Computer Science Journal of Moldova, vol.14, no.2(41), 2006

Query by Constraint Propagation in the
Concept-Oriented Data Model

Alexandr Savinov

Abstract

The paper describes an approach to query processing in the
concept-oriented data model. This approach is based on impos-
ing constraints and specifying the result type. The constraints
are then automatically propagated over the model and the result
contains all related data items. The simplest constraint propaga-
tion strategy consists of two steps: propagating down to the most
specific level using de- projection and propagating up to the tar-
get concept using projection. A more complex strategy described
in the paper may consist of many de-projection/projection steps
passing through some intermediate concepts. An advantage of
the described query mechanism is that it does not need any join
conditions because it uses the structure of the model for prop-
agation. Moreover, this mechanism does not require specifying
an access path using dimension names. Thus even rather com-
plex queries can be expressed in simple and natural form because
they are expressed by specifying what information is available
and what related data we want to get.

1 Introduction

Let us consider the following problem domain and design of its data
model. Customers order goods using orders. One order counsists of
several parts where each part is one product item. This can be repre-
sented by three tables Orders, OrderParts and Products as shown in
Fig. 1. Each record from OrderParts references one order it belongs
to and one product that has been ordered in this item (denoted by

(©2006 by A. Savinov

219

A. Savinov

arrows). For example, order part <#23, # 16> references order <# 23>
and product <#16> (descriptive fields such as product name or order
date are not shown).

One general problem that arises in the context of data modelling
cousists in getting related records given some other records and ad-
ditional constraints. For example, we might want to get all orders
related to one or more products or, vice versa, all products related to
a selected set of orders. Notice that related records are not directly
connected because there is an intermediate table OrderParts between
tables Orders and Products. In the real world data models the struc-
ture of relationships is much more complex and normally there exist
more than one intermediate table. In this case it is difficult to auto-
matically retrieve related records because the constraints need to be
unambiguously propagated over the model according to the assumed
semantics of its relationships.

Orders OrderParts Products
<#23> <#23, 416> <#16>

Figure 1. An example of orders and products

A wide spread approach to this problem is based on using the rela-
tional data model (RM) [4]. It consists in manually specifying all the
involved tables and all their join conditions. Essentially in this case
we precisely specify what kind of data we want to retrieve and how
this data is related to other data in the model. Notice that all this
information is provided within one query. For large data models such
a method is not only tedious but also error-prone because writing long
queries with complex join conditions requires high expertise. In our
almost primitive example it is necessary to join two pairs of tables by
choosing among many possible query options. The database cannot
help us too much because it is unaware of the model semantics and
what actually we want to get and hence all the peculiarities and details
of the query have to be specified in an explicit form.

220

Query by Coustraint Propagation ...

Another problem of such an approach is that many queries will con-
tain the same information. For example, joining the two pairs of tables
will be normally done using identical fragments of the query. These
fragments will be then repeated in the same or similar form in many
other queries. If in future we change a relationship between some tables
then all these fragments need to be updated (the problem of code main-
tenance). Because of this necessity to provide a very detailed manual
description for each query intended to retrieve related records, RM is
not very successful for solving the problem of logical navigation. (Its
main achievement is that it successfully solved the problem of physical
navigation eliminating the need to know and specify physical location
of records what was necessary in the preceding data models).

An alternative solution of the problem of logical navigation is pro-
vided within the concept-oriented model (CoM) [13, 15]. This model is
based on ordering its elements, i.e., elements are positioned one under
another without cycles rather than compose an arbitrary graph like in
entity-relationship model (ERM) [3]. In other words, it is of primary
importance if an element is above or below another element while other
properties are derived from this ordered structure. In particular, if a
table references some other table then it is positioned below it. For
example, since table OrderParts references Orders and Products, we
put it below the both of these tables as shown in Fig. 2. In addition, we
provide names for the arrows connecting tables, which are called dimen-
sions (all dimensions have upward direction). Thus CoM is not only
aware of the structure but its direct responsibility consists in managing
and using it for querying data, logical navigation and other operations
with data.

