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The Pico’s formula Generalization

Sergiu Cataranciuc, Marina Holban

Abstract

The Pico formula generalizations are obtained for area cal-
culation of a polygon P through the determination of special
nodes of the network in which this P is placed. The case of
the polygon with rational coordinates of its vertexes is exam-
ined, as well as the case of the polygon with holes. In the case of
three-dimensional space a formula of volume calculation for some
polyhedrons, such as prism and tetrahedron is presented. On the
basis of theoretic outcomes an algorithm that can be applied in
calculation for areas of plane figure is elaborated.

1 The Pico’s formula

The determination problem of some efficient formulas for areas calcula-
tion of some plane figures classes presents a certain interest from both
theoretical and practical point of view. In general case, the integral
calculus come to help that will make this problem quite difficult, both
from the point of view of function construction that describes the figure
frontier and of subsequent calculations that must be effectuated. Thus
the study of some special plane figure classes, in particular polygous,
becomes very important.

Let us consider one arbitrary polygon P in the plane the vertexes
of which are the nodes of a rectangular network D. Network D is de-
termined by classes of parallel to axes OX and OY lines. The crossing
points of lines are called the network nodes.

Depending on the structure of network D the formulas for efficient
calculation of area of the polygon P are known. The result obtained
by the Austrian mathematician G. Pico in 1899 is considered to be
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The Pico’s formula Generalization

among the first results in this direction. In his work G. Pico studies
the network case, determined by classes of parallel to axes OX and OY
straight lines in which the distance between any two neighbour straight
lines is equal to one. Such a network will be called unitary network.

Theorem 1.1. [1]. The area of any polygon P, constructed in a
unitary network D is calculated by the following formula:

. b
S(P):1+§—1, (1)
where b represents the number of points of the network situated on the
frontier of the polygon, and i represents the number of points of the
network that belong to interior of this polygon.

Let’s illustrate the formula from Theorem 1.1 for polygons P; and
P, from Figure 1.

Polygon P;: On the one hand, as it can be observed the polygon P
is formed from 4 complete squares and 8 triangles (halves of squares)
of the unitary network. Thus S(P;) = 4+ 8- % = 8. Applying the
formula (1), taking into consideration that « = 1 and b = 16, we obtain
the same result:

b 16
S(P)=itg—l=1+7-1=8.

Polygon P;: The polygon P» can easily be reduced to some simple
polygons, trapeziums or triangles, the area of which is easily calculated
by the formula:

S(Py)= S(ALFH) — S(AIH) — S(DEF) — S(HGF) — S(BLDC) =
AH -hay HF-hpy BL+CD

=AH - -HF — LD =
2 2 2
. 4.1 1 .
T _5 _3 1_2+1.1:§.
2 2 2 2 2
On the other hand, applying formula (1) we obtain:
b 11 25
P)=i+-—1=84+4——-1=22.
S( 2) ’L+2 8+2 D)
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Fy Py

Figure 1.

2 The generalization of Pico’s Formula in the
rational polygons

Let us counsider P a polygon, vertexes of which have rational coordi-
nates. This kind of polygons will be called rational polygon. If the
polygon has k + 1 vertexes, than we form the increasing series of ab-
scissas

T, T, ey Ty Th+1
and of ordinates

Y, Y2, -5 Yk, Yk+1

of the polygon P vertexes. We mark

df =xip1 —x;, Vi=1k,

d! =vyiz1—vyi, Vi=1k.

Without losing from the generality we consider that df, d3, ...,
di are distinct, and dy, d, ..., d% as well. Let us form the multi-
tude D = {d}, d%, ..., df, dY, dj, ..., dI}. One rational

number « will be named divisor of the rational number 3 if g €z
(Here Z represents the multitude of integer numbers). In the case
when «, [, -« are 3 rational numbers and % € 7, g € 7Z, than
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we will say that v is the common divisor of numbers « and 3. It is
obviously that for any multitude of rational numbers there exists a
common divisor. Let us denote the common divisor of the multitude
D of elements by d’.

