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Abstract

The Nash equilibria set (NES) is described as an intersection
of graphs of best response mappings. The problem of NES com-
puting for multi-matrix extended games is considered. A method
for NES computing is studied.
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1 Introduction

The Nash equilibria set (NES) is determined as an intersection of
graphs of best response mappings [5, 8, 9]. This idea yields a natu-
ral method for NES computing in mixed extended two-player m × n
games and n-player m1 ×m2 × · · · ×mn games.

Consider a noncooperative finite strategic game:

Γ = 〈N, {Sp}p∈N , {ap
s = ap

s1s2...sn
}p∈N 〉,

where N = {1, 2, ..., n} is a set of players, Sp = {1, 2, . . . ,mp} is a set of
strategies of player p ∈ N , #Sp = mp < +∞, p ∈ N and ap

s = ap
s1s2...sn

is a player’s p ∈ N payoff function defined on the Cartesian product
S = ×

p∈N
Sp (payoff of the player p ∈ N is done by n dimensional matrix
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Ap[m1 ×m2 × · · · ×mn]). Elements s = (s1, s2, ..., sn) ∈ S are named
outcomes of the game (situations or strategy profiles).

The mixed extension of Γ is

Γ̃ = 〈Xp, fp(x), p ∈ N〉,

where

fp(x) =
m1∑

s1=1

m2∑

s2=1

· · ·
mn∑

sn=1

ap
s1s2...sn

x1
s1

x2
s2

. . . xn
sn

=

=
m1∑

s1=1

m2∑

s2=1

· · ·
mn∑

sn=1

ap
s

n∏

p=1

xp
sp

,

x = (x1,x2, . . . ,xn) ∈ X = ×
p∈N

Xp ⊂ Rm,

m = m1 + m2 + · · ·+ mn,

Xp =
{
xp = (xp

1, . . . , x
p
mp

) :
xp

1 + · · ·+ xp
mp = 1,

xp
1 ≥ 0, . . . , xp

mp ≥ 0

}

is a set of mixed strategies of the player p ∈ N.

Definition. The outcome x̂ ∈ X of the game is a Nash equilibrium
[4] if

fp(xp, x̂−p) ≤ fp(x̂p, x̂−p),∀xp ∈ Xp, ∀p ∈ N,

where
x̂−p = (x̂1, x̂2, . . . , x̂p−1, x̂p+1, . . . , x̂n),

x̂−p ∈ X−p = X1 ×X2 × · · · ×Xp−1 ×Xp+1 × · · · ×Xn,

x̂p||x̂−p = (x̂p, x̂−p) = (x̂1, x̂2, . . . , x̂p−1, x̂p, x̂p+1, . . . , x̂n) = x̂ ∈ X.

It is well known that not all the games in pure strategies have NE,
but all the extended games have NE [4], i.e. NE(Γ̃) 6= ∅.

There are diverse alternative formulations of a NE [2]: as a fixed
point of the best response correspondence, as a fixed point of a function,
as a solution of a nonlinear complementarity problem, as a solution of
a stationary point problem, as a minimum of a function on a polytope,
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as a semi-algebraic set. The NES may be considered as an intersec-
tion of graphs of best response multivalued mappings (correspondences)
[5, 8, 9] Arg max

xp∈Xp

fp

(
xp,x−p

)
: X−p ( Xp, p = 1, n:

NE(Γ̃) =
⋂

p∈N

Grp,

Grp =

{
(xp,x−p) ∈ X :

x−p ∈ X−p,
xp ∈ Arg max

xp∈Xp

fp

(
xp,x−p

)
}

, p ∈ N.

The simplest solvable problems of NES determination are problems
in the mixed extension of two-person 2×2 game [2, 3, 5], 2×3 game [9],
and three-person 2× 2 × 2 game [8]. In this paper a method for NES
computing in mixed extended m × n games and multi-matrix mixed
extended games is analyzed.

According to [6]: ”The computational complexity of finding one
equilibrium is unclear... Gilboa and Zemel [1] show that finding an equi-
librium of a bi-matrix game with maximum payoff sum is NP-hard, so
for this problem no efficient algorithm is likely to exist. The same holds
for other problems that amount essentially to examining all equilibria,
like finding an equilibrium with maximum support”. Consequently, the
problem of Nash equilibria set computing is NP-hard. And so, from
the complexity point of view proposed algorithms are admissible.

