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On Soundness for Time Workflow Nets

Inga Camerzan

Abstract

Workflow technology is widely used in order to offer com-
panies a solution for managing business processes. Time man-
agement is a critical component of workflow management. In a
workflow management system there is a delay between the mo-
ment an activity becomes enabled and the moment the activity
is executed by a certain resource. The notion of correctness also
called soundness for untimed workflow nets is extended for Time
Workflow Nets and a characterisation of this property is given
for two particular classes of Time Workflow Nets.

1 Introduction

Workflow technology has been introduced in order to model and man-
age business processes, but workflows have some disadvantages: they
are inflexible, they do not support inter-operability, and the formal
verification of their correctness is difficult. For solving these problems,
workflows can be modeled using Petri Nets[6, 9], which are expressive,
have a well defined semantic, a very accessible graphical representation
and reach techniques for checking quantitative and qualitative proper-
ties.

A work flow represents the automatization of a complex process
which consists of a set of interdependent activities, orientated towards
the fulfilling of a certain objective. The applicability domains of work-
flows are: modeling, coordination, management of business processes.
Workflows are based on cases, which are generated by external clients
or they are generated internal. A case is an instance of a workflow. A
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workflow process is designed to handle similar cases, specifying what
action must be executed and in what order.

In this article we will define and use Time Workflow nets for mod-
eling workflows, because Petri nets have well-known three advantages:
simplicity, generality, and adaptability.

- Simplicity - a reduced number of elementary concepts, which can
be combined in a large variety.

- Generality - the different kind of semantics (transition sequences,
tracks, processes) are easy to associate with Petri nets.

- Adaptability - the modification of the basic model leads to special
models which include different aspects like time, making it usable
in different domains.

Workflow properties can be easily checked using the analysis tech-
niques of Petri nets.

The correctness, effectiveness, and efficiency of the business pro-
cesses supported by the workflow management system are vital to the
organization. It is important to analyze a workflow process definition
before it is put into production. In this article we will focus on verifica-
tion (establishing the correctness of a workflow). For verification linear
algebraic techniques and coverability graph analysis can be used. With
these techniques it is known that such problem like boundness and live-
ness are decidable. That is why we will reduce soundness problem to
boundness and liveness problems.

2  Workflows

As we mentioned above a set of interdependent atomic activities forms a
workflow. Basic entities of a workflow are: actions, agents and activities
dependences.

An action can take place if some preconditions are fulfilled and it
yields some postconditions. For the execution of an action a trigger
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is necessary; a trigger can be represented by the external conditions
which lead to the execution of an enabled task.

We distinguish between four types of tasks: automatic - a task is
triggered at the moment when it is enabled, user - a task is triggered
by human participant, message - an external event (message) triggers
en enabled task instance, {ime - an enabled task instance is triggered
by a clock (we are especially interested in these types of tasks).

A task which is enabled for a specific case is a work item. A work
item is the combination of action + case + trigger (optional).

An activity is the actual execution of a work item, i.e., a task is
executed for a specific case = action + case + resourse (optional) +
trigger.

A workflow has three dimensions: the case dimension, the process
dimension, the resource dimension.

1. Case dimension specifying that every case is treated individually.

2. Process dimension specifying the workflow process, i.e., actions
and routing for these actions.

3. Resource dimension specifying the what resources are grouped in
roles and organizational units.

We will focus only on process dimension.

3 Time Workflow Nets

In this section we model the process dimension using Petri nets.

A Petri Net is a bipartite graph with two types of nodes: places and
transitions interconnected by arcs, which connect only different types
of nodes.

The process dimension specifies, as we mentioned above, which ac-
tions must be performed and in what order. For modeling workflows
by means of Petri Nets the transition will be done directly: actions will
be modeled by transitions, work items by enabled transitions, activities
by firing transitions, conditions will be modeled by places, and cases
will be modeled by tokens and dependences by arcs.
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Further we will consider only Petri nets which describe the life cycle
of one case. A Workflow net [2] will be defined as a Petri net which
models the workflow process definition.

Definition 3.1 A Petri net PN = (P,T,F,W) is a Workflow net iff:

1. PN has two additional places i and o, ”start” place @, "destina-
tion” place o.

2. If we add a transition tx to PN which connects o with © then the
resulting Petri net is strongly connected.

(where P - is a finite set of places, T - is a finite set of transitions,
FCPXxTUT x P -is the flow relation, W : F — N - is the weight
function.)

