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Applying Evolution Strategies for Chest
Radiographs Segmentation

Oliviu Matei

Abstract

Segmentation is one of the key areas in computer vision.
Advanced techniques, such as active contour models and active
shape models suffer from many drawbacks. An improvement of
the two approaches, based in evolution strategies, is presented.
Some of its advantages lie in less computational resources and
less a priori knowledge required. At the end of the paper, the
results of the experiments carried out with the new approach are
presented.

1 Introduction

The ultimate goal of machine vision is image understanding - the abil-
ity not only to recover image structure, but also know what it repre-
sents. An attractive field of application for image segmentation is the
medicine. Almost every object of interest in the human body can vary
in size, shape and appearance. Often this makes the task of automati-
cally identifying and segmenting interesting structures, such as organs
and bones, very difficult.

This article presents a segmentation technique based on evolution
strategies. We compare this method with the classical ones - active
contour models and active shape models. At the end we show the
results of image segmentation applying the proposed technique.
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1.1 Related work

Many researchers approached the segmentation problem in a bottom-
up fashion: emphasis was on the analysis and design of filters for the
detection of local structures such as edges, ridges, corners and ’T°-
junctions. The structure of an image can be described as a collection
of such syntactical elements and their (spatial) relations, and such de-
scriptions can be used as input for generic segmentation schemes. Un-
fortunately, these segmentations are often not very meaningful. On the
other hand, top-down strategies (also referred to as model-based or ac-
tive approaches) for segmentation were used successfully in highly con-
strained environments, e.g., in industrial inspection tasks. Often these
methods are based on template matching. But template matching, or
related techniques, are likely to fail if the object and/or background
exhibit a large variability in shape or gray-level appearance, as is often
the case in real-life images and medical data. Active contours or snakes
[3], [9] and wave propagation methods such as level sets [16], have
been heralded as a new paradigms for segmentation.

Other researchers experimented with hand-crafted parametric mod-
els. An illustrative example is the work of Yuille et al. [17] where a
deformable model of an eye is constructed from circles and parabolic
patches and a heuristic cost function is proposed for the gray-level ap-
pearance of the image inside and on the border of these patches.

There is a need for generic segmentation schemes that can be
trained with examples as to acquire a model of the shape of the object
to be segmented (with its variability) and the gray-level appearance of
the object in the image (with its variability). Such methods use statis-
tical techniques to extract the major variations from the prototypes in
a principled manner. Several of such schemes have been proposed. One
of the methods is active shape models (ASMs) put forward by Cootes
and Taylor [7]. The shape model in ASMs is given by the principal
components of vectors of landmark points.
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2 Statistical Shape Models

Here we describe a statistical model of shape that will be used to rep-
resent objects in images. The shape of an object is represented by a set
of points. Our aim is to derive models which allow us to both analyze
new shapes and to synthesize shapes similar to those in the training
set.

Good choices for landmarks are points that can be counsistently
located from one image to another. In two dimensions, points could
be placed at clear corners of object boundaries, "I’-junctions between
boundaries or easily located biological landmarks. However, there are
rarely enough of such points to give more than a sparse description
of the shape of the target object. This list would be augmented with
points along boundaries that are arranged to be equally spaced between
well defined landmark points.

3 Active Contour Models

An active contour (also known as a snake by virtue of the nature of
its evolution) is an energy minimizing spline ( [4]) that is constrained
by its own internal forces of continuity and curvature, while exter-
nal forces drive it towards desired image features. The external forces
are provided by the image and where appropriate, information from a
higher-level process may be included. The problem is formulated as
an energy minimization problem. Typically there are many local min-
ima in the energy function. In this situation the contour may become
trapped in strong neighboring edges resulting in a false boundary. Prior
knowledge may be included in the process in order to achieve this. A
model-free interpretation is limited because the problem is undercon-
strained. Various methods have been proposed to avoid insignificant
false edges in [3], [8] and [14]. However, even with the application of
these techniques the contour may still become trapped by false edges.

There are two key difficulties with active contour algorithms. First,
the initial contour must, in general, be close to the true boundary or
else it will likely converge to the wrong result. The second problem is
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that active contours have difficulties progressing into concave boundary
regions [17].

