
Computer Science Journal of Moldova, vol.14, no.3(42), 2006

Graph Coloring using Peer-to-Peer Networks∗

Adrian Iftene Cornelius Croitoru

Abstract

The popularity of distributed file systems continues to grow in
last years. The reasons they are preferred over traditional central-
ized systems include fault tolerance, availability, scalability and
performance. In this paper, we propose a framework for analyz-
ing peer-to-peer content distributed technologies and their appli-
cations in the cooperative solving of combinatorial optimization
problems. Our approach, which follows the Content Addressable
Network model, is scalable, fault-tolerant and self-organizing; we
improved also load distribution at the insertion and deletion of
nodes. We use this network for the classical ”graph coloring”
problem, in order to reduce the computational time for its coop-
erative solving.

Keywords: CAN, graph coloring, peer-to-peer network

1 Introduction

In the last years, Peer-to-Peer system research has grown significantly.
Using a large scale a distributed network of machines has become an
important element of distributed computing due to the extraordinary
popularity of Peer-to-Peer services like Napster, Gnutella, Kazaa and
Morpheus. Though these systems are famous mainly for file sharing,
we can see how P2P (Peer-to-Peer) systems are becoming a very good
area for research.

P2P systems offer a decentralized, self-sustained, scalable, fault tol-
erant and symmetric network of machines providing an effective bal-
ancing of storage and bandwidth resources.

∗A preliminary version of this paper was presented at 5th RoEduNet International
Conference, Sibiu, Romania, 1-3 June 2006
c©2006 by A.Iftene, C.Croitoru

366

Graph Coloring using Peer-to-Peer Networks

Unfortunately, most of the current peer-to-peer designs are not scal-
able. For example, in Napster a central server stores the index of all
the files available within the Napster user community and all the user
queries for a specific file are sending to this computer. This server sends
the answer with IP address, which has the file, and after that the user
can download the file directly from this machine. In this way, the pro-
cess of locating a file is very centralized and makes it very vulnerable
(since there is a single point of failure). Gnutella goes one step further
and decentralizes the file location process as well. Users in a Gnutella
network self-organize into an application-level mesh on which requests
for a file are flooded with a certain scope. Flooding on every request
is clearly not scalable and, because the flooding has to be curtailed at
some point, may fail to find content that is actually in the system.

In this paper we describe the design of a peer-to-peer file system
completely distributed (it requires no form of centralized control, coordi-
nation or configuration), scalable (nodes maintain only a small amount
of control state that is independent of the number of nodes in the sys-
tem) and fault tolerant (nodes can route around failures) which is used
to cooperative solve the graph coloring problem.

Our interest in CANs (Content Addressable Networks) is based on
the belief that this abstraction would give a powerful design tool that
could enable new applications and communication models.

Section 2 of this paper presents the P2P networks and their main
design issues, while section 3 describes our approach based on CAN and
specific operations from this class of networks: insertion and deletion of
nodes. Section 4 presents the main algorithm used for graph coloring.
Then, section 5 presents the results of our tests on classical graphs.
Finally, section 6 discusses the feasibility of the approach in practical
settings and briefly presents some further developments.

2 P2P Networks

The term Peer-to-Peer (P2P) refers to a class of systems and appli-
cations that employ distributed resources to perform a function in a
decentralized manner. Each node from this system has the same re-

367

A.Iftene, C.Croitoru

sponsibility. Basic P2P system goals are decentralization, immediate
connectivity, reduced cost of ownership and anonymity. Androutsellis-
Theotokis [1] defined P2P as ”applications that take advantages of
resources (storage, cycles, content, human presence) available at the
edges of the Internet”.

To make ubiquitous computing become a reality, the computing
devices must become reliable, resilient and have distributed access to
data. The P2P architecture can help reduce storage system costs and
allow cost sharing by using existing infrastructure and bundling re-
sources from different sites. Considering these factors, the P2P model
should be very useful in designing the future generation distributed file
systems.

2.1 Design Issues in P2P Networks

Peer-to-Peer systems have basic properties that separate them from
conventional distributed systems. We describe in this section different
design issues and their effect in system performance [2].

Symmetry: Symmetry comes among the roles of the participant
nodes. We assume that all nodes have the same characteristics. In
client-server systems usually the servers are more powerful than the
clients. In our network each node has the ability to be server and
client in the same time.

Decentralization: P2P systems are decentralized by nature, and they
have mechanisms for distributed storage, processing, information shar-
ing. In this way scalability, resilience to faults and availability are
increased. But, in the same time our tries to see global system and its
behavior are without success.