As it is easy to see, the algorithms for NES computing in multi-
matrix extended games contain particularly algorithm that computes
NES in extended m × n two-matrix games. But, two-matrix game
has peculiar features that permit to give a more expedient algorithm.
Examples have to give the reader the opportunity to easy and prompt
grasp of the paper.

2 NES in two-player mixed extended m × n

games

Consider a two-matrix m× n game Γ with matrices:

A = (aij), B = (bij), i = 1, m, j = 1, n.
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Let Ai, i = 1,m denote the lines of matrix A,

bj , j = 1, n denote the columns of matrix B,

X = {x ∈ Rm : x1 + x2 + ... + xm = 1,x ≥ 0},
Y = {y ∈ Rn : y1 + y2 + ... + yn = 1,y ≥ 0},

f1(x,y) =
m∑

i=1

n∑

j=1

aijxiyj = (A1y)x1 + (A2y)x2 + ... + (Amy)xn,

f2(x,y) =
m∑

i=1

n∑

j=1

bijxiyj = (xTb1)y1 + (xTb2)y2 + ... + (xTbn)yn.

The game Γ̃ = 〈X,Y ; f1, f2〉 is the mixed extension of Γ.

If the strategy of the second player is fixed, then the first player
has to solve a linear programming problem:

f1(x,y) → max,x ∈ X. (1)

Evidently, this problem is a linear programming parametric problem
with the parameter-vector y ∈ Y .

Analogically, the second player has to solve the linear programming
parametric problem:

f2(x,y) → max,y ∈ Y, (2)

with the parameter-vector x ∈ X.
Denote exT = (1, . . . , 1) ∈ Rm, eyT = (1, . . . , 1) ∈ Rn. The so-

lution of linear programming problem is realized on the vertices of
polytopes of feasible solutions. In the problems (1) and (2) the sets
X and Y have m and, respectively, n vertices — the axis unit vectors
exi ∈ Rm, i = 1, m, and eyj ∈ Rn, j = 1, n. Thus, in accordance with
the simplex method and its optimality criterion [7], in the parametric
problem (1) the parameter set Y is partitioned into such m subsets

Y i =



y ∈ Rn :

(Ak −Ai)y ≤ 0, k = 1,m,
eyTy = 1,
y ≥ 0



 , i = 1,m,

348



Nash equilibria set computing in finite extended games

for which one of the optimal solution of the linear programming prob-
lem (1) is exi — the corresponding xi axis unit vector.

Let U = {i ∈ {1, 2, ..., m} : Y i 6= ∅}. In conformity with the
optimality criterion of the simplex method ∀i ∈ U and ∀I ∈ 2U\{i} all
the points of

Conv {exk , k ∈ I ∪ {i}} =



x ∈ Rm :

exTx = 1,
x ≥ 0,
xk = 0, k 6∈ I ∪ {i}





are optimal for parameters

y ∈ Y iI =





y ∈ Rn :

(Ak −Ai)y = 0, k ∈ I,
(Ak −Ai)y ≤ 0, k 6∈ I ∪ {i},
eyTy = 1,
y ≥ 0.





Evidently Y i∅ = Y i. Hence,

Gr1 =
⋃

i ∈ U, I ∈ 2U\{i}
Conv {exk , k ∈ I ∪ {i}} × Y iI .

In the parametric problem (2) the parameter set X is partitioned
into such n subsets

Xj =



x ∈ Rm :

(bk − bj)x ≤ 0, k = 1, n,
exTx = 1,
x ≥ 0,



 , j = 1, n,

for which one of the optimal solution of the linear programming prob-
lem (2) is eyj — the corresponding yj axis unit vector.

Let V = {j ∈ {1, 2, ..., n} : Xj 6= ∅}. In conformity with the
optimality criterion of the simplex method ∀j ∈ V and ∀J ∈ 2V \{j} all
the points of

Conv {eyk , k ∈ J ∪ {j}} =



y ∈ Rn :

eyTy = 1,
y ≥ 0,
yk = 0, k 6∈ J ∪ {j}
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are optimal for parameters

x ∈ XjJ =





x ∈ Rm :

(bk − bj)x = 0, k ∈ J,
(bk − bj)x ≤ 0, k 6∈ J ∪ {j},
exTx = 1,
x ≥ 0.