4 Active Shape Models

This section briefly reviews the ASM segmentation scheme. We follow
the description and notation of [6]. In principle, the scheme can be used
in nD, but in this paper we give a two-dimensional (2-D) formulation.

A shape model relies on representing the objects by a set of labelled
points; each point is placed on a particular part of the object. The
model gives the average positions of the points and a description of
the main modes of variations found in the training set. Locating an
example of such a model in an image involves choosing values for each
of the parameters so as to best fit the model to the image. An initial
guess for the best shape, orientation, scale and position can be refined
by comparing the hypothesized model example with the image data
and using differences between model and image to deform the shape.
The method has similarities with the ACM’s, but differs in that global
shape constraints are applied; to make this distinction clear, the term
7 Active Shape Models” was adopted. The key point is that an instance
of a model can only deform in ways found in its training set.

5 Evolution Strategies

Evolution strategies (ESs) are search algorithms which imitate the prin-
ciples of natural evolution as a method to solve parameter optimization
problems. They are based on the idea that among a population of ex-
amples, only members which are the fittest can survive and breed so
that the examples in following generations are improved.

A general evolutionary algorithm is defined below:

Generate random population
REPEAT
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evaluate fitness of current population

select chromosomes, based on fitness

for reproduction perform crossover and mutation
to give new improved population

UNTIL finished

An evolution strategy must have the following five components:

1.

ook @

a definition of the objective function

a definition and implementation of the genetic representation
a way to create an initial population of potential solutions

a definition and implementation of the genetic operators

values for various parameters that the evolution strategy uses
(population size, probabilities of applying operators etc.)

Once these three have been defined, the evolution strategy should
work fairly well. Beyond that, one can try many different variations to
improve performance, find multiple optima (species - if they exist), or
parallelize the algorithms.

5.1

Objective Function

In our experiments, we applied three types of objective functions:

e The first function used was the magnitude of the edges. We

assumed that the object (specifically the lung) is delimited by
clear edges.

The magnitude (or edge strength) is computed using the Sobel
operator. It uses a pair of 3x3 convolution masks, one estimating
the gradient in the x-direction (columns) and the other estimating
the gradient in the y-direction (rows).

-1 0 1 -1 -2 -1
Go=|-202(G,=| 0 0 0
-1 0 1 1 2 1
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The magnitude is then:

|G| = |G| + Gy

Since the edges are defined as the pixels with the highest mag-
nitude, the evolutionary strategy has to find those pixels which
maximize the magnitude. Mathematically, this is:

where f(z) is the objective function and G, ;) is the magnitude
of the pixel p(1).

This was performed in two ways.

The first approach was the detection of edges in a raw image,
respectively in a smoothed image. As expected, the results were
much better in the smoothed image. On the raw image, the pop-
ulation got stuck often in local optima. Whereas a smoothing of
the image assured a "smoother” intensity of the pixels. Another
approach was based on edge detection on a sharped image. The
sharpening was performed using Laplace operator. A disadvan-
tage of this operator is the doubling of some edges in the image
and the small neighborhood it takes into account. To prevent
these, we applied a gaussian operator.

Compared with the previous approach, the results became bet-
ter. Sharpening the image, the search was not performed on the
image space (formed by the intensities of the pixels), but rather
on the gradient space, which is the absolute difference between
neighboring pixels. This makes the approach less sensitive to
intensity variations.

e The second objective function was an extension of the previous
one. For sharpening the image, we took into account not only the
magnitude, but also the direction of the edge. The sharpening
was performed using Prewitt operator.
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In this case, for each landmark there were two criteria: the mag-
nitude and the direction of the edge in that point. The direc-
tion of an edge is determined using the Susan edge detector
Citesmith99susan, which, because of the lack of space, will not
be detailed here.

In this case, the objective function is:

n n
fl@)=ad Gy +BY Ry
=1 =1

where G ,(;) is the magnitude of the pixel p(i), R, ; is the direction
of the edge in the pixel p(i) and @ and ( are two parameters
tuning the importance of one factor or the other. They must
fulfill the condition: « + 8 = 1. If @ = 1, then this objective
function is identical with the previous one. If @ = 0, then the
objective function takes into account only the direction of the
edges.