Let us trace in space R? parallel to axes OX and OY straight lines
so that the distance between each 2 neighbour straight lines to be equal
to d'. As a result we obtain a network marked by D(d'). Obviously,
the vertexes of the rational polygon P are situated in the nodes of this
network.

Theorem 2.1. If the vertexes of rational polygon P are situated
in the nodes of the network D(d'), then the area of this polygon is
calculated by the formula:

S(P) = (i' + % — 1) (d)?, (2)

where ' is the number of nodes of network D(d') which belong to the
interior of polygon P and V' - number of nodes on the frontier of P.

Proof: We’ll prove the affirmation of the theorem by the math-
ematical induction on n vertexes of polygon P. When n = 3 poly-
gon is a triangle ABC with certain rational coordinates of vertexes:
A= (za, wya), B=(zp, ygB), C = (xc, yc)- Let us pass to an-
other coordinate system OX*Y™*, in which z* = Z,4* = %. In this
system vertexes of the triangle will have coordinates: A* = (fi—i‘, %’i—‘,‘),
B*= (%, ) and C* = (%, ). Let us calculate the triangle’s
area in the coordinate system OX*Y™:

1| ) 1 |z i L
SAA*B*C*=‘§-;££_B 351_3—1-5-951_0 &1+ ‘:él él_AH—
@ d & d 7 d
(111 e oya| 111 qzp oyp| 111 ze ye
- d d |z yB 2 d d |z¢ yc 2 d d |za ya
2
_ b <l> A ya| |zB yB| , |Tc yefl _ 1  Saipc
2 \d Tt ys| |Tc yo| |za wal| (d)?
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The network D(d') nodes in the coordinate system OX*Y™* are the
coordinates in integer numbers. According to Pico’s formula
bl
Saaprcr =1 + 7~ L
where ¢’ is the number of nodes of the network D(d') which belong to
the interior of triangle A* B*C*, and b’ — is the number of nodes of this
network situated on the frontier of P. Thus

1
Spapcr = @)z -SaaBC -

Hence

Saapc = Spapec- - (d)?

or

/
SnaBc = <'L" + % — 1) (d)? .

Thus the induction base is proved.

Let’s admit that the theorem affirmation is true for any polygon P
with the number of vertexes smaller than n, n > 4. Let us analyse a
polygon with n vertexes from network D(d’). Let A1, Az, ..., A,
be the vertexes of this polygon, described clockwise (CW). Without
losing the generality let us consider that A, 1, A,, A; are non-
collinear points in plan. Let us connect A,_; with A;. We obtain the
triangle A1 A, 1A, and A1 Ay ... A, 1 polygon with (n — 1) vertexes.
Depending on the position of the initial polygon vertexes in plan we
obtain

S(P) =84, Ap_y T 52A,4,_14,

or

S(P) = SAl...An,1 - SAA1An—1An
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m A P
A \as / A
/ As ; !/
P . A
% An1 A=

a) b)

Figure 2.

(see Figure 2, cases a) and b)).

Let i’ be the number of nodes of the network D(d’) that are the
interior points of the polygon P = A1 Ay... Ap_1A,, i’n—l — the number
of nodes of the polygon A;As ... A,_1 with n — 1 vertexes, and i'A -
the number of nodes of the triangle A; A, 1A,. Let ¥, blnfl, b'A
be the number of nodes of the network D(dl) that are situated on the
frontier of the mentioned polygons. Let b:ih 4,_, also be the number of
nodes of the network, that are interior points of the segment [A; A,—1],
and let b, | and b”A be the number of nodes that respectively belong to
the broken lines A1 As... A,_1 and A,_1A,A;. Thus, in the polygon
from the Figure 2 a) we have the relations

N N "
7 :/Ln—1+zA+bA1A

n—1 "7

bl Zb;l71+blA—2'b:;1An_1 —2=b;;71+b”A—2 .
In the case of polygon from figure 2 b) we obtain