Evidently Xj∅ = Xj . Hence

Gr2 =
⋃

j ∈ V, J ∈ 2V \{j}
XjJ ×Conv {eyk , k ∈ J ∪ {j}} .

Finally,

NE(Γ̃) = Gr1

⋂
Gr2 =

⋃

i ∈ U, I ∈ 2U\{i}

j ∈ V, J ∈ 2V \{j}

XjJ
iI × Y iI

jJ ,

where XjJ
iI × Y iI

jJ is a convex component of NES,

XjJ
iI = Conv {exk , k ∈ I ∪ {i}}⋂

XjJ ,
Y iI

jJ = Conv {eyk , k ∈ J ∪ {j}}⋂
Y iI ,

XjJ
iI =





x ∈ Rm :

(bk − bj)x = 0, k ∈ J,
(bk − bj)x ≤ 0, k 6∈ J ∪ {j},
exTx = 1,x ≥ 0,
xk = 0, k 6∈ I ∪ {i}





is a set of strategies x ∈ X with support from {i} ∪ I and for which
points of Conv {eyk , k ∈ J ∪ {j}} are optimal,

Y iI
jJ =





y ∈ Rn :

(Ak −Ai)y = 0, k ∈ I,
(Ak −Ai)y ≤ 0, k 6∈ I ∪ {i},
eyTy = 1,y ≥ 0,
yk = 0, k 6∈ J ∪ {j}
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is a set of strategies y ∈ Y with support from {j} ∪ J and for which
points of Conv {exk , k ∈ I ∪ {i}} are optimal.

Theorem 1. NE(Γ̃) =
⋃

i ∈ U, I ∈ 2U\{i}

j ∈ V, J ∈ 2V \{j}

XjJ
iI × Y iI

jJ .

The proof of the theorem is performed above.

Theorem 2. If Xj∅
iI = ∅, then XjJ

iI = ∅ for all J ∈ 2V .

For the proof it is sufficient to maintain that XjJ
iI ⊆ Xj∅

iI for J 6= ∅.

Theorem 3. If Y i∅
jJ = ∅, then Y iI

jJ = ∅ for all I ∈ 2U .

Theorem 3 is equivalent to theorem 2.

From the above the algorithm for NES computing follows:

NE = ∅; U = {i ∈ {1, 2, ..., m} : Y i 6= ∅}; UX = U ;
V = {j ∈ {1, 2, ..., n} : Xj 6= ∅};

for i ∈ U do
{

UX = UX \ {i};
for I ∈ 2UX do
{

V Y = V ;
for j ∈ V do
{

if (Xj∅
iI = ∅) break;

V Y = V Y \ {j};
for J ∈ 2V Y do

if (Y iI
jJ 6= ∅) NE = NE ∪ (XjJ

iI × Y iI
jJ );

}
}

}

351



Valeriu Ungureanu

Algorithm executes the interior operator if no more then

2m−1(2n−1 + 2n−2 + · · ·+ 21 + 20)+
+2m−2(2n−1 + 2n−2 + · · ·+ 21 + 20)+
. . .
+21(2n−1 + 2n−2 + · · ·+ 21 + 20)+
+20(2n−1 + 2n−2 + · · ·+ 21 + 20) =
= (2m − 1)(2n − 1)

times. So, the following theorem is true.

Theorem 4. The algorithm examines no more then (2m−1)(2n−1)
polytopes of the XjJ

iI × Y iI
jJ type.

If all the players’ strategies are equivalent, then NES consists of
(2m − 1)(2n − 1) polytopes.

Evidently, for practical reasons algorithm may be improved by iden-
tifying equivalent, dominant and dominated strategies in pure game
[5, 8, 9] with the following pure and extended game simplification.
”In a nondegenerate game, both players use the same number of pure
strategies in equilibrium, so only supports of equal cardinality need to be
examined” [6]. This property may be used to minimize essentially the
number of components XjJ

iI × Y iI
jJ examined in nondegenerate game.

Example 1. Matrices of the two person game [6] are

A =
[

1 0 4
0 2 3

]
, B =

[
0 2 3
6 5 3

]
.

