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Abstract

It is known that P systems with two membranes and minimal
symport/antiport rules are “almost” computationally complete
as generators of number or vector sets.

Interpreting the result of the computation as the sequence
of terminal symbols sent to the environment, we show that P
systems with two membranes and symport rules of weight two
or symport/antiport rules of weight one generate all recursively
enumerable languages.

1 Introduction

Membrane System (also called P system), which is a model of living
cell, was introduced by Gh. Păun recently ([21, 22]). Membrane sys-
tems are distributed parallel computing devices, processing multisets
of objects, synchronously, in compartments delimited by a membrane
structure. The objects, which correspond to chemicals evolving in the
compartments of a cell, can also pass through membranes. The mem-
branes form a hierarchical structure (they can be dissolved, divided,
created, and their permeability can be modified). A sequence of tran-
sitions between configurations of a P system forms a computation. The
result of a halting computation is the number of objects present at the
end of the computation in a specified membrane, called the output
membrane. The objects can also have a structure of their own that can
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be described by strings over a given alphabet of basic molecules - in
this case the result of a computation is a set of strings. An important
version of membrane systems deals with membranes arranged not in
a hierarchical structure (which mathematically corresponds to a tree),
but in a tissue-like structure (which mathematically corresponds to a
graph). Many open problems related to the computational power of P
systems remain. The challenge is especially interesting, and apparently
difficult, for restricted versions of P systems, in our case for P systems
with symport/antiport rules.

P systems with symport/antiport rules are parallel distributed sys-
tems, processing multisets according the rules that move the objects
between the regions. They were first introduced in [20]; symport rules
move objects across a membrane (which is a separator of regions) to-
gether in one direction, whereas antiport rules move objects across a
membrane in opposite directions.

A comprehensive overview of the most important results obtained
in the area of P systems and tissue P systems with symport/antiport
rules, with respect to the development of computational completeness
results improving descriptional complexity parameters as the number
of membranes and cells, respectively, the weight of the rules and the
number of objects can be found in [1] and the last results in [5]. We
consider P systems with symport/antiport rules and minimal coopera-
tion, i.e., P systems with symport/antiport rules of weight one and P
systems with symport rules of weight two, such systems are called P
systems with minimal symport/antiport.

In this paper we consider generating languages by such P systems
with two membranes, in the way it has been done, e.g., for transitional
P systems and for P systems with active membranes, see [22]. This
is a natural generalization of studies of the generative power of P sys-
tems with symport/antiport. Since the environment in this model is
considered not empty at the beginning of the computation, we distin-
guish the result by considering the sequence of objects from a terminal
sub-alphabet, sent into the environment.
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2 Preliminaries

Let O be a finite set, O∗ is a free monoid generated by O. Consider
x ∈ O∗; we will denote all permutations of x by Perm(x).

By RE we denote the family of recursively enumerable languages.

2.1 Counter Automata with an Output Tape

A non-deterministic counter automaton (see [9], [1]) with an output
tape is a tuple

M = (d, T, Q, q0, qf , P ), where

• d is the number of counters
(we will use the notation D = {1, · · · , d});

• T is an output alphabet;

• Q is a finite set of states;

• q0 ∈ Q is the initial state;

• qf ∈ Q is the final state;

• P is a finite set of instructions.

The instructions operating on counters are of the forms

(qi → ql, kγ), with qi, qj ∈ Q, qi 6= qf , k ∈ D, γ ∈ {+,−,= 0}

(changing the state from qi to ql and applying operation γ to counter
k). The operations are increment (add one to the value of the counter),
decrement (subtract one from the value of the counter) and zero-test
(test whether the value of the counter is zero or not), respectively. If
an empty counter is decremented or a non-empty counter is tested for
zero, then the computation is blocked.

The instructions operating on the tape are of the form

(qi → ql, write(c)), where qi, qj ∈ Q, qi 6= qf and c ∈ T
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(changing the state and writing the symbol c on the tape). One can also
speak about the halt instruction of the counter automaton, assigned to
the final state qf .

A transition of the counter automaton consists in updating or check-
ing the value of a counter, or writing a symbol on the tape, according
to an instruction of one of the types described above and by changing
the current state to another one. The computation starts in state q0

with all counters equal to zero. The result of the computation is a word
consisting of the symbols written on the tape when the automaton halts
in state qf .

The result we will use is that counter automata are computationally
complete, and only two counters are needed.

2.2 P Systems with Symport/Antiport

The reader is supposed to be familiar with basic elements of membrane
computing, e.g., from [22]; comprehensive information can be found in
the P systems web page, [29].