This approach runs well only on some images. That is because
corresponding landmarks do not have corresponding edges direc-
tions. However, on shapes that can be easily defined mathemat-
ically, the results were very satisfactory.

The third function is a more general case, in which we consider
not only the magnitude of the edge, but also the gray-level ap-
pearance of the edge.

In some cases it is efficient to assume that the points lie on strong
edges and to search for such in an image. However this is not al-
ways satisfactory and it is necessary to have more general model
of the gray-level appearance. The gray-level appearance model
that describes the typical image structure around each landmark
is obtained from pixel profiles, sampled (using linear interpola-
tion) around each landmark, perpendicular to the contour.

This requires a notion of connectivity between the landmark
points from which the perpendicular direction can be computed.
The direction perpendicular to a landmark (z,,y,) is computed
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by rotating the vector that runs from (z,—1,yn—1) t0 (Tp41,Yn+1)
over 90°. We assume that all objects we use are closed contours,
so for the first landmark, the last landmark and the second land-
mark are the points from which a perpendicular direction is com-
puted; for the last landmark, the second to last landmark and
the first landmark are used.

Ou either side £ pixels are sampled using a fixed step size, which
gives profiles of length 2k + 1. Cootes and Taylor [6] propose
to use the normalized first derivatives of these profiles to build
the gray-level appearance model. The derivatives are computed
using finite differences between the (5 — 1)th and the (j + 1)th
point:

gijk = Li(Wik+1)) — L (Yie-1)) (1)

where y;;, is the kth point along the ith profile and I;(y;;) is the
gray level in image j at that point. The normalization is such
that the sum of absolute values of the elements in the derivative
profile is 1:

/ gij
o = e — ®)
K 2221 |gijk|

Denoting these normalized derivative profiles as g1, g2, ..., gs, the
mean profile g and the covariance matrix S, are computed for
each landmark.

1 Ns
9i = —Zgéj (3)
Ny i

This allows for the computation of the Mahalanobis distance [11]
between a new profile and the profile model

flgi) = (9 —9)S; (9 — 9) (4)
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Minimizing f(g;) is equivalent to maximizing the probability that
g; originates from a multidimensional Gaussian distribution. In
other words, minimizing f(g;) is equivalent to maximizing the
probability that the points are the desired ones.

5.2 Genetic Representation

An individual is represented by all the landmark points for a training
image. Noting each landmark point by (z;,y;), the set of all landmarks
is then:

T = ($1,y1,$2,y2,---a$nayn) (5)

where n is the number of landmarks defined for one training image.
However, an interesting idea introduced in ES is that an individual
is not a simple float or binary value, like in the case of GAs, but is a
pair of float values, i.e., v = (z,0), where the first vector x represents
a point in the search space, and the second vector ¢ is a vector of
standard deviations. For our case, an individual is represented by:

T = ((wlaylﬂx%y% "'7$nayn)’ (Ula 0254009055 +uuy 025)) (6)

5.3 The Initial Population

Once a suitable representation has been decided upon for the chro-
mosomes, it is necessary to create an initial population to serve as
the starting point for the genetic algorithm. The initial population is
usually created randomly. When there is some information about the
solution, some heuristics can be used. Each subsequent population that
is built (each subsequent generation) uses the previous population as a
base - taking the more fit individuals to breed better solutions.

In this case, we can use the training landmarks as forming the initial
population, rather than random points. However, a random population
should lead to the same good results in segmentation, although after
a larger number of generation. On the other hand, an heuristic initial
population would yield good results faster because the initial shapes
resemble the one to be segmented.
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5.4 Genetic Operators

To produce an offspring, the system acts in several stages:

1. Select two individuals:

(', 0%) = (@], s Ty Y1s s Yn); (015 oons 0] (7)
and
(2%,0%) = [(#7, s T3, YTs s Ui, (085 e 05,,)] (8)

and apply a recombination operator. The types of crossover that
we used are:

(a) discrete, in which case the offspring is

(z,0) = [(zf, ..., 2yt ), (ol . om) (9)

where ¢; = 1 or ¢; = 2 with equal probabilities for all i =
1,2,....,s. That means that each component ¢ comes either
from the first or from the second parent.