Operations with Volunteer Participants: An important design
issue is that the participants can neither be expected nor enforced.
They haven’t a manager or a centralized authority and can be inserted
or removed from the system at any time. The system should be robust
enough to survive the removal or failure of nodes at any moment.

368

Graph Coloring using Peer-to-Peer Networks

Fast Resource Location: One of the most important P2P design
is the method used for resource location. Because resources are dis-
tributed in diverse peers, an efficient mechanism for object location be-
comes the deciding factor in the performance of such system. Currently,
object location and routing systems include Chord, Pastry, Tapestry
and CAN. Pastry and Tapestry use Plaxton trees, basing their rout-
ing on address prefixes that is a generalization of hypercube routing.
However, Pastry and Tapestry add robustness, dynamism and self-
organizing properties to the Plaxton scheme. Chord uses the numerical
difference with the destination address to route messages. The Con-
tent Addressable Network (CAN) uses a d-dimensional space to route
messages. Another important location strategy used in few systems
is Distributed Hash Table (DHT). It uses hashing of file or resource
names to locate the object.

Load Balancing: Load balancing is very important in one robust P2P
system. The system must have optimal distribution of resources based
on capability and availability of node resources. The system should
prevent the building of locations where the load is high and also should
be possible to re-balance the system based on usage patterns.

Anonymity: With scope to prevent censorship we need to have
anonymity in our system. Our network must assure anonymity for
producer and for consumer of information.

Scalability: The number of peers from network should be of any value
(hundreds, thousands or millions), and that should not affect the net-
work behavior. Unfortunately actual systems are not scalable over few
hundreds or thousands of nodes.

Persistence of Information: Methods from our system should be
able to provide persistent data to consumers, the data stored in the
system is safe, protected against destruction, and highly available in a
transparent manner.

Security: Security from attacks and system failure are design goals for
every system. The system should be able to assure data security, and
this can be achieved with encryption, different coding schemes, etc.

369

A.Iftene, C.Croitoru

2.2 Existing Systems

Designing a system that can implement all properties from above is
very difficult. Most of existing systems utilize specific properties or
mechanisms, and that involves some advantages and also some disad-
vantages.

FreeNet: This system presented in [3] is an adaptive P2P that enables
the publication, replication and retrieval of data while protecting the
anonymity of the authors, readers and data location. It uses probabilis-
tic routing for that, and it works over many individual computers that
allow files to be inserted, stored and requested. The file identification
is made with a hash function. Any request may be locally processed,
or on failure may be routed to the closest neighbor accordingly to the
routing table. Communications between Freenet nodes are encrypted.

CFS: Cooperative File System (CFS) [4] is a peer-to-peer system de-
veloped by MIT with the following design goals: provable for efficiency,
robustness, load balancing and scalability. CFS uses DHT for storage
of blocks. The file system is being built like a set of blocks distributed
over the CFS servers. CFS has three layers: FS, which interprets
blocks as files and presents an interface to applications; Dhash - the
distributed hash table that stores unstructured data blocks; and Chord,
which maintains routing tables for lookup and query manager. CFS is
read only system from user’s perspective and authentication is based
on keys.

OceanStore: OceanStore [5] is a prototype system to provide dis-
tributed access at persistent data in a uniform way. It is designed
using a cooperative utility model in which consumers pay the service
providers to ensure access to persistent storage. Using mainly un-
trusted servers, OceanStore caches data anywhere in the network, with
encryption. This provides high availability and prevents attacks. Per-
sistent objects are uniquely identified by a Global ID (GUID) and are
located by either a non-deterministic but fast algorithm or a slower
deterministic algorithm.

Farsite: Farsite [6] is a symbiotic, server-less, distributed file system.

370

Graph Coloring using Peer-to-Peer Networks

It works between the cooperating clients, but not completely trusting
the each other. Data stored in the servers is encrypted and replicated
in a non-Byzantine way. Farsite first encrypts the contents of the files
to prevent unauthorized reads. Digital signatures are used to prevent
an unauthorized user to write a file. Replication provides reliability
through long-term data persistence and immediate availability of re-
quested file data.

3 CAN

The term CAN stands for Content Addressable Network [7], which is
used like a distributed hash table. The basic operations performed on a
CAN are the insertion, lookup and deletion of nodes. Our implementa-
tion provides a completely distributed system (we haven’t centralized
control, coordination or administration), scalable (every node has a
small number of neighbors that is independent of the total numbers of
nodes from system), and fault-tolerant (we support node failures).