A P system with symport/antiport rules is a construct

Π = (O, T,E, µ,w1, . . . , wk, R1, . . . , Rk), where

1. O is a finite alphabet of symbols called objects;

2. T ⊆ O is the terminal alphabet;

3. E ⊆ O is the set of objects that appear in the environment in an
infinite number of copies;

4. µ is a membrane structure consisting of k membranes that are
labelled in a one-to-one manner by 1, 2, . . . , k;

5. wi ∈ O∗, for each 1 ≤ i ≤ k, is a finite multiset of objects
associated with the region i (delimited by membrane i);

6. Ri, for each 1 ≤ i ≤ k, is a finite set of symport/antiport rules
associated with membrane i; these rules are of the forms (x, in)
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and (y, out) (symport rules) and (y, out;x, in) (antiport rules),
respectively, where x, y ∈ O+.

A P system with symport/antiport rules is defined as a computa-
tional device consisting of a set of k hierarchically nested membranes
that identify k distinct regions (the membrane structure µ), where to
each membrane i there are assigned a multiset of objects wi and a fi-
nite set of symport/antiport rules Ri, 1 ≤ i ≤ k. A rule (x, in) ∈ Ri

permits the objects specified by x to be moved into region i from the
immediately outer region. Notice that for P systems with symport
rules the rules in the skin membrane of the form (x, in), where x ∈ E∗,
are forbidden. A rule (x, out) ∈ Ri permits the multiset x to be moved
from region i into the outer region. A rule (y, out; x, in) permits the
multisets y and x, which are situated in region i and the outer region
of i, respectively, to be exchanged. It is clear that a rule can be applied
if and only if the multisets involved by this rule are present in the cor-
responding regions. The weight of a symport rule (x, in) or (x, out) is
given by |x| , while the weight of an antiport rule (y, out; x, in) is given
by max{|x|, |y|}.

As usual, a computation in a P system with symport/antiport rules
is obtained by applying the rules in a non-deterministic maximally par-
allel manner. Specifically, in this variant, a computation is restricted to
moving objects through membranes, since symport/antiport rules do
not allow the system to modify the objects placed inside the regions.
Initially, each region i contains the corresponding finite multiset wi,
whereas the environment contains only objects from E that appear in
infinitely many copies.

2.3 Generating Languages

A computation is halting if starting from the initial configuration, the
system reaches a configuration where no rule can be applied anymore.

Consider the output alphabet T . Throughout the computation we
register when objects from T are sent to the environment. The result
of a halting computation is the sequence of objects from T sent to the
environment in the order in which it happened (if multiple objects from
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T are ejected in the environment simultaneously, all permutations are
considered). 1

Example 1 Consider the following P system

Π = (O = {p, a, b}, T = {a, b}, E = {p, a, b}, µ = [1 ]1, w1, R1),
w1 = paab,

R1 = {r1 : (pa, out; pb, in), r2 : (ab, out; a, in)}.

The environment contains an unbounded supply of objects p, a, b, so
the state of the system is determined by objects in the skin membrane.
The system starts with one copy of p, two copies of a and one copy of b
in the skin membrane, simultaneously applying rules r1 and r2. Having
one copy of each of the objects p, a, b, two computations are possible:

pab
1
⇒r1

1 pbb or pab
1
⇒r2 pa

1
⇒r1 pb

1
.

Consider the terminal objects sent out in either case. These computa-
tions correspond to generating a language

Perm(aab) · a ∪ Perm(aab) · Perm(ab) · a,

consisting of 9 words.

We denote the family of languages generated by a P system with
symport/antiport rules with at most m > 0 membranes, symport rules
of weight at most s ≥ 0, and antiport rules of weight at most t ≥ 0 by

LOPm(syms, antit)

If t = 0, we may omit antit.

1Intuitively, sending the terminal objects out of the skin membrane is like writing
them on the output tape.
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3 Main Results

Theorem 1 LOP2(sym1, anti1) = RE.

Proof. Without loss of generality we simulate a counter automaton
with an output tape M = (d, T, Q, q0, qf , P ) which starts with empty
counters. We also suppose that all instructions from P are labeled
in a one-to-one manner with elements of {1, . . . , n} = I, n is a label
of the halt instruction and I ′ = I \ {n}. We denote by I+, I−, and
I=0 the set of labels for the “increment” -, “decrement” -, and “test
for zero” -instructions, respectively (“increment”-instructions include
also instructions operating on the tape). We use the next notation:
C = {ck}, k ∈ D.