(b) intermediate, when the offspring is

(z,0) = [(xF, ...,z gyt L yPn), (o, ..., 082 (10)
(o) = (FLEA Bt o vyl oty
9 2 7" 2 ) 2 7" 2 )
(AL Tont iy (1)

The intermediate crossover yielded better results. The explana-
tion is somehow obvious. Whereas the discreet crossover main-
tains at least one of the coordinates of either parents, the inter-
mediate crossover creates a completely new offspring, with com-
pletely new coordinates.

2. Apply mutation to the offspring obtained. Here is the novel fea-
ture of (u + A\) — ES and (u,\) — ES. By this operator, the
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control parameters adapt themselves. After mutation, the indi-
vidual v = (z, o) becomes v’ = (z’,0"), where

o — UéN(O,&r) (12)

and
2 =x+ N(0,0") (13)

In the above relations, do is an extra parameter and N (0, do)
represents a random number within a normal (Gaussian) distri-
bution with mean zero and standard deviation do.

In ESs, mutation realizes a kind of hill-climbing search when it is con-
sidered in combination with selection. The o; parameters related to the
x; can be seen as preferred search directions along the axes of coordi-
nates. Generally, the best search direction (with the largest climbing,
in mathematics called gradient) is not along the axis. Thus the trajec-
tory of the population through the search space is zigzagging along the
gradient, hence it is suboptimal. In order to avoid this shortcoming, an
additional control parameter (0) has been introduced. An individual is
represented by a triple (z,0,6). The recombination operators become

now:
o' = geN(0:00) (14)

=60+ N(0,0") (15)

¥ =z+C(0,0,60) (16)

The parameter 60 is an extra parameter, like do. The parameter
C(0,0',8') is the correlation matrix.

5.5 ES Parameters

An important step in designing an evolution strategy is the choice of
the parameters.

1. The individual length is twice as much as the number of land-
marks. If there are n landmarks (z;,4;) defined for each image,
an individual is:

= (2,0,0) = [(T1yers Try Y1y ooy Yn ) (O1y eoey 20 ) (01, ..., 02)]  (17)
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2. The size of the population, p represents the number of individuals
that undergo evolution (crossover and mutation).

3. The number of offspring, A is the number of individuals created
after a generation evolves. It is an intermediary population, from
which, the best individuals will survive and make up a new gen-
eration.

4. The selection procedure can be done in two ways:

e selecting the fittest p individuals from the intermediary pop-
ulation consisting of A offspring. This type of selection is
referred to as (u, A) selection

e selecting the fittest p individuals from the population con-
sisting of the p parents along with the A\ offspring. This is
referred to as (u + A) selection

5. Mutation parameters do and 060 are needed for defining the step of
the mutation. The larger the two parameters, the more significant
the mutation.

6. The total number of generations represents the maximum number
of iterations until the algorithm stops. Normally, the algorithm
should end when the objective function is reached or when it is
close enough. If this does not happens, the algorithm runs until
the maximum number of generations.

6 Why Evolution Strategies?

6.1 Evolution Strategies vs. Genetic Algorithms

Both ESs and Genetic Algorithms (GAs) belong to a wider class of
search algorithms, known as Evolutionary Algorithms or Evolutionary
Computation. Both approaches to computational problem solving rely
on the biological paradigms of organic evolution, postulated by Darwin.
They explore the search space by means of population of search points
which undergo evolution by crossover, mutation and selection.
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Cootes et al. [5] and Huang et. al. [12] proposed the use of GAs
for segmentation. Unlike them, we propose ESs for the same task. The
reasons for that are described further.

1. A reason for choosing ESs consists in the way the individuals are
represented. The ESs individuals are represented by floats. On
the other hand, the GAs operate on binary strings. Only recently,
they have been used also float representation.

2. The selection process represents another reason for using ESs.
The new generation is selected deterministic as consisting of the
fittest p individuals out of A (in the case of (u, \) — ES) or p+ A
individuals (for (u + A) — ES).

