements
a uniform plane-filling path.
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The proof is simple: it is enough to construct the automaton in
such a way that it controls the construction of the interwoven triangles
in such a way that there is no infinite red triangle. It is not difficult
to see that there are infinite mauve triangles if and only if there are
infinite red ones. Now, to avoid infinite red triangles, it is enough to
avoid a realization of the butterfly model.

The idea for that is the following.

The automaton will operate on two layers: we can see each tile as
belonging to two copies of the ternary heptagrid. On one layer, the
automaton realizes the tiling and, on the second one, it controls the
construction performed on the first layer. Also, the automaton will
draw the mantilla and the numbering of the isoclines at the maximal
speed, i.e. speed 1. The construction of the interwoven triangles is
performed at speed at most 1, but there are longer and longer delays so
that the construction of the mantilla and the numbering of the isoclines
are always in advance. The construction of the mauve triangles and
the path will be still slower.

On the second layer, the automaton draws larger and larger circles
around a central cell 7, where by circle, we mean the border of a ball
around 7. In fact, once a new circle is drawn, the old one is erased.
The role of the circle is to detect an isocline 15 which is not inside a
triangle. Such an isocline will be called void. When the isocline 15
falls within a triangle, it is called covered.

The cellular automaton will start from a finite configuration: we
take a cell which will be, by definition, the place of the first active seed
of an isocline 0. This also means that the cell is on the isocline 0. Then
the automaton constructs two blue triangles and the corresponding
phantoms in between them. With the isocline 0 and the active seed,
a line is defined by the cellular automaton: it is defined by the mid-
points of the sides 2 and 6 of the active seed, while the isocline 0
crosses its sides 3 and 1. This is a kind of vertical which will be used
during the construction, it will be called the initial vertical. Then,
the cellular automaton proceeds to the construction of the mantilla and
the interwoven triangles until the first void isocline which occurs very
soon: an isocline 15 lies between the basis of the first blue-0 triangle
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and the second one which can be constructed a bit further on the next
isocline 0. At this time, a cell 7 is chosen on the isocline 15 which is
defined by the intersection with a vertical issued from the active seed
of the first seed, see [5, 8] for the definition of such verticals.

Now, it is decided that red triangles will be generated by the first
blue-0 triangle. In this way, the isocline 15 which passes through 7 is
covered. From this time, the automaton grows a circle around 7 on
the second layer, until the circle meets the first void isoclines: these
isoclines are detected by the fact that nothing exists on them besides
the numbering. When it is first realized, the circle meets two such iso-
clines as it works symmetrically with respect to the isocline 15 passing
through 7.

First, the automaton constructs the generations 0 and 1 until it
is possible to define a triangle or a phantom of generation 2. Then,
in order to cover the void isocline met by the circle above 7, it is
needed that a basis of a blue triangle is generated by the red triangle
previously determined. Similarly, to cover the other void isocline, the
just generated triangle of the generation 2 generates a red triangle,
accordingly of the generation 3.

Later, we proceed in this way:

As soon as all void isoclines met by the circle are covered, the con-
struction stops and the circle is grown until a new void isocline appears,
below and above 7. The detection proceeds in this way: the circle ad-
vances by 20 steps, the distance between two consecutive isoclines 15.
Each concerned cell of the circle sends a message to 7. If all isoclines
are covered, 7 sends a new message to go on by one move by 20 steps.
This is repeated until 7 receives the message that a void isocline is
found in the appropriate direction: at each cycle of the construction,
this direction is changed. It is initially upwards and then, it alternates.

When the void isocline is met, the growth of the circle is stopped.

The construction of the interwoven circles is resumed. Note that,
during this time, the construction of the mantilla and the numbering of
the isoclines never stopped and during the phase which we shall soon
describe, it also never stops.

The construction of the interwoven triangles is performed on all
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generations already constructed until it is possible to construct the
first triangles of the next generation which will also cover the presently
void isocline. The void isoclines are characterized by the fact that they
have only the isocline number, here 15. The basis which accompanies
a possible green line is not yet determined. Now, the definition of the
next generation is made possible by the construction of at least two
counsecutive triangles of the same generation and along the same initial
vertical. Then, the automaton can easily decide whether the needed
triangle has its vertex or its basis in the just previously constructed
triangle. Indeed, it is plain that the mid-distance line between the
just determined triangle and the next one along the initial vertical and
outside the circle is void. There may be void lines before as well but,
in any case, the triangle of the next generation which is built on these
triangles covers this mid-distance line and, a fortiori any one which
would be closer to 7. The alternation of the direction guarantees that
the construction will cover the whole hyperbolic plane.

Once the required triangle is constructed, the automaton goes on
constructing all triangles of the previous generations which fall within
the ball delimited by the circle. Also, at this time, the corresponding
mauve triangles are constructed as well as the path.

When this is done, the construction is stopped and a new cycle is
performed: first by growing the circle again, and then, by performing
the required constructions.

Accordingly, as the automaton covers larger and larger balls around
the same tile 7, it constructs the path in infinite time. Also, as the
process guarantees that the void isoclines are step by step covered, there
is no infinite triangle. And so, the construction of a path satisfying the
assumptions of theorem 1 is achieved in infinite time, which proves
theorem 2.

