Computer Science Journal of Moldova, vol.15, no.1(43), 2007

Aspect oriented programming
and component assembly

A. Colesnicov L. Malahova

Abstract

The article describes an attempt to use the aspect oriented
programming for construction of a graphical user interface from
components. Aspects were applied to produce the glue code. Pre-
viously some doubts were expressed on possibility of such usage.

1 Introduction

The main efforts in development of complicated software products for
scientific applications are applied to the creation of their computational
engines that solve their target problems. Supplying a modern graph-
ical user interface (GUI) for the resulting system is a different task
that usually meets a shortage of resources. Our own experience with
the Bergman symbolic computation system (SCS) and review of other
systems illustrate this [1].

We investigate in this article a possibility to create a GUI for a
given SCS semi-automatically from a set of ready-made components.
The modern techniques of component programming (CP) give us a lot
of useful approaches, e.g.: conceptions of black, grey, and white boxes;
the notion of the glue code (the additional code that is necessary to
assemble components together); lists of requirements for components,
etc. Nevertheless, we found the existing CP frameworks not fully suit-
able: they provide less than we need in the automation of component
assembly, and they provide much more than we need being oriented
mainly towards distributed applications.

(©2007 by A. Colesnicov, and L. Malahova

38

AOP and component assembly

Aspect oriented programming (AOP) is a technique to add a new
behavior to an existing program without changing its sources and even
binaries. It is mostly used to handle cross-cutting concerns like logging
or debugging. E.g., we need to add almost the same code in regularly
selected places of the program to trace it. AOP concentrates templates
of additional code and insertion points in aspects. Aspects are compiled
separately, and the code weaving is performed during the execution of
the program.

To apply AOP for the semi-automated assembly of a GUI from
components, we noted that the glue code is regular and repeating, and
that it can be generated from a formal description of the GUL. With
AOP, we use an unchanged GUI template and unchanged components,
and generate only aspects containing the glue code. We have checked
this idea by implementing it.

Application of the AOP techniques to the CP was claimed in 1999
[2] but was not developed further that time, may be because that so-
lution had supposed language extensions. Moreover, in 2003 C. Perez
had published a note in his blog! under the title “Do aspects super-
sede components” that motivates the impossibility of such application.
Our article describes a successful experiment in usage of the AOP for
component assembly resolving therefore these doubts.

The article begins with a short review (Sec. 2-3) of existing tech-
niques and frameworks of CP. See [3,4] for more details. Sec. 4 briefly
describes the AOP. We describe in Sec. 5 our implementation of the
idea formulated above. The next Sec. 6 discusses requirements to com-
ponents. The article terminates with conclusions (Sec. 7) and acknowl-
edgements.

Lhttp://www.manageability.org/blog/archive /20030604 %23do_aspects_supercede_
components

39

A. Colesnicov, L. Malahova

2 Component programming: black-box tech-
niques

Techniques of component adaptation may be roughly classified as white-
boz, grey-boz, and black-box [5, p. 2-6].

At white-box reuse we actually need the full knowledge of compo-
nent’s internals. The most primitive kind of such reuse is the copy-and-
paste technique known also as the code scavenging. Another technique
is the inheritance usual at object-oriented programming. We meet
here at the first time the important notion of the glue code, i.e., the
code that assembles components together. At the inheritance, the glue
code is represented by new methods in the subclasses of the original
component.

Grey-bozes were thoroughly discussed in [5]. The following example
is adapted from there: let we have a black-box component Sort that
takes its input and produces the sorted output. We can replace this
component. Suppose the initial component used the Insertion sort
that is stable, i.e., keeps order of records with equal keys. We note this
behavior during experimentation and use it in our programming of
other parts of our system. Then we replace the component by another
one that implements Tree sort. This algorithm is unstable, and we
are in the wrong side. Therefore some knowledge of this component’s
internals is necessary. With Sort, we can return to the black-box model
including stability in its output specifications but there are another
situations where this is impossible, e.g., when a component depends on
an external service [5, p. 3-5]. Grey boxes are used in most modern
technologies.

Black-boxes hide all their internals; only input and output specifica-
tions are exposed. Due to their simplicity, this is the most comfortable
model for assembly. There are many techniques to manipulate them.
We present below several CP technologies based on black-box model.

