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An edge colouring of multigraphs

Mario Gionfriddo, Alberto Amato

Abstract

We consider a strict k-colouring of a multigraph G as a sur-
jection f from the vertex set of G into a set of colours {1,2,...,k}
such that, for every non-pendant vertex z of G, there exist at
least two edges incident to x and coloured by the same colour.
The maximum number of colours in a strict edge colouring of G
is called the upper chromatic index of G and is denoted by Y (G).
In this paper we prove some results about it.

1 Introduction

Let G=(X,E) be an arbitrary multigraph. A strict edge k-colouring of
G is a surjection f from the edge set E into a set of colours {1,2,...,k}
such that, for every non-pendant vertex x of G, there exist at least
two edges incident to x and coloured by f with the same colour.

Following the definition, the minimum number of colours in a strict
edge colouring of a multigraph is one. This is a complementary fashion
of the fact that, in the classical edge colouring, the maximum number
of colours is trivially equal to the number of edges of the multigraph.

The maximum number k for which there exists a strict edge k-
colouring of a multigraph G is called the upper chromatic index of G
and is denoted by X(G). An edge colouring of G which uses exactly
X(@G) colours is called a mazimal edge colouring.
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2 Main results

Theorem 2.1 - Let G1,G2 be two disjointed multigraphs, x a ver-
tex of Gi such that d(x)>2, y a vertex of Ga such that d(y)>2, o
a simple path from x to y with no edge in common with G1 and Ga,
G=G1UG2Uo. Then X(G)=x(G1)+x(G2)+1.

Proof. Let be h=x(G1), k=x(G2) and let f be a strict edge h-
colouring of G, g a strict edge k-colouring of G2 with no colour in
common. Since we can obtain a strict edge h+k+1-colouring of G
simply by giving to all the edges of the path jointing x and y a colour
distinct from all the colours of f and g, then X(G)>h+k+1.

Suppose that X(G)>h+k+2. Then there exists an edge p-colouring
f of G, with p>h+k+2. Since the edges of ¢ must be coloured with
the same colour, the number of colours of f in the multigraph G is
not less than h+1 or the number of colours of f in the multigraph G2
is not less than k+1, that’s false. So X(G)=h+k+1. O

Theorem 2.2 - If G is an eulerian multigraph and P is an edge par-
tition of G in cycles, then X(G)>|P)|.

Proof. For an eulerian connected multigraph, there exists, as it is
well known, a partition as P. Observe that it is possible to give the
same colour to all the edges of every cycle of P and colours pairwise
distinct to every cycles of P. O

Remarks

1) Considering theorem 2.2, there exist cases in which X(G)>|P)|.
It suffice to examine a simple graph G with 6 vertices formed by two
cycles of length 4 having two vertices and no edge in common: since
every vertex has even degree, this graph is eulerian and Y(G)=3.

2) Observe that, if every cycle of the partition P has exactly one
vertex in common with exactly one other cycle of P, then the graph is
simple and X(G)=|P)|.

M. GIONFRIDDO, L. MiLAZZO, V. VOLOSHIN proved [4] the fol-
lowing theorems:
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Theorem 2.3 - Let G=(X,E) be an arbitrary multigraph, ¢ the maxi-
mum number of disjoint cycles, p the number of pendant vertices of G.
Then

X(G) =c+[E| - [X[+p

Corollary 2.4 - For a graph K,, with n>3, we have:

Y(K,) = Z=T6 if =3k
(K,) = %24k=2  §f =3k 41

X p
N(K,) = 2452 ¢ ) — 3k 42

Now we can prove the following

Corollary 2.5 - For a graph K,, ,, with 1<m<n, we have:

X (Ko p) = 2mn=2n=m if m is even
n

2
X(Kipp) = 20=20=m=1if mpy is odd

Proof. Observe that the maximum number of disjoint cycles of
K, is % if m is even and mTfl if m is odd. Since K,,, has m+n

non pendant vertices and mn edges, the statement follows by simple
calculating from theorem 2.3. O

In the case m=n, we have:

XKnn) = Q”QT_?’” if n is even
X(Knn) = 72712723"71 if n is odd

Theorem 2.6 - For every tree A=(X,E), we have

X(A) =) (d(z)+2)+1

zeX
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where, for every m,neN, m-+n=m-n if m>n and zero otherwise.