We construct the P system Π1 as follows:

Π1 = (O, T, E, [1 [2 ]2 ]1, w1, w2, R1, R2),
O = E ∪ {X, Y1, Y2, J1, J2, J3} ∪ {bj , dj | j ∈ I},
E = T ∪Q ∪ C ∪ {aj , ej | j ∈ I} ∪ {a′j | j ∈ I ′ \ I−} ∪ {J0, F, Y3},

w1 = q0J1J2J3,

w2 = XJ3Y1Y2

∏

j∈I

bj

∏

j∈I

dj ,

Ri = Ri,s ∪Ri,r ∪Ri,f , i = 1, 2.

We code the counter automaton as follows:
Region 1 will hold the current state of the automaton, represented

by a symbol qi ∈ Q and the value of all counters, represented by the
number of occurrences of symbols ck ∈ C, k ∈ D, where D = {1, ..., d}.

We split our proof into several parts that depend on the logical
separation of the behavior of the system. We will present the rules and
the initial symbols for each part, but we remark that the system we
present is the union of all these parts. The rules Ri are given by three
phases:

1. START: preparation of the system for the computation.

2. RUN: simulation of instructions of the counter automaton.
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3. END: terminating the computation.

The parts of the computations illustrated in the following describe
different phases of the evolution of the P system. For simplicity, we fo-
cus on explaining a particular phase and omit the objects that do not
participate in the evolution at that time. Each rectangle represents
a membrane, each variable represents a copy of an object in a corre-
sponding membrane (symbols outside of the outermost rectangle are
found in the environment). In each step, the symbols that will evolve
(will be moved) are written in boldface. The labels of the applied
rules are written above the symbol ⇒.

1. START.
We use here the following idea: in our system we have a symbol

X which moves from region 2 to region 1 and back in an infinite loop.
This loop may be stopped only if all stages completed correctly.

R1,s = ∅,
R2,s = {2s1 : (X, out), 2s2 : (X, in)}.

Notice that some rules are never executed during a correct simu-
lation: applying them would lead to an infinite computation. To help
the reader, we will underline the labels of such rules in the description
below.

2. RUN.

R1,r = {1r1 : (qi, out; aj , in) | (j : qi → ql, kγ) or
(j : qi → ql, write(c)) ∈ P, γ ∈ {+,−, = 0}, k ∈ D, c ∈ T}

∪ {1r2 : (qf , out; an, in)}
∪ {1r3 : (bj , out; a′j , in) | j ∈ I ′ \ I−}
∪ {1r4 : (bj , out)) | j ∈ I−}
∪ {1r5 : (aj , out; J0, in), 1r6 : (J1, out; bj , in) | j ∈ I}
∪ {1r7 : (J0, out;J1, in)}
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∪ {1r8 : (a′j , out; ck, in) | (j : qi → ql, k+) ∈ P}
∪ {1r9 : (a′j , out; c, in) | (j : qi → ql, write(c)) ∈ P}
∪ {1r10 : (c, out) | c ∈ T}
∪ {1r11 : (a′j , out) | j ∈ I=0}
∪ {1r12 : (dj , in) | j ∈ I=0 ∪ I+}
∪ {1r13 : (ck, out; dj , in), 1r14 : (J3, out; dj , in)

| (j : qi → ql, k−) ∈ P}
∪ {1r15 : (dj , out; ej , in) | j ∈ I}
∪ {1r16 : (ej , out, ql, in) | (j : qi → ql, kγ) or

(j : qi → ql, write(c)) ∈ P, γ ∈ {+,−, = 0}, k ∈ D, c ∈ T}
∪ {1r17 : (en, out;F, in), 1r18 : (bn, out)}
∪ {1r19 : (J3, out; J1, in)}
∪ {1r20 : (#, out), 1r21 : (#, in)}.

R2,r = {2r1 : (bj , out; aj , in), 2r2 : (aj , out; J2, in),
2r3 : (aj , out;J1, in) | j ∈ I}

∪ {2r4 : (dj , out; bj , in) | j ∈ I}
∪ {2r5 : (J2, out; dj , in) | j ∈ I− ∪ I+}
∪ {2r6 : (J2, out; a′j , in), 2r7 : (a′j , out; dj , in) | j ∈ I=0}
∪ {2r7 : (a′j , out; ck, in) | j ∈ I=0}
∪ {2r8 : (#, out;J0, in) }.

First of all, we mention that if during the phase RUN object J3

comes to the environment (rules 1r14, 1r19), it remains there forever
(Scenario 0). Then during the phase END the second symbol J3 from
region 2 will be moved to region 1 that leads to an infinite computation
(by rule 1f4, see phase END).