40

AOP and component assembly

2.1 Wrapping

This technique is also named containment when referred in COM tech-
nology (see 3.3 below). A wrapper can be defined as a container object
that encapsulates a given black-box component and intercepts all its
input and output. The simplest wrapper adapts the containing ob-
ject’s interface. More complicated wrappers can restrict or extend the
functionality of their containing objects.

Wrappers perform additional calls during the interface tunnelling
and can therefore lose in performance.

2.2 Superimposition

Superimposition was introduced by J. Bosch [6]. The component is
included inside one ore more layers that intercept all messages to and
from it. Each layer can convert a message in a passive object, ana-
lyze its contents and react in correspondence. Then some additional
behavior is superimposed over the initial component’s behavior.

original class file Adaptation specification
byte stream

| Class loader | Delta file compiler |

class file structure

class file structure

| Interpreter | | JIT |

v v

| Runtime system |

Figure 1. Binary component adaptation

41

A. Colesnicov, L. Malahova

2.3 Active interfaces and binary component adaptation

Active interfaces were proposed by G. Heineman [7]. An active inter-
face decides whether to take action when a method is called. All inter-
face requests pass two phases: the “before-phase” before the compo-
nent performs any steps towards executing the request, and the “after-
phase” when the component has completed all execution steps for the
request. The active interface does not adapt component’s behavior;
instead, it enforces the necessary behavior at run-time.

Binary component adaptation [8] changes compiled (binary) com-
ponent while it is loaded and was applied to Java. It is illustrated
by Fig. 1 taken from [8, p. 2]. We see that adaptation specification is
prepared separately and compiled separately by a delta file compiler to
a delta file. A modifier is a single additional part of the Java virtual
machine weaving the delta file with the original class.

Both these techniques were superseded by the aspect oriented pro-
gramming (see Sec. 4 below).

3 Component programming: industrial com-
ponent models

Attempts to define a set of standards for component implementation,
customization, and composition led to such industrial component mod-
els as CORBA/CCM, JavaBeabs/EJB, COM, .NET.

3.1 CORBA/CCM

Common Object Request Broker Architecture (CORBA) and CORBA
Component Model (CCM) were developed by OMG2. CORBA is an
infrastructure that provides communication of distributed objects or
components. The Object Request Broker (ORB) supports communi-
cation of components independently of their platforms or the methods
of their implementation. All communicating components should be
registered in an implementation repository. The components (objects)

2Object Management Group, http://www.omg.com

42

AOP and component assembly

are represented by their stubs and skeletons that are their platform
and language independent abstractions. To create stubs and skeletons,
a specialized language called IDL (Interface Definition Language) is
used. Instances of stubs look like local objects and accept method in-
vocations from other objects. The actual target objects can be located
elsewhere in the network and get these invocations through skeletons.
Skeletons handle argument arrangement, actual method invocations
and rearrangement of resulting values that are passed back to stubs.

3.2 JavaBeans/EJB

JavaBeans is a technology that is implemented for Java and permits to
produce visual (graphical) components that are platform-independent,
and reusable.

EJB are Enterprize JavaBeans introduced by SUN®. EJB are non-
visual components of two kinds, session beans and entity beans. Session
beans provide the communication of a client and a database. Entity
beans represent the data from the databases and provide methods to
manipulate these data. A session bean exists while a connection ex-
ists between a client and a database. An entity bean exists while the
corresponding data exist in a database.

The EJB model allows the developer to implement business logic of
applications and do not go into the things like transactions or security.

3.3 COM

Microsoft’s Common Object Model (COM) defines a binary structure
for interfaces between a COM objects (COM-compliant components)
and their clients. There is a standard way to lay out virtual func-
tion tables (vtables) in memory, and a standard way to call functions
through vtables. Components can be implemented in different lan-
guages. There exists Microsoft’s IDL to define interfaces. Each object
can provide several services. All services are registered in a system

3http://java.sun.com/developer/onlineTraining/Beans/index.html|

43

A. Colesnicov, L. Malahova

registry using a global unique identifier (GUID). New implementations
of existing objects use new GUIDs.

COM provides two methods of binary reuse, containment and ag-
gregation. The first one is in fact wrapping: the object intercepts
method calls and forwards them to its internal objects. In aggrega-
tion, a COM object exposes the services of another object as its own
services.

