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An edge colouring of multigraphs

Mario Gionfriddo, Alberto Amato

Abstract

We consider a strict k-colouring of a multigraph G as a sur-
jection f from the vertex set of G into a set of colours {1,2,. . . ,k}
such that, for every non-pendant vertex x of G, there exist at
least two edges incident to x and coloured by the same colour.
The maximum number of colours in a strict edge colouring of G
is called the upper chromatic index of G and is denoted by χ(G).
In this paper we prove some results about it.

1 Introduction

Let G=(X,E) be an arbitrary multigraph. A strict edge k-colouring of
G is a surjection f from the edge set E into a set of colours {1,2,. . . ,k}
such that, for every non-pendant vertex x of G, there exist at least
two edges incident to x and coloured by f with the same colour.

Following the definition, the minimum number of colours in a strict
edge colouring of a multigraph is one. This is a complementary fashion
of the fact that, in the classical edge colouring, the maximum number
of colours is trivially equal to the number of edges of the multigraph.

The maximum number k for which there exists a strict edge k-
colouring of a multigraph G is called the upper chromatic index of G
and is denoted by χ(G). An edge colouring of G which uses exactly
χ(G) colours is called a maximal edge colouring.
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2 Main results

Theorem 2.1 - Let G1,G2 be two disjointed multigraphs, x a ver-
tex of G1 such that d(x)≥2, y a vertex of G2 such that d(y)≥2, σ
a simple path from x to y with no edge in common with G1 and G2,
G=G1∪G2∪σ. Then χ(G)=χ(G1)+χ(G2)+1.

Proof. Let be h=χ(G1), k=χ(G2) and let f be a strict edge h-
colouring of G1, g a strict edge k-colouring of G2 with no colour in
common. Since we can obtain a strict edge h+k+1-colouring of G
simply by giving to all the edges of the path jointing x and y a colour
distinct from all the colours of f and g, then χ(G)≥h+k+1.

Suppose that χ(G)≥h+k+2. Then there exists an edge p-colouring
f of G, with p≥h+k+2. Since the edges of σ must be coloured with
the same colour, the number of colours of f in the multigraph G1 is
not less than h+1 or the number of colours of f in the multigraph G2

is not less than k+1, that’s false. So χ(G)=h+k+1. 2

Theorem 2.2 - If G is an eulerian multigraph and P is an edge par-
tition of G in cycles, then χ(G)≥|P |.

Proof. For an eulerian connected multigraph, there exists, as it is
well known, a partition as P . Observe that it is possible to give the
same colour to all the edges of every cycle of P and colours pairwise
distinct to every cycles of P . 2

Remarks
1) Considering theorem 2.2, there exist cases in which χ(G)>|P |.

It suffice to examine a simple graph G with 6 vertices formed by two
cycles of length 4 having two vertices and no edge in common: since
every vertex has even degree, this graph is eulerian and χ(G)=3.

2) Observe that, if every cycle of the partition P has exactly one
vertex in common with exactly one other cycle of P , then the graph is
simple and χ(G)=|P |.

M. Gionfriddo, L. Milazzo, V. Voloshin proved [4] the fol-
lowing theorems:
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Theorem 2.3 - Let G=(X,E) be an arbitrary multigraph, c the maxi-
mum number of disjoint cycles, p the number of pendant vertices of G.
Then

χ(G) = c + |E| − |X|+ p

Corollary 2.4 - For a graph Kn with n≥3, we have:




χ(Kn) = 9k2−7k
3 if n = 3k

χ(Kn) = 9k2+k−2
2 if n = 3k + 1

χ(Kn) = 9k2+5k−2
2 if n = 3k + 2

Now we can prove the following

Corollary 2.5 - For a graph Km,n with 1<m≤n, we have:

{
χ(Km,n) = 2mn−2n−m

2 if m is even
χ(Km,n) = 2mn−2n−m−1

2 if m is odd

Proof. Observe that the maximum number of disjoint cycles of
Km,n is m

2 if m is even and m−1
2 if m is odd. Since Km,n has m+n

non pendant vertices and mn edges, the statement follows by simple
calculating from theorem 2.3. 2

In the case m=n, we have:

{
χ(Kn,n) = 2n2−3n

2 if n is even
χ(Kn,n) = 2n2−3n−1

2 if n is odd

Theorem 2.6 - For every tree A=(X,E), we have

χ(A) =
∑

x∈X

(d(x)÷ 2) + 1
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where, for every m,n∈N, m÷n=m-n if m≥n and zero otherwise.
Proof. Let r be a root of the tree. Observe that every maximal

edge-colouring f of A has the property that, for every vertex x of A
with x 6=r and d(x)>2, there exist exactly d(x)-2 edges incident to x
coloured by f with colours pairwise distinct. Since for every pendant
vertex y of A, d(y)÷2=0, the statement of theorem follows. 2

Before introducing theorem 2.7, we will call p-tree of height h a tree
defined by induction in the following way:

1) A vertex is a p-tree of height 0;
2) A p-star is a p-tree of height 1;
3) For h≥2, we call a p-tree of height h a tree obtained from a p-tree

A of height h-1 by connecting every pendant vertex of A with p other
vertices.

Theorem 2.7 - For a p-tree A of height h with p≥2, we have χ(A)=ph-
1.

Proof. By induction. If h=1, the statement is trivially true. Let
be h>1 and suppose the statement true for every p-tree of height h-1.
From a p-tree A′ of height h-1 and from a maximal edge colouring f of
A′ we can obtain a p-tree A of height h and a maximal edge colouring g
of A by adding ph vertices and ph edges, from which at most (p-1)ph−1

can be coloured by colours pairwise distinct from the colours used by
f . Therefore χ(A) =χ(A′)+(p-1)ph−1=ph−1-1+(p-1)ph−1=ph-1, and
so the assertion follows. 2

Remarks
1) It is possible to prove theorem 2.7 starting from theorem 2.6. In

fact, in a p-tree of height h with p≥2, there are 1 vertex with degree p,
ph−1
p−1 -1 vertices with degree p+1 and ph pendant vertices, so that:

χ(A) =
∑

x∈A

(d(x)÷ 2) + 1 = (
ph − 1
p− 1

− 1)(p− 1) + p− 2 + 1 = ph − 1

2) If we apply theorem 2.3, we obtain simply the statement of the-
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orem 2.7 by observing that a tree is acyclic and the number of pendant
vertices of a p-tree of height h is ph.

Corollary 2.8 - For a p-tree A with p≥2 and n vertices, we have
χ(A)=(n-1)(1-1

p).

Proof. Let h be the height of A. Since n=ph+1−1
p−1 , we obtain

n=p(χ(A)+1)−1
p−1 , from which, by a simple calculation, the statement fol-

lows. 2
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