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Abstract

Several variants of new digital signature schemes (DSS) based
on the discrete logarithm and factorization problems have been
proposed. Considered DSS are characterized in that a novel
mechanism of the signature generation is used, in which two pa-
rameters of the (k, S) or (R, S) signature are defined after solving
a system of two congruences. In the case of composite modulus
additional restrictions conditions have been introduced for selec-
tion of the public key.

1 Introduction

Public key cryptosystems based on hard mathematical problems are
well approved for information authorization, i.e. for generating digital
signatures. For such application the most important of such problems
are the following: 1) factorization of a large integer number and 2) find-
ing discrete logarithm modulo large prime number. The first problem
underlies the RSA cryptosystem and the second problem is the base of
ElGamal’s DSS, US standard FIPS 186, and Russian GOST P.34.10-94.
The large modulo exponentiation procedure is used in these schemes.
The RSA cryptosystem uses composite modulus n that is a product of
two randomly chosen prime numbers r and q: n = rq. In the cryp-
tosystems of the second type the prime modulus p is considered.

In RSA the public key is represented by pair of numbers (e, n), and
the private key is a number d, which is calculated using the following
formula: ed mod n = 1, where ϕ(n) = (r−1)(q−1) is Euler phi function

c©2006 by A.A.Moldovyan, D.N.Moldovyan, L.V.Gortinskaya

397



A.A.Moldovyan, D.N.Moldovyan, L.V.Gortinskaya

of n. Security of this system is based on difficulty of calculating d while
ϕ(n) is an unknown value. The ϕ(n) value can be easily calculated
after factorization of the modulus n, therefore divisors of n have to be
kept in secret (or to be annihilated after the e and d keys have been
generated). The signature corresponding to a plaintext M is a value S,
which satisfies the following verification equation: Se mod n = H(M),
where H(M) = H is the hash function value corresponding to M . The
signature generation equation is the following one: S = Hd mod n.
In RSA the signature length is approximately equal to the n modulus
length (denoted as |n|). At present in different practical applications
the used n modulus has the length 1024 bits or more (for example, 1024-
2048 bits). In ElGamal’s DSS the public key y is calculated exactly as in
Diffie-Hellman’s public-key distribution system: y = αx mod p, where
x is private key (an integer number of sufficiently large size) and α is
a primitive element modulo p. The signature is represented by a pair
of numbers (R,S) that are calculated depending on the both private
key and message to be signed. The signature generation procedure is
described as follows:

1) generate a random number k that is coprime with p− 1;

2) calculate R = αk mod p;

3) calculate the S value satisfying the following equation:

H = (xr + kS) mod (p− 1) ,

where H is the hash function value calculated from the plaintext.

The (R, S) signature is considered as valid one if the following sig-
nature verification equation is satisfied: αH = yRRS mod p. To ensure
required security the modulus p size has to be equal to |p| ≥ 1024 bits.
Thus, the (R, S) signature size is 1024 bits or more.

In this paper several new DSS are considered, which are based on
difficulty of the discrete logarithm and factorization problems. Addi-
tional restriction requirements to selection of the composite modulus
are formulated.
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2 New Signature Generation Mechanism

The ElGamal-like DSS allow one to calculate the (R, S) and H values,
which satisfy the verification equation, without using the private key.
In practice this theoretic attack is eliminated due to using secure hash
functions, since the attack produces random values H. Indeed, the
mentioned attack is based on the preliminary generating the R param-
eter with special structure that permits calculation of the “correct”S
and H values that play a part of adjusting parameters. Representing
the R parameter as R = αuyt mod p and using two fitting parameters
attacker can avoid necessity to solve discrete logarithm problem, i. e. he
can easily find “satisfactory” values S and H, but the last is a random
one. While using strong hash functions, the attacker can indicate no
plaintext corresponding to the H hash value calculated while attack-
ing. Because of this fact the described attack has theoretical character
and no practical significance in majority of applications. However, the
possibility of mentioned attack is an unwanted property of DSS.