3.4 .NET

The .NET framework (now version 3.0; regrettably, different versions
are not compatible) is the latest platform from Microsoft that delivers
components’ services through Internet. A .NET application is com-
posed of assemblies. An assembly contains compiled code and meta-
data. The manifest is included with each assembly and contains the
assembly name, its version, the list of files, the list of dependencies,
and the list of exported features.

4 Aspect-oriented programming

Aspect-oriented programming (AOP) generalizes, systematizes, and for-
malizes the code weaving. The code weaving was used in many circum-
stances like logging, tracing, debugging, security checking, etc. An
example of early (1989-1990) use of the code weaving at the imple-
mentation of a debugger can be found in [9].

In AOP, the existing code is extended by aspects. An aspect con-
tains pointcuts and advices. A pointcut is a template that defines join
points. Each time the program execution passes a join point, the cor-
responding advice is executed. The advice code seems to be weaved
with the original program code at the join point.

The source code weaving is a single possible solution in languages
like C+4. On the contrary, the Java binary code is well-defined and
permits the binary code weaving. The AspectJ* implementation of

“http:/ /www.eclipse.org/aspect;/

44

AOP and component assembly

Aspect Java started with the source code weaving in 2001, then got
the bytecode weaver at build time, and use the bytecode weaver at
class loading since 2005.

The AOP is a popular and developing technique. Detailed descrip-
tions and examples can be found elsewhere®.

5 Implementation

We selected Java for portability, and Eclipse® with AspectJ plug-in as
our implementation tool.

Suppose we have an engine that performs some symbolic calcula-
tions. The engine gets data for a computation session as a text file or
several files. The engine does not interact with the user during calcu-
lation; it is, therefore, a true “black box” that takes data and produces
results. We want to wrap the engine in a GUI that collects data, creates
text files, runs the engine over these files, and shows results.

A GUI consists of the constant part and the variable part. The
constant part contains the session management: storing data for each
session, their modification, etc. We also found useful a notion of enwvi-
ronment, or partially defined session [1]. Each session can be based on
an environment where some data are already defined. The environment
management is implemented like the session management.

Other features of the constant part of a GUI are possibilities to
select one of several engines, to start external programs, to check col-
lected data, to show help, etc.

Modules that enter the data form the variable part of a GUI. These
modules depend on the problems solved by a particular engine.

During the assembly of a GUI its constant part is taken as the base.
The developer prepares list of data and defines how they have to be
entered in the GUI (by selection from several variants, by marking,
by text editing, by 2D formula input, by entering parameters of a
mathematical object using a wizard, etc.) Each possible method of

®http://en.wikipedia.org/wiki/Aspect_oriented_programming
Shttp:/ /www.eclipse.org/

45

A. Colesnicov, L. Malahova

GUI generator N -
GUI formal description

—

Component repository A generated GUI

Resident part Resid

Object

part

Component (type A)

™1 Object o Constant
Component (ty pe B) ... more objects part
~— | o N i
Component (ty pe B) \\\‘ /
Component (ty pe B) — //
\\
—
g Object
Component (ty pe C) Adaptor //) Variable
| \// . -
] / ... more objects part
Component (type C) I
>
Component (type C)
... more components

< Glue
code

Type A: constant part, obligatory
Type B: constant part, non-obligatoory
Type C: variable part

Figure 2. Generation of GUI in our project

the data input is implemented as a customizable component. The
necessary modules pass the customization and are glued together with
the constant part of the GUI.

The system consists therefore of a pre-implemented constant part,
a set of data input components, and a GUI generator that adapts and
assembles all parts together.

We already noted that the generated GUI contains the constant
and the variable part. The constant part performs a lot of independent
standard tasks (e.g., “Save session as...” or “Select engine”). We
apply the CP techniques at the development of both parts of GUI
The constant part is also composed from several components and the
resident part. There is a possibility to vary the constant part. Some
components of the constant part are not obligatory. The GUI developer
marks included components of the constant part in the list (default is
“Include all”).

46

AOP and component assembly

There is some difference between components of the constant and
variable GUI parts. The former do not need adaptation; the ques-
tion is “to use or not to use”. The latter are customizable through
parametrization.