Let us explain the synchronization of aj coming to the environment
and bj leaving the environment: the first one brings J0 into region 1
while the latter brings J1 into the environment; then rule 1r7 returns
J0 and J1 to their original locations.

If aj comes to the environment without bj leaving it, J1 remains
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in region 1 (or 2) and J0 comes to region 1 (Scenario 1), so 2r8 is
applied, causing an endless computation since 1r20 or 1r21 is always
applicable.

If bj leaves the environment without aj coming there, J0 remains in
the environment and J1 comes there (Scenario 2), so 1r19 is applied
and symbol J3 appears in the environment. Thus, the computation
never halts, see scenario 0.

We also mention that applying rule 2r3 causes scenario 1. There-
fore, in order for a computation to halt, no underlined rules should be
applied.

We will now consider the “main” line of computation.

“ Increment” -instruction:

qlajatckejJ0 qiJ1J2J3 bjdj# ⇒1r1 qiqlata
′
jckejJ0 ajJ1J2J3 bjdj#

⇒2r1 qiqla′jatckejJ0 bjJ1J2J3 ajdj# ⇒1r3,2r2

qiqlatbjckejJ0 aja′jJ1J3 J2dj# (A)

⇒1r5,1r6,1r8 qiqlaja
′
jatejJ1 bjckJ0J3 J2dj# ⇒1r7,2r4

qiqlaja
′
jatejJ0 ckdjJ1J3 bjJ2# ⇒1r15

qiqlaja
′
jatdjJ0 ckejJ1J3 bjJ2# ⇒1r12,1r16

qiaja
′
jatejJ0 qlckdjJ1J3 bjJ2# ⇒1r1,2r5

qiqlaja
′
jejJ0 atckJ1J2J3 bjdj#

In that way, qi is replaced by ql and ck is moved from the environment
into region 1. In configuration (A) rule 1r9 may be applied instead of
rule 1r8 and after that rule 1r10, so terminal symbol c will be sent to
the environment. Thus we model instruction j : (qi → ql, write(c)) of
counter automaton M . Symbol dj returns to region 2 in the first step of
the simulation of the next instruction (the last step of the illustration).

308



Generating Languages with Minimal Symport/Antiport

Notice that symbols aj , bj , a′j , dj , ej , J2, J1, J0 have returned to their
original positions.

“ Decrement” -instruction:

qlajatejJ0 qickJ1J2J3 bjdj# ⇒1r1 qiqlatejJ0 ajckJ1J2J3 bjdj#

⇒2r1 qiqlatejJ0 bjckJ1J2J3 ajdj# ⇒1r4,2r2

qiqlatbjejJ0 ajckJ1J3 djJ2# ⇒1r5,1r6 qiqlajatejJ1 bjckJ0J3 djJ2#

⇒1r7,2r4 qiqlajatejJ0 djckJ1J3 bjJ2# ⇒1r15

qiqlajatdjJ0 ckejJ1J3 bjJ2# (B)

⇒1r13,1r16 qiajatckejJ0 qldjJ1J3 bjJ2# ⇒1r1,2r5

qiqlajckejJ0 atJ1J2J3 bjdj#

In the way described above, qi is replaced by ql and ck is removed
from region 1 to the environment. If symbol ck is absent in region 1 in
configuration (B) it enforces the applying of rule 1r14 that leads to an
infinite computation. Symbol dj returns to region 2 in the first step of
the simulation of the next instruction (the last step of the illustration).
Notice that symbols aj , bj , dj , ej , J2, J1, J0 have returned to their
original positions.

“ Test for zero” -instruction:
qi is replaced by ql if there is no ck in region 1, otherwise a′j in

region 2 exchanges with ck in region 1 and the computation will never
stop.
(i) There is no ck in region 1:

qlataja
′
jejJ0 qiJ1J2J3 bjdj# ⇒1r1 qiqlata

′
jejJ0 ajJ1J2J3 bjdj#

⇒2r1 qiqlata′jejJ0 bjJ1J2J3 ajdj# ⇒1r3,2r2
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qiqlatbjejJ0 aja′jJ1J3 J2dj# ⇒1r5,1r6,2r6

qiqlajatejJ1 bjJ0J2J3 a′jdj# (C)

⇒1r7,2r4 qiqlajatejJ0 djJ1J2J3 a′jbj# ⇒1r15

qiqlajatdjJ0 ejJ1J2J3 a′jbj# ⇒1r12,1r16

qiajatejJ0 qldjJ1J2J3 a′jbj# ⇒1r1,2r7 qiqlajejJ0 ata′jJ1J2J3 bjdj#

In this case, qi is replaced by ql. Notice that symbols aj , a′j , bj , dj , ej ,
J2, J1, J0 have returned to their original positions. Symbol dj returns
to region 2 in the first step of the simulation of the next instruction (the
last step of the illustration) and symbol a′j returns to the environment
in the second step of the simulation of the next instruction.