3.1 CAN Construction

Our design is over a virtual d-dimensional Cartesian coordinate space.
This space is completely logical and we haven’t any relation between
it and any physical system. In this d-dimensional coordinate space,
two nodes are neighbors if their coordinates concur overlap along d-1
dimensions and differ over one dimension. In this way, if all zones from
this space are approximatively the same, every node has 2d neighbors.
To allow the CAN to grow, a new node that joins this space must
receive its own portion (zone) of the coordinate space.

3.2 CAN Insertion

The process has three steps:

- The new node must find a node that is already in CAN (source
node).

371

A.Iftene, C.Croitoru

- After that, it knows CAN dimensions and it generates a d-point
in this space (this point is in a node zone - destination node). We
route from source node to destination node following the straight-
line path through the Cartesian space. The destination node then
splits its zone in half and assigns one half to the new node.

- In the last step, the neighbors of the split zone must be notified
about new node from CAN.

Insertion - Main Procedure
The new computer is wil and the destination computer
is nameMin.

void CanInsertion(WriteLocalImpl wil){
if (nameMin is available){

Let maxCoordinate be the first coordinate withmax width;
Create a new hyper-parallelepiped for the new node
writeImplLocal with the following dimensions:

∗ all dimensions except maxCoordinate are those of
the destination computer;
∗ maxCoordinate is half of the destination computer;

neighborhoodsListRestore();
}

}

Interesting is the neighborhoodsListRestore procedure which inserts
(at beginning of the list) all neighbors, after obvious positive tests.

3.3 CAN Deletion

When nodes leave the CAN, we need to ensure that their zones are
taken by the remaining neighbors. If the zone of a neighbor can be
merged with the node’s zone to produce a valid single zone, then this
is done. If not, then the zone is splitted in zones accordingly with
neighborhoods structure. In some cases, it is possible that this zone to
remain non-allocated, but at the first occasion it will be used.

372

Graph Coloring using Peer-to-Peer Networks

void CanDeletion(WriteLocalImpl wil){
deleted = false;
for(int i = wil.getNeighborhoodsNumber(); i >= 1; i−−){

if(wil.getNeighborhoodIsAccesible(i) == true){
nameServer = wil.getNeighborhoodName(i);
wis = WriteLocalHelper.narrow(ncRefAux.resolve

str(numeServer));
wis.delNeighborhoods(nameComp);
neighborhoodsListRestore();

}
}

}

4 Graph Coloring

The Graph Coloring Problem (GCP) can be simply stated as follows:
given a graph G(X,E), assign a color to each vertex in X such that no
two adjacent vertices have the same color and such that the number
of colors used is as least as possible. This minimum possible number
of colors is known as the chromatic number of the graph G and it is
denoted by χ(G).

The GCP is well studied and has many applications including
scheduling, timetabling and the solution of sparse linear systems. How-
ever it is also known to be one of the most difficult combinatorial opti-
mization problems. Not only is the problem of finding χ(G) NP-hard,
but Lund and Yannakakis [8] have even shown that, for some ε > 0,
approximate graph coloring within a factor of N ε is also NP-hard.

We want to improve existing parallel solutions (e.g. [9]) with a
new objective: speed in finding solutions. We consider a peer-to-peer
cooperative approach to the graph coloring problem and look at its
potential to aid the search for good solutions in reasonable time. Our
algorithm divides the initial problem in sub-problems and involves all
neighbors of main node in the solution search.

373

A.Iftene, C.Croitoru

4.1 Algorithm Phases

In first phase, the input vertex set X of the graph G = (X, E) is parti-
tioned into p sub-sets {X1, X2, ..., Xp}, cardinality balanced. The sub-
graphs induced by each subset are sending then to p available neighbors
of the main node, for solving.

In second phase, every node that receives one subgraph solves di-
rectly the problem (if the size of the problem is less than one specific
value) or, recursively, splits the problem and sends the sub-problems
to its available neighbors.

In third phase, the main node receives the partial solutions from its
neighbors and tries to combine them into final solution. In this phase
the main node finds ”conflicts”.

Last phase solves the ”conflicts” and builds the final solution (the
solution for the initial problem).

4.1.1 Phase I

For splitting, we used three methods:
1) Separator Theorem (Tarjan & Lipton, 1979) ([10]):
For every planar graph G with n vertices, there is a partition of X(G)
in disjoint sets A, B, S with the following properties:

• A and B are S−separated: in G − S there is no edge linking a
vertex from A to a vertex from B.