To eliminate such attacks we propose to use a new mechanism of
the (R, S) signature generation in the DSS based on difficulty of solving
DLP. The idea is to calculate simultaneously both parameters R and
S each of which play a part of a variable defining the exponent value
and a part of a multiplier in the signature verification equation. In new
schemes the R and S parameters form two different functions F1(R,S)
and F2(R, S). The signature parameters are changed in such a way
that the F1(R, S) function changes, while the F2(R,S) function keeps
its value constant. Due to variability of the F1 function and invari-
ability of the F2 function we have potential possibility to calculate the
values R and S satisfying the verification equation. Assuming that we
consider only such values of the R and S signature parameters, which
save the value F2 = Z = const, it is potentially possible to simplify the
verification equation and calculate some signature value (R (Z) , S (Z))
depending on Z. While constructing some concrete verification equa-
tion the (F1, F2) pair of functions can be used, for example, in one of
the following forms:

(R/S mod p,RS mod p),
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(RS mod p,R/S mod p),

(RSH mod p,RS mod p),

(RS mod p, RS2 mod p),

(RSZ mod p,RS mod p),

(RSZ mod p, R/S mod p),

where Z = RS mod p, the R and S values are supposed to have the fol-
lowing structure: R = αk mod p and S = αg mod p. The values k and g
are to be calculated simultaneously as solution of the system of two con-
gruences, one of the lasts defining invariability of the F2 function and
having the form: k + g ≡ const mod (p− 1). Taking into account that
signature verification expression should contain multipliers depending
on the hash value and public key we have the following examples of
DSS based on the described signature formation mechanism:

R/S = y(RS mod p)H

α(RS mod p) mod p,

R = SyH(RS mod p)α(RS mod p) mod δ mod p,

(R/S)(RS mod p) = y(RS mod p) mod δαH mod p,

where δ is an arbitrary prime number such that |δ| ≈ 0.25 |p| (the mod δ
operation defines a compression function depending on F2).

Considering these concrete variants of the verification equation it is
possible to note that an attacker can re-designate the signature param-
eters R and S and reduce the verification equation to some equivalent
expression in which parameters R and S can be calculated consecu-
tively without using the private key. For example, let us consider the
DSS defined by the verification equation

R = SyH(RS mod p)α(RS mod p) mod δ mod p.

Denoting Z = RS mod p we have Z/S = SyHZαZ mod δ mod p.
Now the signature can be forged as follows:

i) select arbitrary value Z,
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ii) calculate S2 = Z
(
yHZαZ mod δ

)−1
mod p,

iii) if the value W = Z
(
yHZαZ mod δ

)−1
mod p is not a quadratic

residue, then go to step 1, otherwise calculate S = W 1/2 mod p and
R = Z/S mod p.

It is easy to demonstrate that the calculated signature satisfies the
initial verification equation. The last attack shows that we should make
one step back in our DSS design, namely we should indicate the value
R in the verification equation as αk mod p and define the signature as
(k, S). In this case the verification equation can be simplified, since
there is no necessity to indicate the α parameter two times (as αk

and αH) and to use the compression function as second type function
depending on variables k and S and keeping its value constant. Let us
consider the following verification equation that takes into account the
mentioned remarks:

αk+H ≡ S2y(αkS mod p) mod p,

where gcd (3, p− 1) = 1. Using private key it is possible to generate
the (k, S) signature as follows:

i) choose random number U < p− 1 and calculate Z = αU mod p;
ii) solve the following system of two congruences:

U ≡ k + g mod (p− 1) ,

k ≡ gH + x + Z mod (p− 1) ,

where k and g are unknown parameters:

k =
2U −H + xZ

3
mod p− 1,

g =
U + H − xZ

3
mod p− 1

iii) calculate S = αg mod p.

To avoid additional restriction imposed on the p modulus one can
use a generator of the γ-order group

{
ε, ε2 mod p, ..., εγ−1 mod p, εγ
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modp}, where γ is a prime divisor of p and |γ| = 160-256 bit, as the
α parameter in the verification equation. In this case the mentioned
above system of congruences gets the form:

U ≡ k + g mod γ,

k ≡ gH + x + Z mod γ.

Therefore the k value size is |k| = 160-256 bit and we get reduction
of the signature length. Similarly the other variants of DSS can be
constructed. For example, the following verification equations define
several DSS:

εk+H ≡ Sy(εkS mod p) mod p,

εk ≡ SHy(εkS mod p) mod p,

εHkS−1 ≡ y(εkS mod p) mod p,

ε−kS ≡ yH(εkS mod p) mod p.

Concrete system of congruences, which should be solved to calculate
the k and g parameters, can be easily derived from the respective ver-
ification equation.