Using ordered graphs it is possible to get related data by specifying
an exact access path from constraints to target elements as dimension
names. A direct advantage is that we avoid any join conditions which
can be thought of as encoded in the model dimension structure. Such
queries are much simpler than SQL queries because they do not involve
repeated fragments. For example, a set of orders related to products P
is obtained as follows:

P — {OrderParts — product } — order

221

A. Savinov

Orders Products
<H#23> <#16>
order product
OrderParts
<H23, #16>

Figure 2. In CoM all elements are ordered

If there is a set of orders 0 then related products are obtained as follows:

0 — {OrderParts — order} — product
In both queries we de-project the initial set to OrderParts (denoted
by dimension path in curly brackets). And then the result is projected
to the target table. For more complex structures such an access path is
longer and may consist of many upward (projection) and downward (de-
projection) segments in the ordered table structure (zigzags). But in
any case the use of dimensions effectively removes the need for explicit
joins. It is the responsibility of the database to translate the access
path into appropriate operations with records.

It can be noticed that a similar approach is used in other naviga-
tional data models such as the network model (NM), object-oriented
model (OOM) or functional data model (FDM) [17, 7, 8]. However,
the big difference is that CoM uses an ordered structure rather than
an arbitrary graph and this fact has significant consequences. One of
them is that the access path is not simply a sequence of dimensions
but rather a sequence of projection and de-projection operations. If
we go up in the ordered set then it is projection while if we go down
then it is de-projection. These operations can also be effectively used
for grouping and aggregation [16] what makes it similar to multidimen-
sional models [1, 9, 11], OLAP [2] and formal concept analysis (FCA)
[6].

Above we shortly described how related records can be retrieved
in CoM by specifying an access path. However, an amazing property
of this model is that in many cases the access path can be built auto-

222

Query by Coustraint Propagation ...

matically using for that purpose the model structure. In this case we
need to only provide a set of initial items and some target from where
related records have to be retrieved. In our example this means that it
is enough to specify initial products (say, by imposing some constraints
on table Products) and then say that we want to get related orders.
Or, we can specify some initial orders and then say that it is necessary
to get related products. In both cases the system will be able to un-
ambiguously build the correct access path and retrieve related records
with no additional information. Such ability is again based on using
order of elements. Particularly, the system knows that OrderParts is a
common subtable for both Orders and Products. Hence it builds the
access path as consisting of one de-projection and one projection. This
principle can be generalized and applied to more complex data models
where it is frequently possible to automatically propagate constraints
and get related records expected by the user.

This problem was considered within the universal relation model
(URM) where all relations are assumed to be projections of a single re-
lation [10, 5, 12]. However, this direction did not result in an acceptable
solution because some things become simpler while others become more
complex. One reason is that an assumption of universal relation was
shown to be incompatible with many aspects of the relational model.
In contrast, CoM possesses a number of unique properties which make
the solution not only possible but very natural. One of them is that
CoM has canonical semantics (an analogue of universal relation) as its
intrinsic feature, which allows us to define natural constraint propaga-
tion rules.

The main goal of this paper consists in describing how the mech-
anism of automatic constraint propagation works in CoM and how it
can be used for getting related records. In Section 2 CoM is shortly de-
scribed. Section 3 describes operations of projection and de-projection
and how they are used for constraint propagation. Section 4 describes
some more complex cases where it is not possible to find an access path
for constraint propagation. Section 5 provides concluding remarks.

223

A. Savinov

2 Model Structure

One of the main principles of the concept-oriented paradigm is that
of duality, which means that any element has two sides or flavours.
For example, in the concept-oriented programming (CoP), concept is a
programining construct consisting of one object class and one reference
class [14]. An object in CoP is then a combination of its fields and a
collection of internal objects. In CoM the principle of duality can be
formulated as follows: any element participates in two separate struc-
tures called physical and logical (Fig. 3). The physical structure has a
hierarchical form where any element has a single parent element (dot-
ted lines in Fig. 3). It is called physical because elements are assumed
to be included by value in their parents and the element position in
the parent element is thought of as its (local) identifier or reference.
Thus the physical structure is responsible for object representation and
access (ORA) by providing permanent references and some access pro-
cedure. For example, all product records are created within a table
where they have some unique and permanent references. The table
itself is included in its database.