• |A| ≤ n
2 , |B| ≤ n

2

• |S| ≤ 4
√

n

We start from node s and we perform a breadth first search (BFS)
on this graph. We mark every node with its level from BFS tree.
L(t), 0 ≤ t ≤ l + 1, denotes the set with nodes from level t, and t1 is
the middle level (the level containing the node n

2).
Let t0 be the higher node with |L(t0)| ≤

√
n and t0 ≤ t1. Let

t2 be the lower node with |L(t2)| ≤
√

n and t1 ≤ t2. Consider
C = ∪t<t0L(t), D = ∪t0<t<t2L(t), E = ∪t2<tL(t) (like in the follow-
ing figure).

374

Graph Coloring using Peer-to-Peer Networks

Figure 1. Node Separation with Tarjan & Lipton

If |D| ≤ 2
3n we can take S = L(t0)∪L(t2), A – the set of maximum

elements from C, D, E and B – the union of the other two. If |D| > 2
3n,

then we must find a new separator for D.
With this method, we can split our initial problem only into three

problems, and we lose a lot of time with splitting. The main advantage
for this method is actually in the following phases, because we don’t
have many edges between our sets of nodes.

2) Separation based on neighbor’s number
In this case the input vertex set X of the graph G(X, E) is split into
p sub-sets as {X1, X2, ..., Xp} with the same number of nodes (X1 =
{1, .., n

p}, X2 = {n
p +1, ..2n

p }, ..). p is the number of neighbors of current
node, which can be involved in problem resolution.

The separation is made very fast, but we have a lot of work to do in
the following phases, since, usually, we have many edges between our
sets of nodes.

3) Random separation
In this case the input vertex set X of the graph G(X, E) is split into

375

A.Iftene, C.Croitoru

p sub-sets as {X1, X2, ..., Xp}, where p is the number of neighbors of
current node, which can be involved in problem resolution. Every set
has random nodes, but their cardinalities are balanced.

The separation is done very fast, but in the following phases we
have omnibus-volume of work that depends of the current step.

For each of the above methods we have situations in which this
method is better and obtains the minimal coloring.

Phase II
For coloring we use Greedy Coloring Algorithm ([11]): visit the
list X(G) from the left to the right and for each current node assign a
color with the minimum value unused by its neighbors.

Phase III
Two nodes are in ”conflicts” if they are in different sub-sets and receive
the same color, and are adjacent in the initial graph.

Phase IV
”Conflicts” elimination can be done in two ways:
-On-line, when a conflict is detected, it is solved immediately;
-Off-line, only after all conflicts are detected, they are solved one by
one.

Each method has advantages and disadvantages and depends on
the input graph. For the on-line method we have the advantage that
it destroys future conflicts. The disadvantage appears because number
of graph colors is increased and the solution decreases in quality. The
same kind of problems could appear for the off-line method.

4.2 Algorithm Code

We used a program that generates random graphs of large order and
provides the output in XML format. The main procedure for coloring
is the following:

public void graphColoring(graph G){
if(G is too big){

graphSeparation(nNeighbors);
for(int j = 1; j <= nNeighbors; j + +){

376

Graph Coloring using Peer-to-Peer Networks

graphColoring(Gj);
}

}
else{

graphColoring();
}
solutionsCombination();
conflictsElimination();

}

This code is for the ”off-line” case, in the ”on-line” case procedure
conflictsElimination appears inside of procedure solutionsCombination.

4.3 Tests and Results

In order to evaluate our algorithms we used a number of classical
graphs, from the DIMCS Challenge([12]). We can see that the first
method of separation problems (Separation Theorem (Tarjan & Lip-
ton, 1979)) is the better method in comparison with second method of
separation (Table 1), but sometimes the random method is able to give
us the lower number of colors.

However, for every method of separation we have a graph in which
it provides the better solution. We have the same behavior for ”on-line”
and ”off-line” methods.

We work in a 2-dimensional CAN and we remark that the number of
final colors depends on the peer-to-peer network structure in linear way
and also, depends on the number of neighbors involved in resolution.
In Table 1 we put with bold the results for random case which appear
often.

Last two columns from Table 1 contain the execution time re-
sults obtained: first – ”Local” – doesn’t use our network advantages
and solves the problem locally, and the second – ”P2P” – uses a 2-
dimensional network for solving.