If the prime modulus p in the described DSS design approach is
replaced by RSA modulus n, factorization of which is kept secret, then
security of DSS will be defined by intractability of both the DLP mod-
ulo n and the factorization modulus n. Indeed, to calculate γ it is
necessary to find the ϕ (n) value. The public key of such schemes
is (n, y, α) or (n, y, ε). Unfortunately the DLP modulo n can be re-
duced to problem of finding discrete logarithms modulo r and modulo
q. Therefore this replacement will be actual for practice, if some new
algorithms of finding discrete logarithms that avoid the factorization
problem are developed. Some DSS, based only on the factorization
problem, represent current interest since they provide possibility to
reduce the difficulty of signature verification procedure. In the next
section we consider some of such DSS variants.
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3 Schemes based on difficulty of the modulus
factorization

While using the RSA modulus the verification equation can be simpli-
fied due to avoiding the y or/and ε parameters. The public key in this
case is (n, ε) or n, respectively. The DSS security in this case depends
on difficulty to factorize the RSA modulus. Several possible variants
are present in Table 1.

Table 1. Some variants of new DSS schemes
Verification equation System of congruences Formulas for calcu-

lating the k and g
values

Public
key

αk ≡
S

Hαk

S
mod n mod n

k − g ≡ U mod γ
gZ ≡ U mod γ(
Z =

(
HαU mod n

)
mod γ

) k = ZU
1−Z

mod γ

g = U
1−Z

mod γ
n

αk−HSαkS mod n ≡
1 mod n

k + g ≡ U mod γ
k + gZ ≡ H mod γ(
Z = αU mod n

) k = ZU−H
Z−1

mod γ

g = H−U
Z−1

mod γ
(n, α)

R =
SHα(RS mod n) mod n

k + g ≡ U mod γ
k −Hg ≡ Z mod γ(
Z = αU mod n

) k = HU+Z
H+1

mod γ

g = U−Z
H+1

mod γ
(n, α)

R =
SαH(RS mod n) mod n

k + g ≡ U mod γ
k − g ≡ HZ mod γ(
Z = αU mod n

) k = U+HZ
2

mod γ

g = U−HZ
2

mod γ
(n, α)

In the last two DSS variants with composite modulus we indicate
directly the R value in the verification equation. The attack based
on using arbitrary value Z and calculating the respective value S is

prevented because the S value is to be calculated as S =
(

Z
αHZ

)1/2
mod

n or as S =
(

Z
αZ

) 1
H+1 mod n. In both cases it is difficult to calculate

S without factorizing the modulus.
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4 Additional restriction requirements for cho-
osing the RSA modulus

Let us consider the scheme from Table 1, where (n, α) is a public key,
where α is a generator of the cyclic γ-order group, i. e. we have αγ ≡
1 mod n. Some internal relation between the values αγ and n provides
potentially some additional possibilities to factorize modulus n. Let us
assume that γ is a divisor of r − 1 and α does not divide q − 1. In
practice to generate the α generator the following expression is used:
α = βϕ(n)/γ mod n 6= 1, where β is a random number for which we
have gcd (β, n) = 1. (Using the Euler’s theorem one can demonstrate
that αγ = βϕ(n) ≡ 1 mod n, where ϕ(n) = (r − 1) (q − 1), i. e. if
βϕ(n)/γ mod n 6= 1, then the βϕ(n)/γ mod n value is a generator of the
γ-order group). We have:

α = βϕ(n)/γ mod n ≡
(
β(q−1)

)(r−1)/γ
mod n ⇒

α ≡
(
β(q−1)

)(r−1)/γ
mod q ⇒ α ≡ 1(r−1)/γ mod q ⇒

α ≡ 1 mod q ⇒ α− 1 ≡ 0 mod q ⇒ q|α− 1 ⇒ gcd (α− 1, n) = q

Thus, in the considered case it is possible to factorize modulus using ex-
tended Euclidean algorithm. Therefore some restrictions should be im-
posed on generation of the public key. A way preventing the described
factorization method is to use such numbers r and q that both of them
contain the same required large divisor γ and γ2 does not divide neither
r − 1 no q − 1. If this additional requirement is imposed, then the α
parameter can be generated as follows: α = βL(n)/γ mod n 6= 1, where
L (n) = lcm [r − 1, q − 1] is the generalized Euler’s function. Thus,
α = βuv mod n 6= 1, where u = (r − 1)/γ and v = (q − 1)/γ. If we
use, while generating the α value, a value that is simultaneously prim-
itive element modulo r and primitive element modulo q as the β value
(i.e. β is “double” primitive element), then we will have simultaneously
α 6≡ 1 mod q and α 6≡ 1 mod r. While using a “double” primitive el-
ement we deterministically generate a “strong” α value. But it is not
strictly necessary to use “double” primitive elements. We can generate
a “strong” α value selecting random β values. In this case we should
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check if α 6≡ 1 mod q and α 6≡ 1 mod r hold. Probability that the
current value is not “strong” is sufficiently low (see the next section).