The exterior cycle is executed for the value i = 1.
As

X1∅
1∅ =





x :

2x1 − x2 ≤ 0,
3x1 − 3x2 ≤ 0,
x1 + x2 = 1,
x1 ≥ 0, x2 = 0





= ∅

then the cycle for j = 1 is omitted.
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Since

X2∅
1∅ =





x :

−2x1 + x2 ≤ 0,
x1 − 2x2 ≤ 0,
x1 + x2 = 1,
x1 ≥ 0, x2 = 0





= ∅

then the cycle for j=2 is omitted.
As

X3∅
1∅ =





x :

−3x1 + 3x2 ≤ 0,
−x1 + 2x2 ≤ 0,
x1 + x2 = 1,
x1 ≥ 0, x2 = 0





=
{(

1
0

)}
6= ∅,

Y 1∅
3∅ =



y :

−y1 + 2y2 − y3 ≤ 0,
y1 + y2 + y3 = 1,
y1 = 0, y2 = 0, y3 ≥ 0



 =








0
0
1






 6= ∅,

the point
(

1
0

)
×




0
0
1


 is a Nash equilibrium for which f1 = 4,

f2 = 3.

X1∅
1{2} =





x :

2x1 − x2 ≤ 0,
3x1 − 3x2 ≤ 0,
x1 + x2 = 1,
x1 ≥ 0, x2 ≥ 0




6= ∅,

Y
1{2}
1∅ =



y :

−y1 + 2y2 − y3 = 0,
y1 + y2 + y3 = 1,
y1 ≥ 0, y2 = 0, y3 = 0



 = ∅,

Since

X
1{2}
1{2} =





x :

2x1 − x2 = 0,
3x1 − 3x2 ≤ 0,
x1 + x2 = 1,
x1 ≥ 0, x2 ≥ 0





=
(

1/3
2/3

)
6= ∅,

Y
1{2}
1{2} =



y :

−y1 + 2y2 − y3 = 0,
y1 + y2 + y3 = 1,
y1 ≥ 0, y2 ≥ 0, y3 = 0



 =




2/3
1/3
0


 6= ∅,
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the point
(

1/3
2/3

)
×




2/3
1/3
0


 is a Nash equilibrium for which f1 = 2/3,

f2 = 4.

X
1{3}
1{2} =





x :

2x1 − x2 ≤ 0,
3x1 − 3x2 = 0,
x1 + x2 = 1,
x1 ≥ 0, x2 ≥ 0





= ∅,

X
1{2,3}
1{2} =





x :

2x1 − x2 = 0,
3x1 − 3x2 = 0,
x1 + x2 = 1,
x1 ≥ 0, x2 ≥ 0





= ∅,

X2∅
1{2} =





x :

−2x1 + x2 ≤ 0,
x1 − 2x2 ≤ 0,
x1 + x2 = 1,
x1 ≥ 0, x2 ≥ 0




6= ∅,

Y
1{2}
2∅ =



y :

−y1 + 2y2 − y3 = 0,
y1 + y2 + y3 = 1,
y1 = 0, y2 ≥ 0, y3 = 0



 = ∅,

As

X
2{3}
1{2} =





x :

−2x1 + x2 ≤ 0,
x1 − 2x2 = 0,
x1 + x2 = 1,
x1 ≥ 0, x2 ≥ 0





=
(

2/3
1/3

)
6= ∅,

Y
1{2}
2{3} =



y :

−y1 + 2y2 − y3 = 0,
y1 + y2 + y3 = 1,
y1 = 0, y2 ≥ 0, y3 = 0



 =




0
1/3
2/3


 6= ∅,

the point
(

2/3
1/3

)
×




0
1/3
2/3


 is a Nash equilibrium for which f1 = 8,
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f2 = 3.

X3∅
1{2} =





x :

−2x1 + x2 ≤ 0,
x1 − 2x2 = 0,
x1 + x2 = 1,
x1 ≥ 0, x2 ≥ 0




6= ∅,

Y
1{2}
3∅ =



y :

−y1 + 2y2 − y3 = 0,
y1 + y2 + y3 = 1,
y1 = 0, y2 = 0, y3 ≥ 0



 = ∅.

The exterior cycle is executed for the value i = 2.