In CoM any element, such as product, may have its internal (phys-
ical) elements however in this paper we consider only a two-level model
which consists of one root, a set of concepts included in the root and
a set of data items included in the concepts. (Further in the paper we
will use these terms instead of their analogues like tables and records.)
In Fig. 3 the physical structure is drawn along the horizontal axis and
consists of one root, which includes three concepts OrderParts, Orders
and Products, which in turn consist of some data items.

The logical structure has a form of directed acyclic graph where an
element may have many parents by storing their references in its fields.
In other words a reference stored in a field is interpreted as a pointer to
one of the parent elements. This allows us to bring order into the logical
structure by placing an attribute value above the element it character-
izes. For example, order part item <#23, # 16> references order item
<# 23> and product item <# 16>. Hence it is positioned below both of
them. Here we do not need even to know that these items represent an

224

Query by Coustraint Propagation ...

Products °

c
)
[0}
3J
T
£
fi 0
g i
S ~Orders:
k3]) i
2
7]
©
L
(2}
3 :
o : i<#23, 416>
OrderParts .. " ;
N I\ R y
root concepts items

<

physical structure/inclusion

Figure 3. Physical and logical structures

order part, order and product — we simply interpret references (arrows
in Fig. 3) as the logical membership relation leading from a member
to its group. Such an interpretation of references (and attribute-value
relation) as a membership is a very important characteristic property
of CoM which allows us to consider a value as a logical set or collection
for the objects it characterizes (an item is a logical collection for its
subitems).

Councept S referenced by concept C is referred to as supercon-
cept (and C'is then referred to as subconcept). For example, concept
OrderParts has two superconcepts Orders and Products positioned
above their common subconcept. A named link from a subconcept
to a superconcept is referred to as dimension. For example, concept
OrderParts in Fig. 2 has two dimensions order and product. If a
concept does not have a subconcept explicitly defined then formally
introduced bottom concept is used for that. Analogously, if a concept
does not have a superconcept then formally introduced top concept
is used for that. Top concept is the most abstract (general) concept

225

A. Savinov

and bottom concept is the most specific one. All other concepts in
the model are positioned between top and bottom concepts. Direct
subconcepts of top concept are referred to as primitive concepts.

In the logical structure any element references a number of parent
elements. Theoretically an element can reference any other element
provided that this structure does not have cycles. (Cycles do not allow
us to define order because it is not possible to determine if an element
is above or below another element from this cycle.) In particular, con-
cepts can reference items, items can reference concepts and any item
can reference any other item from the model. However, such a freedom
is not desirable and CoM introduces so called syntactic constraints,
which mean that an item can reference only items from concepts refer-
enced by its parent concept. For example, an order part item cannot
reference any other item in the model under syntactic constraints. Its
domains are restricted by items from Orders and Products because
they are referenced by concept OrderParts.

There exist two operations that can be used to get related items
given some other items: projection and de-projection [16]. Projection
is applied to items from a subconcept and returns items from some
its superconcept along a dimension path. For example, OrderParts
is a subconcept of Products and hence each order part item can be
projected on some product. Given a subset of order parts OP it is
possible to get all related products by projecting this subset into its
superconcept Products:

0P — product
De-projection is an opposite operation. It is applied to items from
a superconcept and returns related items from some its subconcept.
A path in the case is specified using dimension names which however
are interpreted in the opposite direction. For example, given a set of
products P we can get all related order parts by de-projecting them
into concept OrderParts:

P — {OrderParts — product}

Notice that here we use inversion operator {} in order to change the
direction of dimension path. Thus projection can be viewed as moving
up in the concept graph along a dimension path while de-projection is

226

Query by Coustraint Propagation ...

viewed as moving down along some inverse dimension. A sequence of
projection and de-projection operators is referred to as an access path.

3 Constraint Propagation

In the previous section we described a procedure for retrieving related
items using the mechanism of access path. This method assumes that
some initial set of items is selected and then operations of projection
and de-projection are applied. This method is simpler and more natural
than the existing approaches but it still requires a complete specifica-
tion of the access path.