6 A Peano curve

Now, a Peano curve can easily be constructed. The topic is not new
and has been dealt with in much larger contexts than this one, see [1].
However, we can give a constructive implementation based on the uni-

271



M. Margenstern

form plane-filling path which is obtained in section 5.

The path fixes an order on the tiles so that we can number the tiles
with Z. assigning 0 to an arbitrary tile, fixed once for all. For the
step 0, we proceed as follows. In each tile, two of its edges, say ¢ and j
are marked as ends of the path. Consider the mid-points A and B of the
edges ¢ and j respectively. The points A and B determine a segment
which is supported by the hyperbolic line passing through A and B.
In the considered tile n, the trace of path in n is the segment [AB].

Figure 10 The first step of the downwards construction.

For the next step, in each tile n, we replace the segment of the
path which crosses n by the appropriate path represented in figure 10.
The tiles of the figure represent all the possible cases for an entry on a
fixed edge and the exit on another one: there are indeed six possibilities.
These basic patterns can be adapted by an appropriate rotation around
the centre of the tile so that one of the entries coincide with the side of
the tile crossed by the path of step 0. This defines the path of step 1.

Note that each pattern of figure 10 can be split into two parts: the

central one and the ring 1. The ring 1 can be viewed as splitted into
seven parts. Such a part is a trapeze, defined by an edge of the tile,
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two radiuses of the tile, from its centre to the vertices of this edge, and
the segment joining the mid-points of the radiuses. The mid-points of
the radiuses from the centre 2 of the tile and its vertices, are called
the points of order 1.

Now, inside a tile n, the points of order 1 define a new tile which
we denote by n;. Note that the centre of n; is also €2. Now, the tile n;
is crossed by a path defined by two rays joining at €2, the centre of
the tile. Note that n; is also a regular heptagon, but its angles are
not those of n as it is smaller. Remember that in the hyperbolic plane
there is no similarity.

Assume that we defined the step k. In each tile n, we define in n;
the same construction as we defined for n at the step k. If we were
in the Euclidean plane, we could simply say that we apply to ng a

dilatation around 2 of amplitude R Now, in the hyperbolic plane

such dilatations do not exist. However, we can repeat the construction

Figure 11 The second step of the downwards construction.

which we defined for n to n1, as it is based on a two dimensional
dichotomic process. Now, we have to also define how we transform
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the ring 1. In each trapeze of the ring, we have cells of order k£ which
are also trapezes. We can see this when we go from the step 1 to the
step 2, see figures 10 and 11. Each trapeze of order k£ has opposite
sides and opposite bases, defined at this stage. When k = 1, the sides
are supported by the radiuses which define the trapezes and the bases
are an edge of n and the corresponding edge of ny. Each trapeze of
order k is crossed by a segment from one side to the other or a segment
crosses one of the bases and then crosses a side. For the step k+1, each
trapeze is split into four trapezes of order k+1: we join the mid-points
of the sides and the mid-points of the bases and this define the four
new trapezes. In the new trapezes, what is on a side of the trapeze of
order k remains a side and what is a basis remains a basis: this allows
to define the sides and the bases of the trapezes of order k+1. An edge
of a trapeze of order k41 is a side of order k+1 if and only if either it
is supported by a side of order k, or if it is opposite to a side of order k.
Similarly, an edge of a trapeze of order k+1 is a basis of order k41 if
and only if either it is supported by a basis of order k or it is opposite
to a basis of order k.

In fact the pattern of the path inside a trapeze can be described in
a precise way which is very close to what is performed in the Euclidean
plane, for instance in the construction of the plane-filling path of [2].
However, in the quoted paper, the construction defines growing up
structures and here, we go in the opposite direction: the new structures
are smaller and smaller. Figure 12 indicates the patterns which are used
to go from the step k to the step k-+1 in the ring 1.

The four trapezes of the figure indicates the four possible paths
which can be symbolized by ABCD, BCDA, CDBA and DABC.
Now, the connection with a neighbouring trapeze or with the central
region is given by paths which are represented by the dotted lines of
figure 12. In each picture of the figure, only two points among A, B, C,
D give rise to dotted lines. These points are called the entries. Now,
at each entry, the path goes through one dotted line exactly. And so,
each picture gives rise to four paths, depending on the connection with
the neighbouring ones.

As k becomes bigger, the situation looks closer and closer to a Eu-
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clidean situation. Indeed, as k gets bigger, the size of the trapezes
of order k£ becomes smaller and smaller. Now, it is known that the
infinitesimal elements are the same for the Euclidean and for the hy-
perbolic planes. This means that, as the neighbourhoods of a point get
smaller, the hyperbolic situation looks more and more Euclidean.

Figure 12 From the step k to the step k+1.

Now, for each k, the step k defines an infinite curve P,. We also
know that, locally, the Euclidean plane and the hyperbolic one have
the same topology. Consequently, we can see that the curves Py simply
converge to a curve Py, which goes through each point of the hyperbolic
plane.

As indicated in the introduction, it is possible to define a simpler
construction of a Peano curve than this one: it will be done in a forth-
coming paper. It also makes use of the figures 10, 11 and 12 of this
section.
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7

Conclusion

I hope that this paper shows the interest of the construction given
in [5, 9, 6]. As indicated in [7], there is still much work to do in this
domain. In particular, it remains to see whether the strong plane-filling
property holds or not in the hyperbolic plane.
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