. ¥ "
1 =14, 1 —1ip—ba+2

(number 2 corresponds to the vertexes A; and A, that are included
into the number bHA but aren’t interior for the polygon)

b :bn—1+bA_bA1An,1_2'
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Let us pass to the calculation of areas for the polygons from the

Figure 2 a) and b).
For the case represented in Figure 2 a), considering mathematical

induction method we obtain

S(P) = SaA,4, 1A, + 5414, , =

] bl / / bl_ /
=<in1+7A—1)-(d)2+<in1+"Tl—1>-(d)2=

. bo 4 —2.0" — 420" +2 ,
(’LA—FZ ( n—1 A1An—1 ) A1Ap—1 _2) . (d )2

n71+

= <’iA +ip_1 +baa, , + 9

:<¢’+%—1)-(d’)2.

Analogically, for the polygon represented in Figure 2 b) we obtain

S(P)=854,..4,_1 —SAAA, 1A, =

! b’i / ! b’ /
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!

- b 1 —in—ba+2 | +by—2 |+

i

! ' n b” —"_b” / ! ' /
:(i +%—1+bA—%>-(d)2=<z‘ +%—1)-(d)2.

Theorem is proved.

Let us illustrate this demonstration for the case of a polygon P with
the vertexes ./fl(%, 5, B(3, 2),C(3, 3)and D(%7 2). It is easy
to calculate d = %. Thus the polygon P can be placed in the network
D (%) (see Figure 3).

In this case we obtain i = 1, b =5 and, thus

5 1\*> 5
=(14+4=-1]-{=2) ===
SaBcp ( T3 ) (6) 72
On the other hand, the polygon ABC D, being divided in 2 triangles
ABC and ACD has the area

2

36 36

-1 -
0

=

L1 — &3 Y1 — Y3
T2 — X3 Y2 — Y3

N | =

1
= — mod
2

1 1
Spapc = 2 mod ‘

N
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1
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i lf C ]
1
k
i A
a,
L L 2 E 4 L i X =
L] |} ] ] 4 [ 1 u
Figure 3.
1 _5 2 1 3 3
S = — d = — e — = —
AACD = 5 THO ‘—% =357

So Sapep = Saape + Saacp = % + % = 75—2, which corresponds
to the calculation made in concordance with theorem’s formula.

By analogy, we will say that real number 3 is a divisor of the real
number «, if% € 7.

Consequence: If P is a polygon, the vertexes of which have real
coordinates, and d is a the common divisor of these coordinates than
P can be placed in the network D(d'), and its area is calculated by the
formula

S(P) = (z + % - 1) (d)?,

where 7’ represents the number of nodes of network D(d ) which belongs

to the polygon interior, and b’ - the number of vertexes situated on the
frontier of P.
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On the basis of those mentioned above let us elaborate a calculation
algorithm of a polygon area according to the studied formula, in the
conditions when the common divisor d exists.

Let us admit that 4;, A, ..., A, arethe polygon P vertexes,
described clockwise.

Description of the algorithm

Step 1.

Step II.

Step III.

Step 1V.

Step V.

Let us draw the network D(d).

Let a and b represent the smallest and biggest values among the
abscissas of the vertexes A;, Ao, ..., A, of polygon P, and
¢ and d — the smallest and biggest values among the ordinates of
these vertexes.

Let us counstruct the rectangle D, determinated by the straights
T =a,x=0>b y=cand y = d. Obviously, in the described
conditions, the polygon P will be situated in the interior of the
rectangle D.

. . /
Let us construct the ordinate series 1 = a, 9 = 1 +d , x3 =

azg-l—d/,...,xl:bwherel:b;a-l-l.

We trace the straight X = z; for Vi = 1,n . We study the knots
of the network D(d') which belong to the rectangle D and are
situated on the straight X = x;.