Let us now look at this process differently. The set of initial items
has to be somehow specified and for this purpose some constraints
are normally used. These initial constraints are imposed on items of
some concept and are somehow propagated over the model changing
its semantics. Finally we want to get some part of this modified (con-
strained) model by specifying the target concept. Due to constraint
propagation this target concept will include only items which are re-
lated to the source items. An advantage of this approach is that we do
not need to specify an access path because related items are retrieved
as a result of constraint propagation procedure carried out automati-
cally. For example, to get products related to some orders it is enough
to specify constraints for the source orders and then the target concept
— the constraint propagation path can be computed automatically.

The main question in this method is how initial constraints have to
be propagated over the model in order to get natural and meaningful
results. The simplest strategy counsists of two operations:

1. Initial constraints imposed on concepts Xi,...,X,, are propa-
gated down to and imposed on the most specific concept Z using
de-projection.

2. The constrained semantics of concept Z is propagated up to the
target concept Y using projection.

Coustraints are specified using some predicate that has to be true for
each selected data item:

227

A. Savinov

Xi,: {.’EZ € Xz|fz($1) = true} CX;,,1=1,...,n
Here X; is a subset of items from X; satisfying condition f; (bar stands
for constrained).

Let us now consider how these constraints are propagated down to
the subconcept Z. The idea is that if some item from X; does not
satisfy the imposed condition f; then all its subitems from the target
subconcept Z also do not satisfy this condition. In the case of many
constraints the result is intersection of individual de-projections:

Z=71N0...027Z,

ZZ'ZXZ'—>{dZ'}, 1=1,...,n
Here d; is a dimension from concept Z to its superconcept X;. (In the
case of many dimensions all of them are used independently.) Equiv-
alently, subset Z can be defined as a multidimensional de-projection

[16] of items (z1,...,2,) € X1 X ... x X,, to Z along n dimensions
dl, ey dn:

Z = (a:l,...,a:n) — {dl,...,dn}
Thus an item from Z satisfies all the constraints f1_ ,.., fn imposed on

concepts Xi,..., X, if it is projected in Xi,..., X, along the chosen
dimension paths di, ..., dy:
Z={z2€Z|z—deX;i=1,...,n}CZ
Subset Z contains the semantics satisfying all the imposed con-
strains. However, we do not need it in such a detailed form. Instead,
we want to get related items from concept Y. In order to decrease
the level of details the data from Z has to be projected to the target

concept Y:

Y=Z—->m
Here m is a dimension from Z to Y. Selected items Y C Y are related
to items X1,..., X, chosen in X,..., X, and are returned as a result

of the constraint propagation procedure.

An example of this procedure is shown in Fig. 4. Constraints are
imposed on concept Products by selecting a number of product items.
In order to get related orders from Orders these products have to
be propagated down to ProductParts using de-projection. All the
selected order parts (shown in dashed line in Fig. 4) reference only the
specified products. On the second step these order parts are projected

228

Query by Coustraint Propagation ...

on concept Orders.

This procedure is analogous to inference in multi-dimensional space
(Fig. 4 right). Constraints are imposed by selecting a subset of values
along axis X. The available dependencies are represented as a subset
of points from space Z (in circle). Intersection Z = X N Z is then
projected onto target axis Y and gives result Y. Dependence Z can be
represented using different techniques such as linear equations, differ-
ential equations, neural networks and so on. In the world of databases
it is represented as a set of data items which select points from the
space. In other words, a subconcept with its data items encodes a
dependence between its superconcepts.

Orders Products

P = .
o0 @ . . 0 [
v ,.,eff\ ‘.“

OrderParts

Figure 4. Coustraint propagation procedure

Notice that related orders can be always obtained by manually spec-
ifying an appropriate access path. However, a property of the described
procedure is that it does not require any access path and propagates
constraints automatically. We need only to impose constraints and
then indicate a target concept. The query for getting related orders
can be written as follows:

SELECT * FROM Orders

WHERE Products.size > 10
This query will return records from table Orders. However its WHERE
clause imposes additional restrictions on table Products by selecting
only those with big size. Notice that there is no indication in this
query how these two tables are connected and therefore the imposed
restriction will be propagated automatically.