Proof. Let r be a root of the tree. Observe that every maximal
edge-colouring f of A has the property that, for every vertex x of A
with z#r and d(x)>2, there exist exactly d(z)-2 edges incident to x
coloured by f with colours pairwise distinct. Since for every pendant
vertex y of A, d(y)=+2=0, the statement of theorem follows. O

Before introducing theorem 2.7, we will call p-tree of height h a tree
defined by induction in the following way:

1) A vertex is a p-tree of height 0;

2) A p-star is a p-tree of height 1;

3) For h>2, we call a p-tree of height h a tree obtained from a p-tree
A of height h-1 by connecting every pendant vertex of A with p other
vertices.

Theorem 2.7 - For a p-tree A of height h with p>2, we have X(A)=p"-
1.

Proof. By induction. If h=1, the statement is trivially true. Let
be h>1 and suppose the statement true for every p-tree of height h-1.
From a p-tree A’ of height h-1 and from a maximal edge colouring f of
A’ we can obtain a p-tree A of height h and a maximal edge colouring g
of A by adding p” vertices and p* edges, from which at most (p-1)p"~!
can be coloured by colours pairwise distinct from the colours used by
f. Therefore X(A) =x(A")+(p-1)p"1=p"1-1+4(p-1)p" 1 =ph-1, and
so the assertion follows. O

Remarks
1) It is possible to prove theorem 2.7 starting from theorem 2.6. In
fact, in a p-tree of height h with p>2, there are 1 vertex with degree p,

Z;:%ll—l vertices with degree p+1 and p" pendant vertices, so that:

ph -1 h
X(A) = dlx)+2)+1= -1p—1 —241=p"-1
X(A) = (d(x) +2) + (p_1 Jp—1)+p—2+1=p

z€EA

2) If we apply theorem 2.3, we obtain simply the statement of the-
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orem 2.7 by observing that a tree is acyclic and the number of pendant
vertices of a p-tree of height h is p”.

Corollary 2.8 - For a p-tree A with p>2 and n vertices, we have
X(4)=(n-1)(1-5).

Proof. Let h be the height of A. Since n
n:p(i(x;)jl)—l
lows. O

phtl_
, from which, by a simple calculation, the statement fol-

1 , we obtain

References

[1] C. Berge, Hypergraphs: combinatorics of finite sets, North Hol-
land, 1989.

[2] C. Colbourn, A. Rosa, Triple Systems, Oxford Science Publica-
tions, 1999, sect. 18.6: Strict colorings and the upper chromatic
number, pp. 340-341.

[3] P. Erdos, A. Hajnal, On chromatic number of graphs and set-
systems, Acta Math. Acad. Sci. Hung., No.17, 1996, pp. 61-99.

[4] M. Gionfriddo, L. Milazzo, V. Voloshin, On the upper chromatic
index of a multigraph, Computer Sciencs Journal of Moldova,
Vol.10, n.(1(28)), 2002, pp. 81-91.

[5] V.I. Voloshin, The mized hypergraphs, Comput. Sci. J. Moldova,
No.1, 1993, pp. 45-52.

[6] V.I. Voloshin, On the upper chromatic number of a hypergraph,
Australas J. Combin. No.11, 1995, pp. 25-45.

Mario Gionfriddo, Alberto Amato, Received June 5, 2007

Dipartimento di Matematica e Informatica

Universita di Catania

Viale Andrea Doria 6, 95125 Catania, Italia

E-mail: gionfriddoQdmsi.unict.it, amatoQdmi.unict.it

216