X1∅
2∅ =





x :

2x1 − x2 ≤ 0,
3x1 − 3x2 ≤ 0,
x1 + x2 = 1,
x1 = 0, x2 ≥ 0




6= ∅,

Y 2∅
1∅ =



y :

y1 − 2y2 + y3 ≤ 0,
y1 + y2 + y3 = 1,
y1 ≥ 0, y2 = 0, y3 = 0



 = ∅,

X
1{2}
2∅ =





x :

2x1 − x2 = 0,
3x1 − 3x2 ≤ 0,
x1 + x2 = 1,
x1 = 0, x2 ≥ 0





= ∅,

X
1{3}
2∅ =





x :

2x1 − x2 ≤ 0,
3x1 − 3x2 = 0,
x1 + x2 = 1,
x1 = 0, x2 ≥ 0





= ∅,

X
1{2,3}
2∅ =





x :

2x1 − x2 = 0,
3x1 − 3x2 = 0,
x1 + x2 = 1,
x1 = 0, x2 ≥ 0





= ∅.

Since

X2∅
2∅ =





x :

−2x1 + x2 ≤ 0,
x1 − 2x2 ≤ 0,
x1 + x2 = 1,
x1 = 0, x2 ≥ 0





= ∅.
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the cycle for j = 2 is omitted.

X3∅
2∅ =





x :

−3x1 + 3x2 ≤ 0,
−x1 + 2x2 ≤ 0,
x1 + x2 = 1,
x1 = 0, x2 ≥ 0





= ∅.

Thus, the NES consists of three elements — one pure and two mixed
Nash equilibria.

The following example 2 illustrates that a simple modification in
the first example of one element of the cost matrix of the first player
changes the NES to a continue power set that consists of one isolated
point and one segment.

Example 2. If in the first example the element a23 of the matrix
A is modified

A =
[

1 0 4
0 2 4

]
, B =

[
0 2 3
6 5 3

]
,

then the NES of the obtained game consists of one distinct point
(

1/3
2/3

)
×




2/3
1/3
0


 for which f1 = 10/9, f2 = 4 and of one distinct

segment
[(

2/3
1/3

)
,

(
1
0

)]
×




0
0
1


 for which f1 = 4, f2 = 3.

A subsequent modification of the cost matrix of the second player
in precedent game transforms the NES into non-convex continuum.

Example 3. If in the second example the first column of the matrix
B is equal to the second column

A =
[

1 0 4
0 2 4

]
, B =

[
2 2 3
5 5 3

]
,

then the NES of the such game consists of four connected segments:

356



Nash equilibria set computing in finite extended games

•
[(

2/3
1/3

)
,

(
1
0

)]
×




0
0
1


 ≡

(
1− 1/3λ

1/3λ

)
×




0
0
1


 ,

λ ∈ [0; 1], for which f1 = 4, f2 = 3,

•
(

2/3
1/3

)
×







0
0
1


 ,




2/3
1/3
0





 ≡

(
2/3
1/3

)
×




2/3− 2/3µ
1/3− 1/3µ

µ


 ,

µ ∈ [0; 1], for which f1 = 2/3 + 10/3µ, f2 = 3,

•
[(

0
1

)
,

(
2/3
1/3

)]
×




2/3
1/3
0


 ≡

(
2/3− 2/3λ
1/3 + 1/3λ

)
×




2/3
1/3
0


 ,

λ ∈ [0; 1], for which f1 = 2/3, f2 = 3 + 2λ,

•
(

0
1

)
×







2/3
1/3
0


 ,




0
1
0





 ≡

(
0
1

)
×




2/3µ
1− 2/3µ

0


 ,

µ ∈ [0; 1], for which f1 = 2− 4/3µ, f2 = 5.

The following example 4 supplements preceding examples and illus-
trates that one of the NE may be strong dominant (optimal by Pareto)
among all the others NE.

Example 4. The NES of the extended game with matrices:

A =




2 1 6
3 2 −1
−1 2 1


 , B =




1 0 3
−1 1 −2
2 −1 2


 ,

consists of two isolated points and one segment:

•



1
0
0


×




0
0
1


 , for which f1 = 6, f2 = 3.

•



1/14
12/14
2/14


×




1/4
1/2
1/4


 , for which f1 = 45/28, f2 = −1/8.
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•






0
1
0


 ,




0
3/5
2/5





 ×




0
1
0


 ≡




0
3/5 + 2/5λ
2/5− 2/5λ


 ×




0
1
0


 ,

λ ∈ [0; 1], for which f1 = 2, f2 = 1/5 + 4/5λ.