(ii) There is some ck in region 1:
Consider configuration (C) with object ck in region 1:

qiqlajatejJ1 bjckJ0J2J3 a′jdj# ⇒1r7,2r4,2r7

qiqlajatejJ0 a′jdjJ1J2J3 bjck# ⇒1r11,1r15

qiqlaja
′
jatdjJ0 ejJ1J2J3 bjck# ⇒1r12,1r16

qiaja
′
jatejJ0 qldjJ1J2J3 bjck#

Now rule 1r15 again will be applied and two symbols at, as appear
in several steps in region 1 that leads to an infinite computation (see
scenario 1).

Let us consider the symbols from region 2 visiting the environment
and going back: 2 → 1 → 0 → 1 → 2 (bj , dj for all instructions) and
the symbols from the environment visiting region 2 and going back:
0 → 1 → 2 → 1 → 0. The latter ones are: aj for all instructions, and
also {a′j | j ∈ I=0}.
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Then we have to argue that if they Return to their “home region”
(2 → 1 → 2 or 0 → 1 → 0) or Repeat their visit to the “opposite
region” before returning “home” (2 → 1 → 0 → 1 → 0 or 0 → 1 →
2 → 1 → 2), an infinite computation is unavoidable, or such case is not
possible.

aj , j ∈ I. Return: see scenario 1; repeat: impossible without bj .
a′j , j ∈ I=0. Return: as dj cannot come back to region 2 (is not

possible to apply rule 2r6), it again goes to the environment (see dj ,
repeat); repeat: impossible without J2.

bj , j ∈ I. Return: if aj comes to the environment, scenario 1 takes
place. If aj returns to region 2, rule 2r3 is applied; repeat: symbol
J1 will be moved to the environment, where it changes with J3 (rule
1r19), so it leads to an infinite computation (scenario 0).

dj , j ∈ I. Return: ej stays in the environment, the simulation
stops and the computation never ends due to 2s1, 2s2; repeat: two
symbols at, as appear in several steps in region 1 that leads to an infinite
computation (see scenario 1).

3. END.

R1,f = {1f1 : (Y1, out; Y3, in), 1f2 : (Y2, out)}
∪ {1f3 : (X, out;Y2, in), 1f4 : (J3, out, J3, in)}.

R2,f = {2f1 : (Y1, out; F, in), 2f2 : (Y2, out;F, in), 2f3 : (F, out)}
∪ {2f4 : (J3, out; Y3, in)}.

Once the counter automaton reaches the final state, qf is in region
1 and it exchanges with object an (rule 1r2), object F will be moved
to region 1 in several steps. It takes Y1, Y2 and J3 to region 1, in either
order. The duty of Y2 is to bring X to the environment (the object
X can oscillate for indefinite time, but we are interested in halting
computations). The duty of Y1 is to bring J3 from region 2 to region
1. If during the previous steps of simulation of counter automaton M
object J3 from region 1 was moved to the environment (by rules 1r14
or 1r19), rule 1f4 will be applied, leading to an infinite computation.

311



A.Alhazov, Yu.Rogozhin

If on the previous steps of simulation of counter automaton M object
J1 was moved to region 2 (by rules 2r3), rule 2r8 will be applied in
several steps, and the computation never halts.

Thus, at the end of a terminating computation terminal word w ∈ T
will be sent to the environment. 2

Theorem 2 LOP2(sym2) = RE.

Proof. Our proof is based on the construction introduced in Theorem 2
from [2]. As in the proof of Theorem 1 we simulate a counter automaton
M = (d, T, Q, q0, qf , P ) which starts with empty counters. Again we
suppose that all instructions from P are labelled in a one-to-one manner
with elements of {1, . . . , n} = I and that I is the disjoint union of {n}
as well as I+, I−, and I=0, where by I+, I−, and I=0 we denote the
set of labels for the “increment”, “decrement”, and “test for zero”
instructions, respectively (recall that “increment”-instructions include
also instructions operating on the tape). Moreover, we define I ′ =
I \ {n} and Q′ = Q \ {q0}. We also suppose that there is only one
instruction with initial state q0 (labeled with number 1) and only one
instruction with the final state qf (labeled with number n).