229

A. Savinov

Fig. 5 provides an example of the described procedure. Assume that
the question is what orders are related to beer and chips. This means
that it is necessary to find all orders where either beer or chips are
product items. The selected two products are shown in bold in Fig. 5.
These two products are de-projected to concept OrderParts which
will contain only three items. Then these three items are projected
to concept Orders. They reference only two orders <# 23> and <# 24>
which are the result of this query.

Order# | date Product#| name
#22 22.09.06 #15 tee
#23 23.09.06 #16 beer
#24 24.09.06 #17 chips
#25 25.09.06 #18 coffee

Order# Product#

#22 #15

#23 #16

#24 #16

#23 #17

#25 #15

Figure 5. An example of constraints

In the case of many constraints in different parts of the concept
graph they are propagated down to the most specific concept along
their individual dimension paths. On the second step their intersection
is propagated up to the target concept. A model in Fig. 6 consists of
three already described concepts Orders, Products and OrderParts.
However, concepts Orders and Products have their own superconcepts.
In particular, each order is characterized by a customer (who made
this order) and a date (when this order was made). Each customer
belongs to some country from concept Countries and each product
has a category from concept Categories. Let us now assume that
we want to get all countries related to some product category (say,

230

Query by Coustraint Propagation ...

’cars’) and during some period of time (say, in ’June’). In other
words, we want to learn in what countries cars were sold in June. Here
again it is possible to write this query using concrete access paths for
projection and de-projection. However, the method described in this
paper does not need it and it is enough to simply impose our constraints
and indicate what kind of result we want to get — all the rest will be
done automatically.

The first constraint consists in selecting only cars. As a conse-
quence all non-car items are effectively removed from the model. This
means that all non-car products are removed and all order parts with
non-car products are also removed. Thus we get some subset of all
available order parts. The second counstraint consists in selecting only
items characterized by June as their date (concept Months). When this
counstraint is propagated down, all non-June items from its subconcepts
are effectively removed. In particular, all non-June dates, all non-June
orders and all non-June order parts do not satisfy this constraint. After
that concept OrderParts will contain only items characterized by cars
as its product category and by June as its date.

Top
Countriesl | Months | |Categories|w
£, 4 1)
calintry Mot h categary
g T N iy SO o |
Customersl | Dates §,;| | Products |;m:
i | | |
1 date "‘a ,‘@
) ”rw
prodgct
| &

OrderParts|

Figure 6. Many source concepts with constraints

The last step in this procedure consists in propagating the selected
order parts up to the target concept Countries. The whole query can
be written as follows:

231

A. Savinov

SELECT * FROM Countries

WHERE Categories.name==’cars’

AND Months.name==’June’

This query selects records from one table while imposing restrictions
on other tables which are not explicitly connected to the first one. In
SQL such a query would need to join 8 pairs of tables.

The described procedure for automatic counstraint propagation
works only if an access path can be unambiguously restored. How-
ever there are models where many possible constraint propagation
paths exist between source and target concepts. For example, products
can be characterized by a country of origin (Fig. 7) and then concept
Countries is a domain for two subconcepts Customers and Products.
Let us assume that we want to get all related product categories for
a selected country. Obviously, in this case there exist two options for
constraint propagation from Countries to Categories. The first path
goes through concept OrderParts and this propagation strategy will
result in all product categories ordered by customers from the specified
country (path (0). The second path goes through concept Products
and it will return all categories for products made in the specified coun-

try (path 2).

Countries|,

country L\

__gW Acategary
Yy v‘-‘ ‘«L

Products

customer B |
§

~ / = rgﬁu at
order — L
OrderParts

Figure 7. Multiple constraint propagation paths

In order to resolve this ambiguity and avoid the necessity to spec-

232

Query by Coustraint Propagation ...

ify the complete path it is possible to use hints which help to choose
one of many alternatives. One approach consists in using *VIA’ key-
word followed by concept name. This keyword means that constraint
propagation path has to include the specified concept(s), i.e., the recon-
structed access path has to pass through this concept(s). For example,
the following query will return all categories for products made in Ger-
many:

SELECT * FROM Categories

WHERE Country.name==’Germany’

VIA Products
However, we can change this query and get all categories for orders
from Germany:

SELECT * FROM Categories

WHERE Country.name==’Germany’

VIA OrderParts
By default in the case of no additional information the imposed con-
straints will be propagated along all possible paths. In the above ex-
ample this would produce a set of categories for products ordered and
made in Germany.