Let’s consider V one of these knots:

a) If there exists a segment [A;, Aji1], j = 1,n (it’s consid-
ered A, +1 = A; ) that contains point V', then this, which is a
knot on the frontier of P, will be taken up in the calculation
of number b .

b) If the condition a) is not realized, then we trace from the
point V' a semi-straight, parallel to the positive direction of
axis OX. We calculate the number L of intersections of this
semi-straight with frontier of polygon P. If the intersection
is realized in some vertex A;, j = 1,n of the polygon, then
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such intersection will be taken into consideration in the cal-
culation of L in the case when the neighbouring vertexes A;
and A;, are situated on different sides of the semi-straight.
The knot V of the network D(d ), belongs to the interior of
the polygon P if and only if the number L is odd.

As a result of application of items a) and b) for each straight X =
X;, i = 1,n we’ll obtain the values i and b . Thus, applying respective
formula we calculate the polygon area.

Analyzing the described algorithm, we make sure of correctness of
the following result.

Theorem 2.2 The area of the polygon P situated in one network
D(d') can be calculated in time O(N?), where N is the number of ver-
texes of the polygon P.

3 Polygons with holes

According to those described above, it’s fascinating the fact that simi-
larly to the formula exposed in the Theorem 1.1, there is the subtraction
formula of the area of polygon P, with holes, built in a single network

S(P) =i+ 5~ X(Py) + 5x(6F). 0

where b represents the number of network knots which are situated on
the frontier of the polygon P, but 7 represents the number of network
knots which belong to the interior of this polygon, x(Py) = 1—n -
Euler formula for the considered polygon with holes ( n — the number
of polygon holes), but § P, denotes the frontier of this (x(0P,) = b—M,,
My, — the number of edges belonging to the frontier of polygon F,) [1].

Let’s illustrate the formula (1) for the polygon from Figure 4.

The polygon P, can easily be reduced to some simpler polygons,
the area of which is easily determined just so:

S(Pg) =S(ADV Z) — S(ABC) — S(DEF) — S(FGV) — S(HIZ)—
— S(ALM) — S(BNEO) — S(PRST) =
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Figure 4.

2 2

B R 2’

3-1 6-2 1-1_2-2_3-1_21_<2-1 1-2)_39
2 2 -

Elsewhere, applying formula (1) and taking up that ¢ = 8, b = 23,
X(Py) =1—-2=—1and x(0P;) = b— M, = 23 — 25 = —2, we obtain
the same result:

S(P)=8+ % — (-1 45 (-2) ="

We can easily make sure that, the area of the rational polygon P,
with holes, the vertexes of which belong to the network D(d') (previ-
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ously described), are calculated by formula
b 1 .
S(Py) = Z“‘E_X(Pg)"‘ﬁ'X(‘SPQ) (d)”,

where i’ — number of knots of network D(d ) which belong to the interior
of polygon P, with holes, b — number of knots which are situated on
the frontier of Py, but x () — Euler formula for the considered polygon
with n holes, x(6F,) represents the Euler formula of this frontier.
We'll illustrate those affirmed, in case of polygon P, from Figure
5. It’s easily determined that d = % As sequel, the polygon P, with

holes can be placed in network D (%)

A D U, ¥

\\ C E

e R B By TR R ST S
=
]

Figure 5.

In this case, we have i’ = 3,b =25 and x(P,)) = 1-n =1-2 = —1,
X(0Py) = b — M, = 25—26 = —1, as continuation, the polygon has
the area

S(P,) = <3+%—(—1)+%-(—1)) - <§)2=% .
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Dividing the given polygon into simpler polygons, it’s easily verified
that we obtain the same result just so:

S(P,) =S(AVWL)—2-(S(LKY)+S(KJXY))—S(DEU)—S(UEFV)-
S(FGH) — S(HIW) — S(IJX) — S(OMPN) — S(RSGT) =

:AL-LW—2-(LY'YK—KY—FJX-XY)—

2 2
_DU-UE UE+VF UV_FH-GH_
2 2 2
_HW-WI IX-XJ OM+PN E_RSQ_
2 2 2 3 B

4 Generalizations of Pico formula in case of 3
- dimensional polyhedron

Suppose P is a 3 - dimensional polyhedron without holes which contains
k + 1 vertexes with rational coordinates. As in the case of polygons,
on the basis of non-descending ranges of coordinates

o 9, R Ty Tk4+1
Y, Y2, ---5 Yks  Yk+1
21, 29, ey 2k Zk+1
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we form the multitude D = {df, d3, ..., df, d&, dj, ...,
di di, di, ..., di} where

df = ziy1 —x;, Yi=1k,

<
=)
I

\.I—\
o

d! = yit1 — vis

I
—
Eal

. .
di = zit1— 2z, Vi

We'll denote by d some of common divisors of the elements from
multitude D. (We mention that for any multitude of rational numbers
there exists, at least, one common divisor). In the space R® we pass
planes parallel to planes XOY, XOZ and YOZ so that the distance
between any two parallel and neighbouring planes is equal to d . Thus
in space R3 we obtain a cubic network which we’ll denote by Q(dl).
In this case we can say that P is a d -rational polyhedron. In a sequel
we’ll study the problem of volume calculation of polyhedron P when
this is a pyramid or prism.

Definition 3.1 One polyhedron P, the vertexes of which are sit-
uated in the knots of network Q(dl), is named d -rational elementary
polyhedron, if with exception of knots in which the vertexes of P are
situated, this contains no other knots from Q(d').

Easily can be observed that if P is a 1-rational elementary tetrahe-
dron with height h = 1, then the volume of this is V = %. Surely, on
the basis of those exposed earlier we obtain

1 1 b 1 3 1
=—-S,-h==-(i+=-—-1)-h=-"- ——1)-1=-=.
Vv 3 Sp 3 <’L+2 ) 3 <0+2 ) 6

In the case of d -rational tetrahedron with the height H we have
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Theorem 3.1 Any straight prism, the vertexes of which are situated
in the knots of rational network Q(dl), can be divided in d -rational
elementary prisms.

Proof: Firstly we observe that any polygon from plane, the ver-
texes of which are situated in the knots of rational network D(d ) can
be divided into d -rational elementary triangles, that is triangles which
with exception of knots in which the vertexes of these are placed, con-
tain no other knots of the network D(d'). In this case we’ll say that a
triangulation of the polygon, determined by network D(dl) is given.

Oune of possible triangulations of any polygon can iteratively be
obtained in the following way:

1. We denote by N(P) the multitude of knots of unitary network
which belong to polygon P, that are situated on the frontier bd(P)
or in the interior int(P) of this. Evidently N(P) # @.

2. We choose an element t € N(P) Nbd(P).

3. We form the multitude I'(¢) of all w € N(P) knots, w # ¢, for
which the segment [¢, w] belongs to the polygon P, which con-
tains no other knots of the network excepting ¢ and w, which can
be united by a curve that belongs integrally to the polygon P.

4. We denote by ¢ and ¢ the elements from ['(t) which belong
to the frontier bd(P) and for which the curve line [q', t, q”]
is placed on this frontier. We execute an order of elements of
multitude I'(¢) correspondingly to the clockwise direction, begin-
ning with one of the knots q/ or q”, finishing with the second,
with the condition that the curve which unites consecutive el-
ements from I'(¢) belongs as a whole to the polygon. Suppose
L(t) = {s1 = ¢, $3, ., Sk_1, Sp = q } (see Figure 6
a) ). We draw up a curve, consequently uniting elements from
I'(t). We denote by Pr the polygon with the frontier bd(Pr) =
[s1 = g, S92, s Sk_1, Sk=4q . t g]- We mention that
int(Pr) contains no knots of the network. Surely, in the opposite
case such knot z will belong to a triangle [s;—_1, ¢, si],1=2,k
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which means that in the interior of the cone s;_1, t, s1 there exist
nodes which weren’t taken into consideration at forming the set
I'(t). It is obvious that Pr is a triangulated polygon.