We define the extended net PN' = (P',T',F' ) with P' = P,T' =
TU{tx}, F' = FU{(0,t%), (t*,0)} W =W U{W(o,tx) = 1, W (t,1) =
1}.

The notion of trigger defined in the paragraph above corresponds
to an additional condition which must be fulfilled before the execution
of the action, so it can be modeled by a token in an supplementary
input location for the action.

There are different known methods of incorporating time in Petri
nets: associating time delay to transition, associating time delay to
places, associating time delay with arcs, associating time delays or time
intervals to different types of objects of the net, associating stochastic
time. Further we consider only Petri nets which have deterministic
time associated to transitions, in the form of time intervals, defined by
Merlin in 1972 [9] and then studied by Berthomeu-Menasche, Popova
[10, 11, 12], Berthomieu-Diaz [4, 5], Boucheneb-Berthelot. Time Petri
nets are classical Petri nets where for each transition ¢, a time interval
[at, by] is associated. The times a;,b; are relative to the moment at
which ¢ was last enabled. Assuming that ¢ was last enabled at time ¢,
then ¢ may fire only after the time interval [a; + ¢, by + ¢;] elapses.

We define a Time Workflow net in following way:
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Definition 3.2 A Time Workflow net is a tuple X=(P, T, F, W, I)
where PN=(P, T, F, W) is the Workflow net, I: T — Qg x Qg (where
Q[]" is the set of assertive numbers) is a time function which associates
timed intervals with transitions and for each transition t € T, I1(t) <

I5(t), where I(t) = (I1(t), I2(t)).

A global clock is associated with the Time Workflow net, which begins
to work as soon as the first token appears in the net. After time asso-
ciation, the Workflow net will work in following way: from the moment
when a transition ¢ is enabled, the tokens from the input locations
are stored for I5(t) — I;(t) time units, and after this time elapses the
transition fires putting tokens in their output places. For transitions
in conflict, the first transition that fires is the one which has the latest
time interval smaller.

For the definition of a state and of a change of state of the net X
we will follow [10, 11]:

Definition 3.3 Let X = (P,T,F,W,I) be a Time Workflow net and
J:T — Qf U{t}. Then S = (m,J) is the state of ¥ iff:

1. m is a marking in skeleton net.
2.Vt €T andt— <m — J(t) < I1(t)).
3.Vt (teT andt™ £m— J(t)=14).

(where symbol §f means that clock does not work, t—(p) = W(p,t),Vp €
P is arc weight from place p to transition t).

One can understand the notion of state in the following way: let
S = (m,J) be a state. Each transition ¢ in the net has a watch. The
watch doesn’t work (J(t) = #) at the marking m if ¢ is disabled at m.
If t is enabled at m, then the watch of ¢ shows the time J(¢) that has
elapsed since t was last enabled.

Let ¥ = (P,T,F,W,I) be a time workflow net. The state Sy :=
(4, Jo) with 7 the initial marking of the workflow net (the marking which
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0 iff ¢t <m
# iff t7Lm
is counsidered to be the initial state of the time workflow net.
The states in a Time Worklow Net can change due to transition
firings or time elapsing.

has a single token in place i) and Jy(t) = {

Definition 3.4 Transition t is enabled in the state S = (m,J), de-
noted by S — iff

1.t— <m
2. 11 (t) < J(¢).
The resulting state is defined as follows:

Definition 3.5 Transition t enabled at the state S = (m,J), will fire
inducing state S' = (m/,J"), denoted by S — S’ defined thus:

1. m'(p) = m(p) + At(p) = m(p) + W(t,p) — W(p, 1)
2.

f t= £’
Jt)y=< Jit) t- <mAt- <m/ANF,NEFE/ =0
0, otherwise

where Fy = {p|p € P ApF't}, F{ = {p|p € P A\ pF't}

Definition 3.6 Let ¥ = (P,T,F,W,I) be a time workflow net. The
state S = (m, J) changes into the state S" = (m', J") by the time dura-
tion T € Q, denoted by S = S iff: m' = m and the time duration T is
possible Vi(t € T N J(t) # # — J(t) + 7 < I5(t)) and
JA)+7 iff t—<m
! _ —
””_{# it Zm

Definition 3.7 RS(X,Sy) denotes the set of all reachable states from
initial state Sy.
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Definition 3.8 Transition t is live at the state S’ iff VS’ € RS(X, So) —
38"(S" € RS(X,S’) and t is enabled at the state S"). State S is live

in the net X iff all transitions t € T are live in S and X is live iff Sy

15 live in 3.