Our algorithm solutions are the optimal solutions for small graphs,
but aren’t in almost all cases for big graphs. First off all, because
Greedy Coloring Algorithm doesn’t offer the optimal solution, and

377

A.Iftene, C.Croitoru

Table 1. Test Results
ID Nodes Edges χ Theorem Order Random Local P2P

Myciel4 23 71 5 5 6 5, 6 0s 0s
Myciel5 47 236 6 6 7 6, 7 0s 0s
Myciel7 95 755 7 7 8 7, 8 0s 0s
Anna 138 493 11 12 12 11, 12 1s 2s
David 87 406 11 12 12 11, 12, 13 0s 0s
Huck 74 301 11 11 11 11 0s 0s
Jean 80 254 10 11 11 10, 11 0s 0s
Games120 120 638 9 10 9 9, 10 1s 1s
Queen5-5 25 160 5 7 8 6, 7, 8, 9 0s 1s
Queen6-6 36 290 7 9 13 9, 10, 11 0s 1s
Queen7-7 49 476 7 12 13 10, 11, 12 0s 1s
Queen8-12 96 1368 12 15 17 15, 16, 17 0s 1s
Queen8-8 64 728 9 13 16 12, 13, 14 0s 1s
Queen9-9 81 2112 10 14 16 13, 14, 15 0s 1s
Queen10-10 128 3216 12 18 17 14, 15, 16 1s 2s
Queen16-16 256 12640 16 25 32 25 30s 27s
Le450-5a 450 5714 5 13 15 13, 14 21s 14s
Le450-5b 450 5734 5 13 15 14 20s 13s
Le450-5d 450 9757 5 18 18 18 44s 26s
Le450-15c 450 16680 15 30 33 32 110s 79s
Le450-15d 450 16750 15 30 32 32 129s 85s
Le450-25c 450 17343 25 36 37 39 145s 90s
Le450-25d 450 17425 25 35 36 38 127s 78s

secondly, when we combine solutions and we have conflicts, the proce-
dure conflictsElimination can increase the number of colors.

According with the results, our approach is not relevant for small
graphs, where the times are similar, but is very useful for large graphs
with a big number of nodes and edges, where results are very promising.

5 Summary and Future Work

First phase (initial problem splitting) and last phase (conflict elimina-
tion) can be improved, but these depend on graph generation. Our al-
gorithm used for graph generation obtains the same structure of graphs
and we have not a large variation of graph types.

Also, it would be interesting to see what happens in fail-over sit-

378

Graph Coloring using Peer-to-Peer Networks

uations: in this case the sub-problem must be sent again to another
neighbor for solving. In the future, this kind of approach can help us
in graph coloring with a better speed and with a solution close to the
optimal.

With characteristics like decentralization, symmetry, robustness,
availability and persistence of data, the P2P distributed file system is
now an important part of file system research and can be involved with
success in future in combinatorial solving of problems.

References

[1] A.T. Stephanos, S. Diomidis. A survey of peer-to-peer content
distribution technologies, ACM Computing Surveys, Vol. 36, No.
4, December 2004.

[2] H. Ragib, A. Zahid. A survey of peer-to-peer storage techniques
for distributed file system, National Center for Supercomputing
Applications Department of Computer Science, April 2005.

[3] I. Clarke. Freenet: a distributed anonymous information storage
and retrieval system, Workshop on Design Issues in Anonymity
and Unobservability, pp. 46–66., 2000.

[4] F. Dabek. Wide-area cooperative storage with CFS, Usenix SOSP,
2001.

[5] J. Kubiatowicz. OceanStore: an architecture for global- scale per-
sistent storage, ACM ASPLOS, 2000.

[6] A. Adya. FARSITE: Federated, Available, and Reliable Storage
for an Incompletely Trusted Environment, Usenix OSDI, 2002.

[7] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker.
A scalable content-addressable network, In Proc. ACM SIGCOMM
2001, August 2001.

[8] C. Lund, M. Yannakakis. On the hardness of approximating min-
imization problems, Journal of the ACM, 41(5):960–981, 1994

379

A.Iftene, C.Croitoru

[9] A. H. Gebremedhin, F. Manne. Scalable parallel graph coloring
algorithms, University of Bergen, Norway, Concurrency: Pract.
Exper, 2000.

[10] R.J. Lipton, R. E. Tarjan. A separator theorem for planar graphs,
SIAM Journal on Applied Mathematics 36, 2, 177–189, 1979.

[11] J. Culberson. Iterated greedy graph coloring and the difficulty land-
scape, Tech. Rep. 92-07, Department of Computing Science, The
University of Alberta, Edmonton, Alberta, Canada, 1992.

[12] Graphs used in the DIMACS Challenge (Discrete Mathematics &
Theoretical Computer Science). DIMACS Center CoRE Building
Rutgers, The State University of New Jersey 96 Frelinghuysen
Road Piscataway, NJ 08854-8018. Graphs are available at address:
http://mat.gsia.cmu.edu/COLORING02/index.html

Adrian Iftene, Cornelius Croitoru Received October 10, 2006

”Al. I. Cuza” University, Faculty of Computer Science,
General Berthelot, 16, 700483, Iasi
E-mail: adiftene@infoiasi.ro

380