We construct the P system Π2 as follows:

Π2 = (O, T,E, [1 [2 ]2 ]1, w1, w2, R1, R2),
O = E ∪ {#1, #2, $, f} ∪Q ∪ {bj , gj | j ∈ I} ∪ {g′j | j ∈ I ′},
E = T ∪ {aj , a

′
j , dj , d

′
j | j ∈ I} ∪ C,

C = {ci | 1 ≤ i ≤ d},
w1 = #2$fq0a1

∏

j∈I

bj ,

w2 = #1

∏

qi∈Q′
qi

∏

j∈I

gj

∏

j∈I′
g′j ,

Ri = Ri,s ∪Ri,r ∪Ri,f , i ∈ {1, 2}.

We code the counter automaton as follows: The environment will
hold the current state of the automaton, represented by a symbol qi ∈
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Q, membrane 1 will hold the value of all counters, represented by the
number of occurrences of symbols ck, k ∈ D, where D = {1, ..., d}.
We also use the following idea realized by phase START below: in
our system we have a symbol #2 moving from the environment to
membrane 1 and back in an infinite loop. This loop can only be stopped
if all stages have completed correctly. Otherwise, the computation will
never stop.

Again as in Theorem 1 we split our proof into several parts that
depend on the logical separation of the behavior of the system. We will
present the rules and the initial symbols for each part, but we remark
that the system that we present is the union of all these parts.

The rules Ri are given by three phases:

1. START: preparation of the system for the computation.

2. RUN: simulation of instructions of the counter automaton.

3. END: terminating the computation.

1. START.

R1,s = {1s1 : (#2, out), 1s2 : (#2, in)},
R2,s = ∅.

Notice that system Π2 begins its functioning by applying rule 1s1
and moving objects q0a1 to region 2 (see phase RUN below). Thus
system Π2 starts to simulate the counter automaton M .

2. RUN.

R1,r = {1r1 : (qiaj , in) | (j : qi → ql, kγ) or
(j : qi → ql, write(c)) ∈ P, γ ∈ {+,−, = 0}, k ∈ D, c ∈ T}

∪ {1r2 : (bjgj , out) | j ∈ I+ ∪ I=0}
∪ {1r3 : (ckbj , in) | (j : qi → ql, k+) ∈ P, k ∈ D}
∪ {1r4 : (gjck, out) | (j : qi → ql, k−) ∈ P, k ∈ D}
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∪ {1r5 : (a′jgj , in) | j ∈ I ′}
∪ {1r6 : (#1, out), 1r7 : (#1, in)}
∪ {1r8 : (djbj , in) | j ∈ I=0}
∪ {1r9 : (djck, out) | (j : qi → ql, k = 0) ∈ P, k ∈ D}
∪ {1r10 : (a′jql, out) | (j : qi → ql, kγ) or

(j : qi → ql, write(c)) ∈ P, γ ∈ {+,−}, k ∈ D, c ∈ T}
∪ {1r11 : (a′jg

′
j , out), 1r12 : (d′jg

′
j , in),

1r13 : (d′j , out) | j ∈ I=0}
∪ {1r14 : (djql, out) | (j : qi → ql, k = 0) ∈ P, k ∈ D},
∪ {1r15 : (cbj , in) | (j : qi → ql, write(c)) ∈ P}
∪ {1r16 : (c, out) | c ∈ T},

R2,r = {2r1 : (ajbj , in) | j ∈ I ′}
∪ {2r2 : (qi, in) | qi ∈ Q}
∪ {2r3 : (bjgj , out) | j ∈ I ′}
∪ {2r4 : (a′j$, in) | j ∈ I}
∪ {2r5 : (#1$, out)}
∪ {2r6 : (a′jgj , in) | j ∈ I ′}
∪ {2r7 : (a′jql, out) | (j : qi → ql, kγ) or

(j : qi → ql, write(c)) ∈ P, γ ∈ {+,−}, k ∈ D, c ∈ T}
∪ {2r8 : (a′jg

′
j , out) | j ∈ I=0}

∪ {2r9 : (d′jg
′
j , in) | j ∈ I=0}

∪ {2r10 : (d′jql, out) | (j : qi → ql, k = 0) ∈ P , k ∈ D}.

Notice that the starting configuration of Π2 corresponds to the re-
sult of the first step of the simulation of the starting instruction (1r1
is “already made”).