Definition 3.9 The state S is bounded iff Vp € P : 3k € N : VS' €
[S > S(p) < k. The net ¥ is bounded if VS € [Sy > is bounded.

4 The Soundness Property

This section defines a notion of correctness for Time Workflow Nets
- the notion of soundness and a sufficient condition for soundness is
proven. This property reduces to the problem of soundness for the
corresponding untimed workflow skeleton net, for two special classes
of Time Workflow Nets: time interval workflow nets with immediate
transitions: for these nets, a transition can fire as soon as it becomes
enabled, the second class is the class of time interval workflow nets with
transitions that are not forced to fire in a specific amount of time. For
these classes, the soundness property can be checked by verifying the
boundness and liveness property for an untimed Petri Net.

Definition 4.1 Let X = (P,T,F,W,I) be a Time Workflow Net. ¥ is
sound iff:

1. For every state S reachable from the initial state Sy, there exists
a firing sequence leading from S to a final state (o, J)

VS(So[*)S) = (S[*)(o, J)

2. The states (o, J) are the only states reachable from state Sy with
at least one token in place o:

VS = (M,J)(So[*)SAM > 0= (M = o)

3. There are no dead transitions in :

Vt € T, 38, S'(So[*)S[t)S")

Note that the soundness property relates to the dynamics of the WF
- net. Given X = (P,T,F,W,I) a Time Workflow Net, we define the
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extended Time Workflow Net X' as follows: X' = (P, 7', F', W', I')
where:

*P' =P

T =TU{t*}

* F'=FU{(o,t%), (t*,1)}

* I'(t) = I(t) for all t € T and I'(t*) = [0, +o0]
*W =W U{W(o,tx) =1, W (tx,i) =1}

Lemma 4.1 Let X be a time workflow net with the initial state Sy =
(1, Jo). If X is live and bounded, then X is a sound time workflow net.

Proof.

Y is live, i.e for each reachable state S there is a sequence which leads
to another state S’ in which transition ¢* is enabled. Let S’ = (m’,.J").
Since t* can fire it results that ¢* is enabled in marking m'. Place o is
the input place for t*, so m/(0) = 1. So, for any state reachable from
the initial state, it is possible to reach a state with at least one token in
place 0. So the first condition from the definition of soundness holds.

Consider S a state reachable from Sy, S = (M, J) with M > o (at
least one token in place 0). This means M = M'+ o. The transition ¢*
is fireable in this marking: Since M > o, then M(0) > 1 and o is the
only input place for ¢*, so t* is enabled in M'. Tt also holds that I; (t*) <
J(t*) because I (t*) = 0. If t* fires, a new state S' = (M’ +1,J') is
reached. Since Y’ is bounded and M’ + i > i it results that M’ +1 = 1,
so M’ should be equal to the empty state. Hence condition (2) from
the definition of soundness also holds. The final condition from the
definition of soundness results from the fact that 3’ is live.

The next lemma shows that, for time interval workflows nets with
immediate transitions (i.e transitions that can fire as soon as they be-
come enabled), the soundness property implies the boundness of the
extended time workflow net.

Lemma 4.2 If ¥ is sound and ¥t € T : I (t) = 0 then X' is bounded.

81



I. Camerzan

Proof.

We will first show that X is bounded. Assume that ¥ is sound and X is
not bounded. Since X is not bounded, there are two states S; = (M;, J;)
and Sy = (M, Ji) such that Sg[*)S;, Si[*)Sk and M}, > M;. However,
since X is sound, there is a sequence ¢ = 7g,%0,...Tn_1,tn_1 Such
that S;[o)(o, J). We will show that the sequence o’ = tg,t1,...tp—1 is
fireable from Sy. We prove the statement by induction on 7.

If n =1, then S; % Sk 4 S;1. We prove that t( is fireable at state
Sk. It holds that t; < My, since t; < M; and My, > M;. It must hold
that Jx(to) > I1(to). But this always holds, because I;(tg) = 0. It also
holds that My, > M;;.