The generation of a GUI can be illustrated by Fig. 2.

The resident part contains, in particular, the control center. The
control center registers all assembled components, collects and keeps
data from data input components, and produces files for the engine.

The following techniques can be used to assemble applications from
components:

e Manual assembly; the gluing code is written manually.
e Visual assembly in an IDE (Java Builder designer, etc.).
e Automated assembly.

The first two techniques are not suitable because they are oriented
mainly towards a professional software developer. We selected semi-
automated script-based assembly. At first it is necessary to plan the
menu structure. The planned menu structure is fixed in an XML de-
scription. Using the XML description, a Java menu source is generated
programmatically. For each menu item, its action is generated as an
aspect. The menu, the aspects and the constant part of the GUI are
weaved together resulting in a ready-made GUIL.

Fig. 3 shows a simplified GUI that was generated using this tech-
nique. The opened dialog permits 2D input of polynomials. To assem-
ble this component to the GUI, it was necessary to generate 2 lines
of code in the Java menu source, and an aspect source of 11 lines (5
significant lines), in total 13(7) lines. The constant part of the GUI
and the component sources were not changed at all.

6 Requirements to GUI components

Liier and Rosenblum [10] define a component as a unit of independent
deployment prepared for reuse that does not have persistent state. The

47

A. Colesnicov, L. Malahova

Session Problem
1
Exit ;
E

| | Wluse2p

At

=]

fp

P v

Figure 3. 2D input component in a generated GUI

latter means that a component is a set of classes and does not contain
objects.

The following seven requirements of component development were
formulated in [10].

1. We should follow the common principles of modular design. In
particular, the private and public parts of a component should
be separated.

2. Component should be self-descriptive.

3. Component interfaces should be accessed within a global name
space through unique names.

4. Development process has two parts, component development and
application composition.

48

AOP and component assembly

5. Application development consists of the component composition
and the implementation of additional functionality that is not
available in components.

6. We should provide multiple views: a component developer view,
a composition view, a type view, an instance view, an overall
structure view, etc.

7. The best component reuse is achieved through reuse by reference.

Now we discuss the application of these seven requirements in our
case.

1. Modular design. The public part of a component should contain
public interface definitions, and, optionally, installation tools and
self-description. The private part contains implementation (set
of classes) and resources (e.g., graphic or help files).

In [10], installation tools and self-description are exposed as oblig-
atory subparts of component’s public part. Installation means
providing instances of the classes implemented into the compo-
nent (objects) for component’s clients. It is straightforward in
the simplest case; however, a more complicated component may
internally select from different implementations of the same pub-
lished interface.

In our case, separation of public and private parts will be strictly
adhered. Installation means for us parametrization and inclusion
in the generated GUI, i.e., gluing. This is made using aspects as
described above in Sec. 5.

2. Self-description. It is used in a limited way in industrial compo-
nent models like Java Beans, COM, and .NET. Lier and Rosen-
blum [10, p. 4] define five levels of self-description:

1. The syntactic level. 1t provides signatures of abstract data
types that are provided by the component or required by it.
A special language (IDL) can be used for such descriptions.
We saw that this is a common feature in many CP platforms.

49

A. Colesnicov, L. Malahova

2. The behavioral level. It provides semantic description of
data types. The semantic description can be informal, semi-
formal, or even formal.

3. The synchronization level. It provides information that per-
mits cooperating components to resolve concurrency prob-
lems.

4. The QoS, or non-functional, level. QoS (Quality of Service)
is the usual term for all non-functional specifications like
the volume of used memory, the response delay, the result
precision, etc.

5. The non-technical level. It provides other information like
price, contact address, support phone, gained official certi-
fications, etc.

Self-description is less necessary as our components will be used
by the GUI generator in programmed manner. The corresponding
parts of aspects are in fact self-description in the syntactic level.

Global naming scheme. We will use our components inside a
monolithic system; therefore, we have to use unique names.

-

Two-stage development process. In our case, component de-
velopment and component usage are strictly separated in time.
The assembly of a GUI is executed by a different developer, prob-
ably by a mathematician that programmed a calculation engine
and wants the GUI for it.

. Functionality not present in components. The constant part
of GUI provides such functionality in our case. Components are
dialogs or wizards to enter one or more session parameters.