“Increment” instruction:

a′jckqiaj bj$ gjql#1 ⇒1r1 a′jck qiajbj$ gjql#1 ⇒2r1,2r2
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a′jck $ qiajbjgjql#1 ⇒2r3 a′jck bjgj$ qiajql#1 ⇒1r2

ckbjgja′j $ qiajql#1 (A)

⇒1r3,1r5 ckbjgja
′
j$ qiajql#1

Now there are two variants of computations (depending on the ap-
plication of rule 1r2 or rule 2r6):

a) Applying rule 1r2:

cka
′
j ckbjgja′j$ qiajql#1 ⇒1r2,2r4

ckbjgja′j ck qiaja′jql$#1 ⇒1r5,1r3,2r5,2r7

bjgja
′
ja
′
jqlckck$#1 qiaj · · ·

After that application of rules 1r6 and 1r7 leads to infinite com-
putation.

b) Applying rule 2r6:

ckbjgja′j$ qiajql#1 ⇒2r6 ckbj$ qiajgja′jql#1 ⇒2r7

a′jqlckbj$ qiajgj#1 ⇒1r10 a′jql ckbj$ qiajgj#1

qi is replaced by ql and ck is moved into region 1. In configuration
(A) rule 1r15 may be applied instead of rule 1r3 and after that rule
1r16, so terminal symbol c will be sent to the environment. Thus we
model instruction j : (qi → ql, write(c)) of counter automaton M .

“Decrement” instruction:

a′jqiaj ckbj$ gjql#1 ⇒1r1 a′j ckqiajbj$ gjql#1 ⇒2r1,2r2

a′j ck$ qiajbjgjql#1 ⇒2r3 a′j ckgjbj$ qiajql#1 ⇒1r4
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ckgja′j bj$ qiajql#1 ⇒1r5 ck bjgja
′
j$ qiajql#1

Now there are two variants of computations (depending on the ap-
plication of rule 1r4 or rule 2r6).

c) Applying rule 1r4:

a′jck bjckgja′j$ qiajql#1 ⇒1r4,2r4 a′jgjckck bj qiaja′jql$#1

⇒1r5,2r5,2r7 ckck a′ja
′
jgjqlbj$#1 qiaj · · ·

After that the application of rules 1r6 and 1r7 leads to an infinite
computation.

d) Applying rule 2r6:

ck bjgja′j$ qiajql#1 ⇒2r6 ck bj$ qiajgja′jql#1 ⇒2r7

ck a′jqlbj$ qiajgj#1 ⇒1r10 cka
′
jql bj$ qiajgj#1

In that way, qi is replaced by ql and ck is removed from region 1.

“Test for zero” instruction:
qi is replaced by ql if there is no ck in region 1 (case e)), otherwise

the computation will never stop (case f)).

Case e):

a′jdjd
′
jqiaj bj$ gjg

′
jql#1 ⇒1r1 a′jdjd

′
j qiajbj$ gjg

′
jql#1 ⇒2r1,2r2

a′jdjd
′
j $ qiajbjgjg

′
jql#1 ⇒2r3 a′jdjd

′
j bjgj$ qiajg

′
jql#1 ⇒1r2

d′jbjdjgja′j $ qiajg
′
jql#1 ⇒1r8,1r5 d′j djbjgja

′
j$ qiajg

′
jql#1
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Again there are two variants of computations, depending on the
application of rule 1r2 or rule 2r6, where applying rule 1r2 leads to
an infinite computation (see case a)). Hence, we only consider the case
of applying rule 2r6:

d′j djbjgja′j$ qiajg
′
jql#1 ⇒2r6 d′j djbj$ qiajgja′jg

′
jql#1 ⇒2r8

d′j a′jg
′
jdjbj$ qiajgjql#1 ⇒1r11 a′jg

′
jd
′
j djbj$ qiajgjql#1 ⇒1r12

a′j djbj$g′jd
′
j qiajgjql#1 ⇒2r9 a′j djbj$ qiajgjg

′
jd
′
jql#1 ⇒2r10

a′j d′jqldjbj$ qiajgjg
′
j#1 ⇒1r13,1r14 a′jdjd

′
jql bj$ qiajgjg

′
j#1

Thus, qi is replaced by ql.