In a generation of the GAs, all the individuals have a chance to
be selected according to their fitness. Thus even the weakest ones
can be parts of the new population. Thus the selection is weakly
controlled.

3. Another reason for choosing the ESs lies in the way the repro-
duction parameters are stored and handled. In GAs, the prob-
ability of crossover and the probability of mutation remain con-
stant throughout the evolution process and are external to the
population. On the contrary, these parameters evolve every new
generation in ESs. This self-adaptation is quite important for
fine local tuning and has its counterpart in GAs research.

6.2 ESs vs. ACMs

As can be seen in section 3 the main disadvantage of the ACMs is
their additional computational complexity. There are very complex
calculations to be done, including integrals and derivatives.

Second, most approaches are based on explicit updating schemes
which demand very small time steps. The steps used by ESs have two
advantages:

e can be tuned with the evolution parameters, namely do and 60
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e vary over time, from small steps to larger ones, depending on the
fitness of the individuals

Third, an ACM requires the definitions of both an external energy
as well as an internal one. The external energy is dependent on the
application and is similar to the target shape for ASMs and to the
objective function for ESs. Straightforward functions have been defined
by Gunn et. al. [10] and by Xu at al. [15].

However, the internal function may have significant drawbacks:

e [t may be easily defined by regular shapes, but difficult or even
impossible to define for more complex, real life shapes.

e Quite often only one function does not suffice. Most of the times,
the internal forces of a shape can be defined by more functions.

ESs do not necessarily make use of the internal energies. However,
such heuristic knowledge can be embedded successfully into the evolu-
tion, which leads to faster and more reliable convergence. In this case,
the size of the population is important, because the individuals ”pull”
each other towards the contour of the object.

According to Yuille et al. [13], the active contours have difficulties
progressing into concave boundary regions. On the other hand, the ESs
do not have such difficulties as they do not make use of any function
defining an internal energy.

6.3 ESsvs. ASM

Cootes et. al. [7] propose, as improvement of the ASMs, the alignment
of images. This leads to better results. The drawbacks of such an
approach are:

e It requires extra computational resources.

e The alignment works well on the training images, but the image to
be segmented cannot be aligned because there are no landmarks
defined yet. This makes that approach almost useless in real life.
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The ASMs require an approximate position of the object to be
segmented, whereas ESs are global optimization techniques. In other
words, they ”search” for the objects independently of the position and
shape of the object on the training image. However, training shapes
spread all over the images would yield better results in terms of time
and segmentation.

The ASMs can get stuck in secondary edges and cannot be avoided
due to the small steps in which the shape is updated. This situation
can occur also in ESs. However, due to mutation, some individuals
may get out of them and eventually reach the global optimum.

7 Results

We carried out three types of experiments. The objects in the images
were annotated by a number of fixed landmarks and a closed contour
between those fixed points from which a number of equidistant land-
mark points were sampled. No shape alignment was performed.

As shown in section 5.5, an individual consists of a set of landmarks
describing a contour. A training set of images were marked manually
by two physicians. An average of the two segmentations yielded the
initial population, which, further on, underwent evolution.

To evaluate the results, the following measure was used: the area
correctly classified as object was divided by the area classified as object
plus the area classified incorrectly as object or as background. In other
words: true positive area divided by true positive plus false positive plus
false negative area. This performance measure yields 1 for a perfect
result and O if there is no overlap at all between the detected and
true object. This measure is probably more directly related to what
is expected of a segmentation in practice than the average distance
between the true and detected location of each landmark in the shape
model because the latter is not sensitive to shifts of the landmarks
along the contour.

The first set of experiments consisted of segmentation of rectangles
of different sizes. This step was required for rough assessment of the
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methods. It gave the first impressions of various setups. The number
of fixed points was 4 (in the corners of the rectangles) and in total 24
points were used.

Figure 1. Rectangles used for segmentation

The other experiments were performed on 78 standard postero-
anterior (PA) chest radiographs. In these images, both the left and the
right lung fields were segmented as separate objects. The images were
randomly selected from a tuberculosis screening program and contained
both normal and abnormal cases of patients of 16 years and older. The
images were printed on 10 x 10 c¢m film, digitized with a scanner to
1000 x 1000 pixels with 12 bit intensity.