Evidently, the NE




1
0
0


 ×




0
0
1


 , for which f1 = 6, f2 = 3,

strongly dominates all the other NE and it is more preferable than the
other NE for both of the players.

Example 1 confirms the well known property that the number of
Nash equilibria in the nondegenerate game is odd [2, 6]. Examples 2 – 4
illustrate that in the degenerate game the number of convex compo-
nents may be both the even and the odd. Examples 3 – 4 illustrate
that in the degenerate game the player cannot increase own gain by
modifying his Nash strategy, but, by modifying his Nash strategy the
player may essentially modify (increase or decrease) the gain of the
opponent.

3 NES in n-player mixed extended m1×m2 . . .mn

games

Consider the n-player extended game Γ̃ = 〈Xp, fp(x), p ∈ N〉 formu-
lated in the Introduction. The cost function of the player p is linear if
the strategies of the remaining players are fixed:

fp(x) =




∑

s−p∈S−p

ap
1||s−p

∏

q = 1, n
q 6= p

xq
sq


xp

1+

+




∑

s−p∈S−p

ap
2||s−p

∏

q = 1, n
q 6= p

xq
sq


xp

2+
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+ · · ·+
∑

s−p∈S−p
ap

mp||s−p

∏
q = 1, n
q 6= p

xq
sq


xp

mp .

Thus, the player p has to solve a linear parametric problem with pa-
rameter vector x−p ∈ X−p:

fp

(
xp,x−p

) → max, xp ∈ Xp, p = 1, n.

The solution of this problem is realized on the vertices of polytope
Xp that has mp vertices — the xp

i axis unit vectors exp
i ∈ Rmi , i =

1,mp. Thus, in accordance with the simplex method and its optimality
criterion [7], the parameter set X−p is partitioned into such mp subsets

X−p (ip) =

=





x−p ∈ Rm−mp :

∑

s−p∈S−p

(
ap

k||s−p
− ap

ip||s−p

) ∏

q = 1, n
q 6= p

xq
sq
≤ 0,

k = 1, mp,
mq∑

i=1

xq
i = 1, q = 1, n, q 6= p,

x−p ≥ 0





,

ip = 1,mp, for which one of the optimal solution of the linear program-
ming problem (1) is exp

i .
Let Up = {ip ∈ {1, ..., mp} : X−p (ip) 6= ∅}, epT = (1, . . . , 1) ∈ Rmp .

In conformity with the optimality criterion of the simplex method
∀ip ∈ Up and ∀Ip ∈ 2Up\{ip} all the points of

Conv
{
exp

k , k ∈ Ip ∪ {ip}
}

=



x ∈ Rm :

epTxp = 1,
xp ≥ 0,
xp

k = 0, k 6∈ Ip ∪ {ip}





are optimal for parameters x−p ∈ X−p (ipIp) ⊂ Rm−mp , where
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X−p (ipIp) is a set of solutions of the system:





∑

s−p∈S−p

(
ap

k||s−p
− ap

ip||s−p

) ∏

q = 1, n
q 6= p

xq
sq

= 0, k ∈ Ip,

∑

s−p∈S−p

(
ap

k||s−p
− ap

ip||s−p

) ∏

q = 1, n
q 6= p

xq
sq
≤ 0, k 6∈ Ip ∪ ip,

erTxr = 1, r = 1, n, r 6= p,
xr ≥ 0, r = 1, n, r 6= p.

Evidently X−p (ip∅) = X−p (ip∅). Hence,

Grp =
⋃

ip ∈ Up, Ip ∈ 2Up\{ip}
Conv

{
exp

k , k ∈ Ip ∪ {ip}
}
×X−p (ipIp) .

Finally,

NE(Γ̃) =
n⋂

p=1

Grp =
⋃

i1 ∈ U1, I1 ∈ 2U1\{i1},
. . .

in ∈ Un, In ∈ 2Un\{in}

X (i1I1 . . . inIn)

where X (i1I1 . . . inIn) = NE (i1I1 . . . inIn) is a set of solutions of the
system:





∑

s−r∈S−r

(
ar

k||s−r
− ar

ir||s−r

) ∏

q = 1, n
q 6= r

xq
sq

= 0, k ∈ Ir,

∑

s−r∈S−r

(
ar

k||s−r
− ar

ir||s−r

) ∏

q = 1, n
q 6= r

xq
sq
≤ 0, k 6∈ Ir ∪ ir,

r = 1, n,

erTxr = 1, xr ≥ 0, r = 1, n,
xr

k = 0, k 6∈ Ir ∪ {ir}, r = 1, n.
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Theorem 5. NE(Γ̃) =
⋃

i1 ∈ U1, I1 ∈ 2U1\{i1}
. . .

in ∈ Un, In ∈ 2Un\{in}

X (i1I1 . . . inIn) .