Suppose the statement holds for n and we want to prove it for n—+1.
e b
So, if §; % - fa, Sitly ... =S Sy "5 Sin then we have the sequence:

trn— n— T
Sk g Skl---Sknfl —>1 S/m Let S, ﬂ z{l g Sil,... T—>1 Sl’n —>1

t

Sin = zl'n—l—l = Sin+1. From the induction assumption: Sy fa,

k1. Skno1 "3 Sga. It also holds that: ML, = My < My;.j €
0...n—1. We prove that ¢, is fireable at state Sk,, and My, 11 > Mn41.
We know that ¢, is fireable at Sz"n—i—l and Miln+1 = M;, < Mj,, hence
t < Mpp. It must hold that Ji,(t,) > I1(¢,). This statement always
holds, since I1(t,) = 0. So t, can fire at state S, and it results a new

state Skn—l—l with Mgp11 > M.

Using the result proven above, if Sj[0)S, and S; > Sk then there
exists o’ such that Sg[o’)Sk, such that My, > o. This fact contradicts
the condition 2 from the definition of soundness. Thus, ¥ must be
bounded. From the fact that ¥ is bounded and sound it results that
Y is bounded: if transition #* in X’ fires, then the time workflow net
returns to its initial state.

The next lemma proves the same result as Lemma 4.2 for time
interval workflow nets in which transitions don’t have the obligation to
fire at a specific moment of time.

Lemma 4.3 If ¥ is sound and Vt € T : Iy(t) = +oo then X' is
bounded.
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Proof.

We will first show that X is bounded. Assume that ¥ is sound and X is
not bounded. Since X is not bounded, there are two states S; = (M;, J;)
and Sy = (My, Ji) such that Sy[*).S;, Si[*) Sk and My > M;.

We will prove that for any sequence o = S; = Sh ta, Sity. ..

T

n—1
—

trn—1 . T
S! "5 Sin there exists a sequence o' fireable from Si: o' = S 5
.

S8 S, 5SS "5 Sy, with My, > M, where ¥ =
maz{ly(t),t~ < M;_1}.

We will prove that if Sy, = S, 2 Sy, My > My then it
holds:
Ski—1 a, St 4 Sp and My > My, where 77 = maxz{l(t),t” <
M;;_1}. We must prove that the time duration 7;° is possible at S,
ieVt:t™ < My—1 — Jy—1(t) + 7 < Ir(t). This always holds, since
I5(t) = 4o00. The resulting state has Jy,(t) = Jy1(t) +7,Vt : t <
Mj_i. Next, we must prove that ¢; is fireable at the state S},. We
know that M}, = My, > My, and t; is fireable at M], = M;;_1, so
it holds that ¢, < Mj, = Mj,—1. We must prove that I,(¢;) < J,(t).
But t;7 < My = My, so, from the definition of 7; it holds that
7 > Ii(t;). Then, Ji(t) = Ju—1(t;) + 77 > Ju—1(ty) + 11(t) > Ii(t).
So, Ii(t;) < J;,;(t). Thus we have proven that # is fireable at Sj,. For
the resulting state Sy; it holds that My > M;;.

From the fact that ¥ is sound, it results that there exists a sequence
o such that M;[o)(o,J) = M,. Then, there exists a sequence o’ as de-
scribed above such that My[o")M] = (M',J') such that M' > o. This
relation contradicts the second relation from the definition of sound-
ness, so Y cannot be unbounded. From the fact that ¥ is bounded and
sound it results that X' is bounded: if transition ¢* in ¥’ fires, then the
time workflow net returns to its initial state.

Lemma 4.4 If 3 is a sound time workflow net, then Y is live.
Proof.
First we show that state Sy is a home state for ¥/, i.e V.S € [Sp)y :

So € [S)sy. From the definition of soundness, for all states S € [Sp),
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there exists an execution sequence S[o)(o,J). We prove that ¢t* is
enabled in state (o,J). It holds that t*~ < o. We must prove that
J(t*) > I;(t*). This relation is true, because I;(t*) = 0. The resulting
state is S = (i, Jy) So, for every state S € [Sp) there exists a sequence
S[o)t*[So). Now we will prove that ¥ is live. Let ¢ be a transition
and S a state. From the soundness (3), there exists state S’ € [Sp)n
such that ¢ is enabled in S’. We show that S’ € [S)ys. We know that
S[x)sr So[*)srS". So S” € [S)y, and we have proven that ¥’ is live.