13:-.51? 6 A1 ..
Vit N SEEER R § oW A YElE oW w
a) b
Figure 6.

5. Let us denote by Bd(P) the common frontier between P and Fr
and eliminate the set Bd(P) Nint(Pp) from P. If we obtain as a
result a void set of the points from the plan then we obtain the
triangulation of the initial polygon. Otherwise we denote by P
the remained part of the polygon. We mention that in general
case the obtained domain P can be a reunion of simple polygons.
(see Figure 6 b). Let us return to the step 2 and continue the
triangulation procedure.

If for the polygon P from Figure 6 a) we consecutively apply the
described algorithm, then we obtain the situations described in the
Figure 6 a), b) and Figure 7 a), b).

Finally we’ll obtain a triangulation of the initial polygon. Such a
triangulation is presented in Figure 8. Of course, the triangulation of
the polygon on the basis of the described algorithm is not obtained
univocally. Surely, the number of the triangles into which the polygon
will be divided is always the same.

Now let P be an arbitrary prism, the vertexes of which are situated
in the nodes of the network Q(dl). Let us triangulate the polygon
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Figure 7.

Figure 8.
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from the base of the prism according to the described procedure. In
accordance with the obtained base configuration we trace a vertical
section of the prism P and the planes parallel to the base through
different nodes of the network. As a result we obtain a division of
prism P into d -rational elementary prisms.

Consequence. Any prism the vertexes of which are situated in
the nodes of the network Q(d') can be divided into (2i +b— 2)(n — 1)
d -rational elementary prisms, where 1 is the number of nodes of the
network situated in the interior of the polygon on the base of the prism,
b — the number of nodes on the polygon frontier, and n — the number
of nodes on a lateral edge.

Proof: According to the Euler formula, the number of triangular
domains into which a plane can be divided using k points is 2k — 4. In
the case of the studied polygon k = i 4+ b. Because the domains from
the polygon exterior do not interest us we obtain that the polygon can
be divided into 2k —4—1—(b—3) =2(i+b) —4—-1—-0+3 =2i+b—2
triangles. Because there are n nodes of the network on the lateral edge
of the prism we trace (n — 1) sections parallel to the base and thus we
obtain (2i + b — 2)(n — 1) d -rational elementary prisms.

Theorem 3.2. The volume of a prism with the vertexes in the
nodes of a network Q(d’) can be calculated by the formula:

!

V= (2i4b—2)-(n—1)-(d)?,

N | —

where 1 is the number of nodes of the network Q(d/) which s situated in
the interior of the polygon on the prism base, b — the number of nodes
on the polygon frontier, and n — the number of nodes on a lateral edge.

Proof: It is known that a d -rational elementary prism can be
divided into three d -rational elementary pyramids of equal volume.
Thus, according to those mentioned above, the volume of such a prism
is 3 (d)2-h= X (d')3. Taking into consideration the consequence 3.1
we obtain the affirmation of the Theorem 3.2.
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Theorem 3.3. The volume of a pyramid, the vertezes of which are
in the nodes of the network Q(dl) is calculated by the formula

1 ,
Vzg-(2i+b—2)-k-(d)3 :
where 1 and b represent the number of network nodes, that belong to
the interior of the base of the pyramid and to the frontier of this base
respectively, and k — the number of nodes on the height traced from the
pyramid vertex.

Proof: According to those described above let us make a triangu-
lation of pyramid base. Joining every node of the network that belong
to the base with the vertex of pyramid, we obtain (27 + b — 2) d-
rational elementary pyramids. Each of these pyramids has the height
h =d - (k—1), where k is the number of nodes that belong to the
height traced from pyramid vertex. Thus for initial pyramid we have

(d)2 -

G (2i+b—2)-(k—1)-(d)?.

V=02i+b-2)-

| =

Theorem is proved.
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