The second way to generate “strong” public key is to use composite
value γ, i. e. γ = γ′γ′′, where γ′|r − 1 and γ′′|q − 1 and γ′ and γ′′ do
not divide q − 1 and r − 1, correspondingly. For generating the α
parameter we have the following formula: α = βL(n)/γ mod n 6= 1,
i. e α = βuv mod n 6= 1, where u = (r − 1)/γ′ and v = (r − 1)/γ′′.
Analogously to the first case, while using the β value that is ”double”
primitive element, we get α 6≡ 1 mod q and α 6≡ 1 mod r.

Thus, we have two different ways to define difficulty of the n modu-
lus factorization in the considered DSS. Unfortunately in the first way
we have a problem to avoid possibility to calculate the secret parameter
γ without factorizing the n modulus. Indeed, we have:

n− 1 = (uγ + 1) (vγ + 1)− 1 = uvγ2 + uγ + vγ = (uvγ + u + v) γ,

Usually the n − 1 value can be easily factorized; therefore the secret
γ can be recovered, if no new restriction requirements are imposed on
selection of the n modulus. In the second way factorization of the n−1
value does not allow one to determine the γ secret. Thus, we have
shown that the second way is preferable in practice.

The considered above restrictions are also actual for the DSS
schemes, where the α parameter is not used directly in the verification
equation. Indeed, parameters R and S are generated in accordance
with the following formulas: R = αk mod p and S = αg mod p, there-
fore, if one of the congruences α ≡ 1 mod r or α ≡ 1 mod q are valid,
then we have: R ≡ αk ≡ S ≡ ag ≡ 1 mod r or R ≡ αk ≡ S ≡ ag ≡
1 mod q, correspondingly. Thus, if the additional restrictions for gener-
ating modulus n are not taken into account, then it becomes possible to
factorize n as follows: gcd (S − 1, n) = d or gcd (R− 1, n) = d, where
d = r or d = q.
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5 Experiments

5.1 Portion of “double” primitive elements

Since some new restrictions have been imposed on the n modulus se-
lection it becomes interesting if the portion of the required values is
sufficiently large and the generation of the required parameters is not
difficult. Some experiments have been performed to clarify this prob-
lem. We have investigated the probability of appearance of “double”
primitive element modulo r and modulo q for the case |r| = |q|.

In the first experiment two arrays {q1, q2, ..., q100} and {r1, r2, ...,
r100} of random prime numbers q and r were fixed and for all couples
qi and rj , where i, j = 1...100, random values β were checked whether
they were primitive elements both modulo qi and modulo rj . The
number of cases in which the β value is a “double” primitive element
were calculated. The portion of “double” primitive elements had been
estimated as ratio of successful attempts to total number of the checked
values β.

The second experiment was analogous to the first one except the
numbers rj had special structure such that rj − 1 = 2r′, where r′ was
a prime (q was a random prime).

The third experiment was analogous to the first one except both of
the numbers qi and rj had special structure such that rj − 1 = 2r′ and
qi − 1 = 2q′, where r′ and q′ were primes. Results of the experiments
are presented in Table 2, where probability of appearance of ”double
primitive element” for different r and q are shown.

Table 2. Probability of appearance of “double primitive element”

random r and
q

r = 2r′ + 1,
q is random

r = 2r′ + 1,
q = 2q′ + 1

size16 bits 0.138 0.190 0.242
size 32 bits 0.141 0.191 0.249
size 128 bits 0.140 0.191 0.250

406



Cryptoschemes Based on New Signature Formation Mechanism

As you can see, the numbers r and q of special case have largest
amount of ”double primitive elements”.

5.2 The probability to get gcd (α− 1, n) 6= 1

Fulfillment of the condition gcd (α− 1, n) 6= 1 means that the α value
is not “strong” and permits easy factorization of the n modulus. We
considered such primes r and q, that r and q had the following special
forms: 2kγ + 1, 2kγt + 1, 2kγwz + 1, 2akγ + 1, where γ, z w, a and
t are primes, k is integer. For such structures of primes the following
theoretic estimation holds: Pr[gcd (α− 1, n) 6= 1] = Pr(r|α − 1) +
Pr(q|α−1), where Pr[r|(α−1)] = Pr[q|(α−1)] = 1

γ . In the experimental
investigation we had generated 10,000 random values β for each r. For
each case we calculated the value α = βL(rq)/γ2

mod n and checked
if the inequality gcd (α− 1, r) 6= 1 holds (successful attempt). The
average probability to get gcd (α− 1, r) 6= 1 had been estimated as
ratio of successful attempts to 10,000. The results are shown in Table
3.