Case f):

a′jdjd
′
jqiaj ckbj$ gjg

′
jql#1 ⇒1r1 a′jdjd

′
j ckqiajbj$ gjg

′
jql#1 ⇒2r1,2r2

a′jdjd
′
j ck$ qiajbjgjg

′
jql#1 ⇒2r3 a′jdjd

′
j ckbjgj$ qiajg

′
jql#1 ⇒1r2

d′jbjdjgja′j ck$ qiajg
′
jql#1 ⇒1r8,1r5 d′j ckdjgja′jbj$ qiajg

′
jql#1

⇒1r9,2r6

ckdjd
′
j bj$ qiajgja′jg

′
jql#1 ⇒2r8 ckdjd

′
j a′jg

′
jbj$ qiajgjql#1 ⇒1r11

a′jckdjg′jd
′
j bj$ qiajgjql#1 ⇒1r12 a′jckdj bj$g′jd

′
j qiajgjql#1 ⇒2r9

a′jckdj bj$ qiajgjg
′
jd
′
jql#1 ⇒2r10 a′jckdj d′jqlbj$ qiajgjg

′
j#1 ⇒1r13

a′jckdjd
′
j qlbj$ qiajgjg

′
j#1

Further we continue our work only by applying the rules 1s1 and
1s2, thus, the computation will never stop.
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3. END.

R1,f = {1f1 : (qfan, in)}
R2,f = {2f1 : (#2gn, in), 2f2 : (fan, in), 2f3 : (fgn, out)}.

Object #2 is moved to region 2, so we stop without continuing the
loop.

Thus, at the end of a terminating computation terminal word w ∈ T
will be sent to the environment. 2

4 Discussion

Consider P systems with two membranes and symport of weight at
most two or symport/antiport rules of weight one. It has been shown
in [5] for both classes that they generate all recursively enumerable
sets of positive integers and some finite sets of non-negative integers
containing zero. In the present work we look at generating languages
by the same systems, taking sequences of terminal objects sent into the
environment as the output of the system. We have shown that both
classes are computationally complete.

The case of one membrane remains to be investigated. Unlike gen-
erating numbers, it is possible to generate infinite sets:

Example 2

Π3 = (O = {a, b}, T = {a}, E = O, µ = [1 ]1, w1 = b,R1),
R1 = {(b, out; a, in), (a, out; b, in), (a, out)};

Π4 = (O = {a, b}, T = {a}, E = O, µ = [1 ]1, w1 = ba,R1),
R1 = {(ba, out), (ba, in), (b, in)};

L(Π1) = L(Π2) = a+
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Let us return to the way the behaviour of the system is defined.
Notice that T ⊆ E holds for both proofs (the output symbols are
available in the environment in unbounded quantity). Therefore, when
a terminal symbol is ejected into the environment, it is not important
whether it is allowed to re-enter the system (it has been registered and
“released”) or not (it remains on the “tape”). In the next paragraph,
however, we assume the first case (the other one is more restricted).

We come back to systems with multiple membranes. Clearly, such
computational power is only possible when we register just the terminal
symbols. What happens if we require

T = {a ∈ O | |u|a > 0, (u, out) ∈ R1 or (u, out; v, in) ∈ R1},

i.e., all symbols that may be sent into the environment constitute
the terminal alphabet? It turns out that the total number of objects
present inside the system cannot exceed the initial value plus the size
of the output word (multiplied by a constant if we drop the restriction
on the weight of symport/antiport rules). Following the argument that
the total number of configurations with at most N objects is a poly-
nomial with respect to N (depending on the size of the alphabet and
the number of membranes), it is not difficult to see that the condition
above bounds the power of such systems by LOGSPACE [15] (i.e.,
that of Turing machines with a working tape of size O(log n), where n
is the size of the output word).

Finally, it is possible to define P systems accepting words by reg-
istering the terminal symbols that enter the skin membrane from the
environment. In principal, similar computational completeness results
may be obtained. We did not include such results in this article be-
cause it would be non-deterministic acceptance and because there are
multiple ways one could define the behaviour of such P systems.

The authors thank Dr. Rudolf Freund for the useful discussions of
the definitions.
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Mart́ın-Vide, G. Mauri, Gh. Păun, G. Rozenberg, A. Salomaa,
Eds.), Lecture Notes in Computer Science, Springer 2933 (2004)
43–45.

[9] R. Freund, M. Oswald. GP Systems with Forbidding Context.
Fundamenta Informaticae, IOS Press 49, 1–3 (2002) 81–102.

[10] R. Freund, M. Oswald. P Systems with Activated/Prohibited
Membrane Channels. Membrane Computing International Work-
shop, WMC-CdeA 02, Curtea de Argeş, 2002. Revised Papers
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[21] Gh. Păun. Computing with Membranes. Journal of Computer and
Systems Science, 61 (2000) 108–143.
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