4 Implicit Constraints

In the previous section we considered an automatic constraint prop-
agation procedure consisting of two steps: propagating down via de-
projection and propagating up via projection. In this section we con-
sider a more complex case where this procedure does not work because
the source constraints do not directly influence the target concept.
Let us consider an example shown in Fig. 8. Here coaches (concept
Coaches) train teams (concept Teams) while one team consists of a
number of players (concept Players). Concepts Trains and Plays
store pairs of coach-team and player-team, respectively. (It is assumed
that a player may play for many teams and a coach may train many
teams.) Now let us ask the following question: find players related to
a selected coach. For this model this question means that we want to
get all players who have ever played for a team trained by this coach.

233

A. Savinov

If we select the coach and propagate this constraint down according
to the 2-step procedure then we get a subset of items from concept
Trains. However, here this procedure stops because there is no path
leading to the target concept Players. Indeed, we can project Trains
to its superconcept Teams but not to Players because players are not
directly connected with coaches.

Coaches | | Teams |(D| Players I

coach A»@ iv‘team‘%% ;:‘ clayer
| Trains | | Play

Figure 8. Multi-step inference

Onune simple solution to this problem consists in performing multiple
de-projection/projection zigzags in concept graph. In this example, an
obvious strategy is (1) to find a set of teams trained by the coach and
then (2) all players from these teams. Here again we can use keyword
’VIA’ in order to specify more precisely a point in the concept graph
used for constraint propagation:

SELECT * FROM Players

WHERE Coaches.name==’Smith’

VIA Teams

Another solution consists in applying the same 2-step procedure
as described in the previous section but adding additional constraints
which are implicitly assumed in the initial query. For example, when
we want to get all players trained by some coach then it is implicitly
assumed that the coach trains a team of this player. In other words,
the team trained by the coach must be the same team where the player
plays:

Trains.team == Plays.team
If this assumption can be explicitly formulated in the query then we
can correctly propagate the initial constraints directly from coaches to
players.

The concept-oriented model always has bottom concept which is a
subconcept for any other concept. If it does not exist then it is added

234

Query by Coustraint Propagation ...

formally. In particular, the model in Fig. 8 does not have bottom
concept so we formally add it and get the model shown in Fig. 9.
The semantics of bottom concept is the canonical semantics of the
whole model. It is equal to the Cartesian product of all its direct
superconcepts: B = 57 X ... X S,. In our example it contains all
combinations of items from concepts Trains and Plays. Effectively
this means that there are no dependencies between these concepts and
hence we will not be able to derive any consequence in one concept
given constraints in another concept.

l Coaches | | Teams | | Players |

“Ren A Aerh A piavet
a‘ | Trains |“ | Plays |

Trains.team == Plays.team

Figure 9. Inference under additional constraints

Bottom concept has a number of dimensions with domains in
all its superconcepts. In our example it has 2 dimensions with do-
mains in direct superconcepts Trains and Plays and 4 dimensions of
rank 2 with domains in concepts Coaches, Teams and Players (so
it is a 4-dimensional model). Notice however that two dimensions
Bottom.trains.team and Bottom.plays.team have the same domain
in concept Teams. We know that a coach is related to a player only
if he trains the same team where this player plays. Thus we need to
consider only data items from Bottom which satisfy this condition

Bottom — trains — team==Bottom — plays — team
It is precisely the additional constraint that has to be taken into ac-
count when carrying out inference procedure. (The first constraint is
as usual a coach for which we want to get related players.) Both types
of constraints (explicit and implicit) are propagated down to bottom
concept and then the result is propagated up to the target concept.
The whole query can be written as follows:

235

A. Savinov

SELECT * FROM Players

WHERE Coaches.name == ’Smith’

AND Trains — team == Plays — team

The first line selects records from the target table. The second
line imposes explicit restrictions by choosing one coach. And the third
line specifies an additional implicit condition according to our under-
standing of the word related (records). In other situations this addi-
tional constraint could express some other semantics of the term related
items. For example, a player might be treated as related to a coach
if he has played for the team for more than some time or more than
some number of games. These constraints encode dependencies in the
model which are implicitly assumed when making a query.