Multiple views. In our case, the component development and

their composition are strictly separated in time. The instance
view may be useful during the GUI generation.

50

AOP and component assembly

7. Reuse by reference. This principle is applicable in the case
when the components have different sources and need mainte-
nance, e.g., distant update. Such option is not supposed in our
development, but we could provide it later. If the resulting sys-
tem became widely used, the existence of a central component
repository may be useful.

7 Conclusions

There exists many classifications of component assembly paradigms.
One such classification was proposed by a research group’ at the Uni-
versity of Waterloo, Canada. The classification is as follows:

Design Patterns describe how to assemble objects basing on the
separation of concerns. Design patterns capture design experi-
ence “in-the-small”. The viewpoint approach to software design
helps the designer to isolate many design pattern constructs.

Frameworks are semi-finished software architectures for a specific
application domain, and they attempt to capture design expe-
rience “in-the-large”. Frameworks represent the highest level of
reusability currently found in software design and implementa-
tion. Design patterns and frameworks are related, in that design
patterns are normally used to assemble components in a frame-
work.

We have a semi-finished GUI (constant part) and a set of compo-
nents. Therefore our solution can be classified as a framework that is
based on the AOP and automates the CP. This is a successful attempt
to widen the area of the AOP towards the realm of components, at
least for adaptable monolithic applications.

Thttp://csg.uwaterloo.ca/program.html

51

A. Colesnicov, L. Malahova

Acknowledgements

The work was supported by the INTAS grant Ref. Nr. 05-104-7553
“Interface generating toolkit for symbolic computation systems”. 2D
input component was adapted by dr. Ludmila Burtseva.

References

[1]

2]

3]

[4]

[5]

[6]

7]

S. Cojocaru, L. Malahova, A. Colesnicov. Interfaces to symbolic
computation systems: reconsidering experience of Bergman. [/
Computer Science Journal of Moldova, vol. 13, no. 2(28), 2005,
p- 232-244.

K. Lieberherr, D. Lorenz, M. Mezini. Programming with Aspectual
Components. College of Computer Science, Northeastern Univer-
sity, Boston, MA, Report #NU-CCS-99-01, March, 1999.

1.-G. Kim, D.-H. Bae. Dimensions of Composition Models for
Supporting Software System Ewvolution. Technical report CS/ TR~
2005-244, Dept. of Electrical Engineering and Computer Science,
KAIST, Daejon, Korea, December 7, 2005.

A J.A. Wang, K. Qian. Component-oriented programming, A
Wiley-Interscience publication, 2005, ISBN 0-471-64446-3.

M. Biichi, W. Weck. A Plea for GreyBox Components. Turku Cen-
tre for Computer Science, TUCS Technical Report No. 122, Au-
gust 1997, ISBN 952-12-0047-2, ISSN 1239-1891.

J. Bosch. Composition through Superimposition. |/ In: Object-
Oriented Technology — ECOOP’97 Workshop Reader, J. Bosch,
S. Mitchell (eds.), LNCS 1357, Springer-Verlag, 1997.

G. Heineman. A model for designing adaptable software compo-
nents. /| Proceedings, 22" International Conference on Computer
Software and Applications Conference (COMPSAC), Vienna, Aus-
tria, Aug. 1998, p. 121-127.

52

AOP and component assembly

(8]

[9]

[10]

R. Keller, U. Holzle. Binary Component Adaptation. Department
of Computer Science, University of California, Santa Barbara, CA
93106, Technical Report TRCS97-20, December 3, 1997.

A. Colesnicov, L. Malahona. Some interface problems between a
compiler and a conversational debugger. Buletinul Academiei de
Stiinte a Republicii Moldova, Matematica, Nr. 3(6), 1991, p. 12—
20, ISSN 0236-3089. — In Russian.

C. Liier, D. Rosenblum. WREN - An Environment for
Component-Based Development. Department of Information and
Computer Science, University of California, Irvine, CA 92697,
Technical Report #00-28, September 1, 2000.

A. Colesnicov, L. Malahova, Received April 10, 2007

Institute of Mathematics and Computer Science,
5 Academiei str.

Chiginau, MD—2028, Moldova.

E-mail: kae@Qmath.md, mal@Qmath.md

53