Table 3. Probability to get gcd (α− 1, r) 6= 1
γ = 13 γ = 61 γ = 251 γ = 1021 γ = 4093 γ = 16381

r = 2kγtr + 1 0,07691 0,01635 0,00397 0,001 0,00024 0,00006

r = 2kγwrzr +1 0,07694 0,01639 0,00396 0,00097 0,00024 0,00006

r = 2ak
rγ + 1 0,077 0,01633 0,00397 0,00098 0,00026 0,00006

Theoretical esti-
mation

0,07692 0,01639 0,00398 0,00098 0,00024 0,00006

6 Examples

This section presents numerical examples illustrating the performance
of two variants of the DSS schemes based on the described method.

Example 1 corresponds to the verification equation

αHS = (αky)(α
kS mod p) mod p,
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where p is prime, α is a γ-order group generator, γ is a prime divisor
of p− 1.
p = 1114480948460437900461137676365117526064437706171;
γ = 438842863793146886096235091634916473156863;
α = 89497661212609760234724389905138807616510137179;
H = 12345678900987654321.
Private key x is equal to x = 123456789421; and public key y is y =
= αx mod p = 708643348121294999285070698925285606867092013226.

Signature generation procedure is as follows.
Choose random number U < p− 1 : U = 324567894535645;
calculate Z = αU mod p:
Z = 597303588980498739252487223012749133018804956266.

Solve the following system of two congruences:
{

H + g = Z(k + x)modγ
k + g = Umodγ

We get

k =
H − Zx + U

Z + 1
mod γ =

= 24322086709251169695760096421007332936051

g =
UZ −H + Zx

Z + 1
mod γ =

= 414520777083895716400474995538477034756457

Now we can calculate S = αg mod p.
S = 342481256020462421464329275660203908416868341255.

Signature is a pair of integers

(k, S) = (24322086709251169695760096421007332936051,

342481256020462421464329275660203908416868341255).

The signature verification gives:

αHS = 186116586750325286758065722053257979431171344776

(αky)(α
kS mod p) mod p =
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= 186116586750325256758065722083257979481171344876.

Thus, the verification result is positive.
Example 2 corresponds to the verification equation

αk mod n = SH(αkS mod n) mod n,

where n is RSA modulus (n = r ∗ q), α is a γ-order group generator.
The γ value represents a production of two primes: γ = γ′γ′′, where
γ′|r − 1, γ′ 6 |q − 1 and γ′′|q − 1, γ′′ 6 |r − 1.

In the example we have generated the following values of the
DSS parameters: γ′ = 304417319473; γ′′ = 509801878007; γ =
155192521165192291530311; r = 1868595952224498789337067039;
q = 20716253901928383409243395403489;
n =
= 38710308186398356152998381235692982336669843393781247499071;
α =
= 18484787943749120309893831899601886868804750949550902182315;
H = 1234567890987654321.

The signature generation procedure is described as follows:
i) choose random number U < γ: U = 445274222
ii) calculate Z = αU mod n:

Z = 7974122007544151478823923182016582044286531415304585902986

iii) solve the following system of two congruences:
{

k = gHZmodγ
k + g = Umodγ

Solving the system we get:

k =
UHZ

1 + HZ
mod γ = 33818289091380076966133;

g =
U

1 + HZ
mod γ = 121374232073812659838400
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Now the S signature element can be calculated: S = αg mod n.
S =
= 7777656711905876453231146489464318441673845448603344786719.

The digital signature is (k, S) = (33818289091380076966133,
7777656711905876453231146489464318441673845448603344786719).

The signature verification gives:
αk mod n =
= 30572854565748208790351912547491296565498163018021253755420
SH(αkS mod n) mod n =
= 30572854565748208790351912547491296565498163018021253755420
Thus, the verification result is positive.

7 Conclusion.

Using a novel mechanism of the signature generation we have proposed
new signature schemes based on the DLP and factorization problem.
The feature of the applied signature generation mechanism consists in
simultaneous calculation of the k and g parameters that define signa-
ture (k, S) or (R,S), where R = αk mod p and S = αg mod p, in differ-
ent variants of DSS. Using the composite modulus one can simplify the
verification equation, but in this case some additional (relatively ones
corresponding to the RSA cryptosystem) restriction requirements to
the public key should be taken into account. The fulfilled experiments
have shown that the additional requirements do not introduce essential
restrictions for practical use of the proposed DSS based on composite
modulus.
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