The theorem 5 is an extension of theorem 1 to an n-player game.
The proof is performed above.

The following theorem is a corollary of theorem 5.

Theorem 6. NE(Γ̃) consists of no more then

(2m1 − 1)(2m2 − 1) . . . (2mn − 1)

components of the type X(i1I1 . . . inIn).

In game for which all the players have equivalent strategies NES
is partitioned in maximal number (2m1 − 1)(2m2 − 1) . . . (2mn − 1) of
components.

In general, in n-player game (n ≥ 3) components X(i1I1 . . . inIn)
are non-convex.

An exponential algorithm for NES computing in n-player game sim-
ply follows from the expression in theorem 5. The algorithm requires
to solve (2m1 − 1)(2m2 − 1) . . . (2mn − 1) finite systems of multilinear
(n−1-linear) and linear equations and inequalities in m variables. The
last problem is itself a difficult one.

Example 5. It is considered a three-player extended 2 × 2 × 2
(diadic) game [2] with matrices:

a1∗∗ =
[

9 0
0 3

]
, a2∗∗ =

[
0 3
9 0

]
,

b∗1∗ =
[

8 0
0 4

]
, b∗2∗ =

[
0 4
8 0

]
,

c∗∗1 =
[

12 0
0 2

]
, c∗∗2 =

[
0 6
4 0

]
.
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f1(x,y, z) = (9y1z1 + 3y2z2)x1 + (9y2z1 + 3y1z2)x2,

f2(x,y, z) = (8x1z1 + 4x2z2)y1 + (8x2z1 + 4x1z2)y2,

f3(x,y, z) = (12x1y1 + 2x2y2)z1 + (4x2y1 + 6x1y2)z2.

Totally, we have to consider (22 − 1)(22 − 1)(22 − 1) = 27 compo-
nents. Further, we will enumerate only nonempty components. Thus,
NE(1∅1∅1∅) = (1; 0)× (1; 0)× (1; 0) (for which f1 = 9, f2 = 8, f3 = 12)
is the solution of the system:





9y2z1 + 3y1z1 − 9y1z1 − 3y2z2 = 3(y2 − y1)(3z1 − z2) ≤ 0,
8x2z1 + 4x1z2 − 8x1z1 − 4x2z2 = 4(x2 − x1)(4z1 − z2) ≤ 0,
4x2y1 + 6x1y2 − 12x1y1 + 2x2y2 = 2(3x1 − x2)(y2 − 2y1) ≤ 0,
x1 + x2 = 1, x1 ≥ 0, x2 = 0,
y1 + y2 = 1, y1 ≥ 0, y2 = 0,
z1 + z2 = 1, z1 ≥ 0, z2 = 0.

NE(1∅2∅2∅) = (1; 0)× (0; 1)× (0; 1) and f1 = 3, f2 = 4, f3 = 6:





3(y2 − y1)(3z1 − z2) ≤ 0,
−4(x2 − x1)(4z1 − z2) ≤ 0,
−2(3x1 − x2)(y2 − 2y1) ≤ 0,
x1 + x2 = 1, x1 ≥ 0, x2 = 0,
y1 + y2 = 1, y1 = 0, y2 ≥ 0,
z1 + z2 = 1, z1 = 0, z2 ≥ 0.

NE(2∅1∅2∅) = (0; 1)× (1; 0)× (0; 1) and f1 = 3, f2 = 4, f3 = 4:





−3(y2 − y1)(3z1 − z2) ≤ 0,
4(x2 − x1)(4z1 − z2) ≤ 0,
−2(3x1 − x2)(y2 − 2y1) ≤ 0,
x1 + x2 = 1, x1 = 0, x2 ≥ 0,
y1 + y2 = 1, y1 ≥ 0, y2 = 0,
z1 + z2 = 1, z1 = 0, z2 ≥ 0.