The lung fields in the test set of the chest radiographs were manually
segmented by a human observer independently. Therefore the results
of the algorithms could be compared with the output of the observer.
For these experiments, 15 fixed landmarks have been annotated and in
total 60 points were used.

The second set of experiments consisted in segmentation of the left
lung field.
The results we obtained are summarized in the Table 1.
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Figure 2. Rx images used for left lung segmentation

Table 1. Segmentation results for the left lung fields

Segmentation Accuracy o
Segmentation using the edge magnitude 88.4% £ 7.4%

Segmentation using the edge magnitude and | 94.5% £ 9.87%
direction
Segmentation using the gray-level appearance | 95.2% + 6.4%

The third set of experiments consisted in segmentation of the right
lung field.

Figure 3. Rx images used for right lung segmentation

The results we obtained for the right lung field segmentation are
summarized in the Table 2.

As can be noticed from the experiments, the results for the left and
for the right lung are pretty similar. The three segmentation criteria
used yielded quite some different results. The edge magnitude gave the
worst results, but with the smallest standard deviation. The second
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Table 2. Segmentation results for the right lung fields

Segmentation Accuracy *+o

Segmentation using the edge magnitude 87.3% + 5.21%

Segmentation using the edge magnitude and | 93.5% + 8.6%
direction
Segmentation using the gray-level appearance | 96.1% =+ 6.58%

criterion, edge magnitude and direction resulted pretty good results,
but the standard deviation was large, which means that it works well
only on some images. The last criterion, gray-level appearance, gave
the best results, with small standard deviation, which means good and
constant results.

Further we will compare the results of our approach with results
obtained by other authors. Bram van Ginneken et. al. [1] carried out
similar research on lung fields segmentation. They used 230 standard
chest radiographs and applied ASMs and ASMs with optimal features.
Their results are concluded in the tables below. The results of the right
lung segmentations are presented in Table 3.

Table 3. Segmentation results of the experiments carried out by Gin-
neken for the right lung fields

Segmentation Accuracy *+o
ASMs 88.2% + 7.4%
ASMs with optimal features 92.9% =+ 2.6%

The results of the left lung segmentations are presented in Table 4.
It is difficult to compare results of two researches carried out on
different sets of images and in different conditions. However, it is no-
ticeable that the results presented in [1] and obtained by us are very
similar. Moreover, unlike Ginneken, our results are more compact (o is
slightly lower in our case), which means more consistent segmentations.
We consider interesting to see the similarities and differences
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Table 4. Segmentation results of the experiments carried out by Gin-
neken for the left lung fields

Segmentation Accuracy *+o
ASMs 86.1% £ 10.9%
ASMs with optimal features 88.7% £ 11.4%

between segmentations based on evolutionary methods for various
anatomical shapes. Huang et. al. [12] used genetic algorithms for
eye location. They used 10 faces for training and 20 face images for
tests, out of which their algorithm missed two eye locations and no false
positives were identified. In other words, the accuracy of the algorithm
was about 90%. Eye detection is a quite simple task because it involves
a rather coarse segmentation.

Cootes et al [5] applied ASMs and genetic algorithms for locating
structures in medical images. They defined a 96 point heart model on a
set of echocardiograms. They obtained good results after 50 iterations,
but did not assessed the accuracy of the location.

8 Conclusions

The method we describe allow flexible models of image objects such as
lungs to be built easily from sets of example images. The technique can
be applied to a wide variety of objects in different imaging modalities.

Cootes [5] proposed the use of genetic algorithms for the searches
performed by the ASMs. Our approach, on the contrary, substitutes
entirely the ASMs. The method we presented could be applied for
segmentation of any anatomical structure. However, our experiments
were carried out only for lung fields.

An enhancement of this approach is the use of the ESs in a multi-
resolution framework. This means the use of ESs within various reso-
lutions, starting with a coarse image and ending with the finest reso-
lution.

Beichel et al.  [2] researched active appearance model matching.
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A combination between active appearance with evolution strategies
would be a very good research subject as well as an improvement of
the approach we have presented in this paper.
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