5 Conclusions

In the paper we presented an approach to getting related data using
automatic constraint propagation. This mechanism is based on spe-
cific properties of the concept-oriented data model. In particular, it
assumes that elements of the model are ordered and this order is used
to implement operations of projection and de-projection. This method
is easy to use because in many situations it is enough to impose con-
straints and indicate the type of result we want to obtain. However,
it makes it possible to express rather complex queries using additional
hints in the case of ambiguity or additional constraints in the case of
the absence of direct dependencies.

References
[1] R.Agrawal, A.Gupta, and S.Sarawagi. Modeling multidimensional
databases. In 13th International Conference on Data Engineering

(ICDE’97), 1997, pp. 232-243.

[2] A.Berson, and S.J.Smith. Data warehousing, data mining, and
OLAP. New York, McGraw-Hill, 1997.

236

Query by Coustraint Propagation ...

3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

P.Chen. The Entity-Relationship Model. Toward a Unified View of
Data. In: ACM Transactions on Database Systems 1/1, 1976.

E.F.Codd. A relational model of data for large shared data banks.
Communications of the ACM, 13(6), 1970, pp. 377-387.

R.Fagin, A.O.Mendelzon, J.D.Ullman . A Simplified Universal Re-
lation Assumption and Its Properties. ACM Trans. Database Syst.,
7(3), 1982, pp. 343-360.

B.Ganter, and R.Wille. Formal Concept Analysis: Mathematical
Foundations. Springer, 1999.

P.M.D.Gray, P.J.H.King, and L.Kerschberg. (eds.) Functional Ap-
proach to Intelligent Information Systems. J. of Intelligent Infor-
mation Systems, 12, 1999, pp. 107-111.

P.M.D.Gray, L.Kerschberg, P.King, and A.Poulovassilis. (eds.)
The Functional Approach to Data Management: Modeling, Ana-
lyzing, and Integrating Heterogeneous Data. Heidelberg, Germany,
Springer, 2004.

M.Gyssens, and L.V.S.Lakshmanan. A foundation for multi-
dimensional databases, In VLDB’97, 1997, pp. 106-115.

W.Kent. Consequences of assuming a universal relation, ACM
Trans. Database Syst., 6(4), 1981, pp. 539-556.

C.Li, and X.S.Wang. A data model for supporting on-line analyt-
scal processing, Proc. Conference on Information and Knowledge
Management, Baltimore, MD, 1996, pp. 81-88.

D.Maier, J.D.Ullman, and M.Y.Vardi. On the foundation of
the universal relation model. ACM Trans. on Database System
(TODS), 9(2), 1984, pp. 283-308.

A.Savinov. Hierarchical Multidimensional Modelling in the
Concept-Oriented Data Model, 3rd Intl. Conference on Concept

237

A. Savinov

[14]

[15]

[16]

[17]

Lattices and Their Applications (CLA’05), Olomouc, Czech Re-
public, 2005, pp. 123-134.

A .Savinov. Concept as a Generalization of Class and Principles of
the Concept-Oriented Programming, Computer Science Journal of
Moldova, 13(3), 2005, pp. 292-335.

A.Savinov. Logical Navigation in the Concept- Oriented Data
Model, Journal of Conceptual Modeling, Issue 36, 2005, August,
http://www.inconcept.com/jcm.

A.Savinov. Grouping and Aggregation in the Concept-Oriented
Data Model. In 21st Annual ACM Symposium on Applied Com-
puting (SAC’06), Dijon, France, 2006, pp. 482-486.

D.W.Shipman. The Functional Data Model and the Data Language
DAPLEX. ACM Transactions on Database Systems, 6(1), 1981,
pp. 140-173.

Dr. Alexandr Savinov, Received August 24, 2006
Institute of Mathematics and Informatics,

Academy of Sciences of Moldova

str. Academiei 5,

MD-2028 Chisinau, Moldova

E-mail: savinov@Qconceptoriented.com

Home page: hitp : //conceptoriented.com/savinov

238