362



Nash equilibria set computing in finite extended games

NE(2∅2∅1∅) = (0; 1)× (0; 1)× (1; 0) and f1 = 9, f2 = 8, f3 = 2:




−3(y2 − y1)(3z1 − z2) ≤ 0,
−4(x2 − x1)(4z1 − z2) ≤ 0,
2(3x1 − x2)(y2 − 2y1) ≤ 0,
x1 + x2 = 1, x1 = 0, x2 ≥ 0,
y1 + y2 = 1, y1 = 0, y2 ≥ 0,
z1 + z2 = 1, z1 ≥ 0, z2 = 0.

NE(1∅1{2}1{2}) = (1; 0) × (1/3; 2/3) × (1/5; 4/5) and f1 = 11/5,
f2 = 8/3, f3 = 4:





3(y2 − y1)(3z1 − z2) ≤ 0,
4(x2 − x1)(4z1 − z2) = 0,
2(3x1 − x2)(y2 − 2y1) = 0,
x1 + x2 = 1, x1 ≥ 0, x2 = 0,
y1 + y2 = 1, y1 ≥ 0, y2 ≥ 0,
z1 + z2 = 1, z1 ≥ 0, z2 ≥ 0.

NE(1{2}2∅1{2}) = (2/5; 3/5) × (0; 1) × (1/4; 3/4) and f1 = 9/4,
f2 = 12/5, f3 = 21/10:





3(y2 − y1)(3z1 − z2) = 0,
−4(x2 − x1)(4z1 − z2) ≤ 0,
2(3x1 − x2)(y2 − 2y1) = 0,
x1 + x2 = 1, x1 ≥ 0, x2 ≥ 0,
y1 + y2 = 1, y1 = 0, y2 ≥ 0,
z1 + z2 = 1, z1 ≥ 0, z2 ≥ 0.

NE(1{2}1{2}1∅) = (1/2; 1/2) × (1/2; 1/2) × (1; 0) and f1 = 9/2,
f2 = 4, f3 = 7/2:





3(y2 − y1)(3z1 − z2) = 0,
−4(x2 − x1)(4z1 − z2) = 0,
2(3x1 − x2)(y2 − 2y1) ≤ 0,
x1 + x2 = 1, x1 ≥ 0, x2 ≥ 0,
y1 + y2 = 1, y1 ≥ 0, y2 ≥ 0,
z1 + z2 = 1, z1 ≥ 0, z2 = 0.
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NE(1{2}1{2}1{2}) =

{(
1/2
1/2

)
×

(
1/3
2/3

)
×

(
1/4
3/4

)
,

(
2/5
3/5

)
×

(
1/2
1/2

)
×

(
1/5
4/5

)}

for which f1 = 9/4, f2 = 5/2, f3 = 8/3 and respective f1 = 21/10,
f2 = 12/5, f3 = 63/25:





3(y2 − y1)(3z1 − z2) = 0,
−4(x2 − x1)(4z1 − z2) = 0,
2(3x1 − x2)(y2 − 2y1) = 0,
x1 + x2 = 1, x1 ≥ 0, x2 ≥ 0,
y1 + y2 = 1, y1 ≥ 0, y2 ≥ 0,
z1 + z2 = 1, z1 ≥ 0, z2 ≥ 0.

Thus the game has 9 Nash equilibria. Remark that the last component
of the NES consists of two distinct points. Hence, it is non-convex and
non-connected.

4 Conclusions

The idea to consider NES as an intersection of the graphs of best
response mappings yields to a simply NES representation and to a
method of NES computing. Taking into account the computational
complexity of the problem, the proposed exponential algorithms are
pertinent.

The NES in two-matrix extended games may be partitioned into
finite number of polytopes, no more then (2m−1)(2n−1). The proposed
algorithm examines, in general, a much more smaller number of sets of
the type XjJ

iI × Y iI
jJ .

The NES in multi-matrix extended games may be partitioned into
finite number of components, no more then (2m1 − 1) . . . (2mn − 1),
but they, in general, are non-convex and moreover non-polytopes. The
algorithmic realization of the method is closely related with the problem
of solving the systems of multilinear (n − 1-linear and simply linear)
equations and inequalities, that represents in itself a serious obstacle
to efficient NES computing.
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