Theorem 4.1 If ¥ = (P, T,F,W,I) is a Time Workflow Net, such
that Vt € T : I1(t) = 0. Then X is sound iff the extended Time
Workflow Net, X' is live and bounded.

Proof.
The proof of the theorem results immediately from Lemma 4.1, Lemma
4.2 and Lemma 4.4.

Theorem 4.2 If X = (P,T,F,W,I) is a Time Workflow Net, such
that Vt € T : I(t) = +oo. Then X is sound iff the extended Time
Workflow Net, X' is live and bounded.

Proof.
The proof of the theorem results immediately from Lemma 4.1, Lemma
4.3 and Lemma 4.4

Proposition 4.1 Let X=(P, T, F, W, I) be a Time Workflow Net
such that Vt (t € T — I(t) = 0) and S(X) the skeleton of 2, then it
holds:

1. 8(%) is unbounded iff ¥ is unbounded.
2. S(X) is live iff X is live.

Proof.
Demonstration is similar to the demonstration from [11].

Proposition 4.2 Let X=(P, T, F, W, I) be a Time Workflow Net
such that Vt(teT— I2(t) = oo0) and S(X) the skeleton of X, then it
holds:
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1. S(X) is unbounded iff ¥ is unbounded.
2. S(X) is live iff X is live.

It can be noticed that the two classes of Time Workflow Nets de-
fined above have the same boundedness and liveness behaviour as the
corresponding classical Petri Nets (their skeletons). Now, using the-
orems 4.1 and 4.2 and proposition 4.1 and 4.2, the following results
regarding the soundness of these classes of Time Workflow Nets can be
proven.

Theorem 4.3 Let ¥ = (P,T,F,W,I) be a Time Workflow Net such
that Vt (t € T — 11(t) = 0) and S(X) the skeleton of X, then it holds:
Y is a sound Time Workflow Net iff S(X) is a sound workflow net.

Proof.

According to Theorem 4.1, ¥ is sound iff ¥’ is live and bound. Since ¥’
has for all ¢ : I;(t) = 0, then X' is live and bound iff S(¥’) is live and
bound. But S(X') = S(X)’, so S(¥') is live and bound iff S(X)’ is live
and bound. For untimed workflow nets we know that W F' is sound iff
W F' is live and bounded. So S(X) is sound.

Theorem 4.4 Let X=(P, T, F, W, I) be a Time Workflow Net such
that Vt (t € T — I5(t) = o0) and S(X) the skeleton of X2, then it holds:
Y is a sound Time Workflow Net iff S(X) is a sound workflow net.

Using theorem 4.3, theorem 4.4 and the fact that soundness is de-
cidable for untimed workflow nets, it results that:

Corollary 4.1 Let ¥ = (P, T,F,W,I) be a Time Workflow Net such
that Vt (t € T — I(t) = 0). The soundness property is decidable for
2.

Corollary 4.2 Let ¥ = (P,T,F,W,I) be a Time Workflow Net such
that ¥t (t € T — I5(t) = oo). The soundness property is decidable for
2.
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For the two classes of Time Workflow Nets described above, the
soundness property is decidable and it can be checked by verifying the
boundness and liveness property of the underlying untimed net of the
extended net Y'.

5 Conclusions

In this paper we have introduced a new class of Petri Nets for modelling
workflows with time delays associated to tasks. We have defined the
notion of soundness for Time Workflow Nets, extending the notion of
soundness defined in [2] for untimed workflow nets. It was shown for
a Time Workflow Net X that, if the extended Time Workflow Net X'
is live and bounded, then X is sound. There were identified two sub-
classes of Time Workflow Nets (Time Workflow Nets with immediate
transition firing and Time Workflow Nets with no obligation to fire for
transitions) for which the soundness property reduces to the soundness
property of the skeleton net. Thus, the soundness can be verified using
the liveness and the boundness properties of an untimed workflow net.
Therefore, the soundness property is decidable in these two particular
cases. Further we research aims at finding a characterisation for the
soundness property for all Time Workflow Nets and finding interesting
subclasses of Time Workflow Nets for which the soundness is decidable.
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