Computer Science Journal of Moldova, vol.13, no.3(39), 2005

A Deterministic and Polynomial Modified
Perceptron Algorithm

Olof Barr

Abstract

We construct a modified perceptron algorithm that is deter-
ministic, polynomial and also as fast as previous known algo-
rithms. The algorithm runs in time O(mn?lognlog(1/p)), where
m is the number of examples, n the number of dimensions and
p is approximately the size of the margin. We also construct a
non-deterministic modified perceptron algorithm running in time
O(mn?lognlog(1/p)).

1 A Deterministic and Polynomial Modified
Perceptron Algorithm

1.1 Historical and Technological Exposition

The Perceptron Algorithm was introduced by Rosenblatt in [12] and
has been well-studied by mathematicians and computer scientists since
then. For convenience, we will in this paper discuss the version of the
algorithm that, given a set of points (constraints) A = U;a; from R”
finds, if any, a normal z to a hyperplane through origo such that z-a; > 0
for every i. (Note that we do not have any zero rows in the matrix A).
This is so to say, a hyperplane through origo such that all points are
on the very same side of the hyperplane.
The original algorithm can easily be described as follows:

Algorithm 1.1 The Perceptron Algorithm

Input: A set of points (constraints) A = U;a; from R™.

Output: A normal z to a hyperplane such that z - a; > 0 for every
t, if there is such a solution.

(©2005 by 0. Barr

254

A Deterministic and Polynomial Modified ...

1. Let z=0.
2. If there is a point a; € A such that z - a; <0, then z — z + a;
3. Repeat step 2 until no such point is found and output z.

Obviously this algorithm will never halt if there is no solution to the
problem. On the other hand Novikoff proved that if there is a solution
to the problem, the algorithm will halt in a finite number of steps, even
if the number of constraints is infinite.

Theorem 1.1 The number of mistakes made by the on-line perceptron
algorithm, on a set A that has a solulion to the problem, is at most
(2R/v)?, where R = max ||a;|| and v is the size of the margin.

Now, since the margin can be any positive number close to zero, this
upper bound of the performance does not say very much. And even
though there are many results showing that the algorithm runs much
faster in the "usual" case, there are constructions of constraint sets
such that the behaviour of the algorithm is exponential in terms of the
number of constraints [2].

1.1.1 Linear Programs

The problem solved by this Perceptron Algorithm is the homogenized
form of a feasible standard form of a linear program: Find z such
that Az > 0 and = # 0. Here, A is the matrix with a; as row ¢ and
x = 27, where z is the normal of the hyperplane described above. This
problem is of great importance, since it solves maxc’z, Az < b, x>0
by iterative solving the homogenized version and performing a binary
search.

Due to the importance of the problem, many different methods have
been evolved to find solutions to it. To mention here, those are the
simplex algorithm, the interior point method, ellipsoid methods, the
perceptron algorithm and the modified perceptron algorithm.

255

O. Barr

1.1.2 The Modified Perceptron Algorithm

The first polynomial algorithm using the perceptron algorithm was cre-
ated by Dunagan and Vempala in [7]. Even though the algorithm they
constructed was not as fast as other algorithms mentioned above, it
must be said it was a break through for the Perceptron Algorithm.
After this result, the algorithm could not be counted out, it could be
competitive.

Algorithm 1.2 The Modified Perceptron Algorithm (Dunagan & Vem-

pala)
Input: An m X n matriz A.

Output: A point x such that Ax >0 and x # 0.

1. Let B=1, 0 =1/(32n).

2. (Perceptron)
(a) Let x be the origin in R™.

(b) Repeat at most 16n? times: If there exists a row a such that
a-xr<0, sel x =x+a.

Here a denotes the normalized vector a/||al|.
3. If Az > 0, then output Bz as a feasible solution and stop.

4. (Perceptron Improvement)
(a) Let x be a random unit vector in R™.

(b) Repeat at most (Inn)/o? times: If there exists a row a such
that a -z < —o, set x «— x — (a-x)a. If x =0, go back to step
(a). (This is to assure us of not having the vector x set to zero)

(c) If there still exists a row a such that a - < —o, restart at
step (a). (This takes care of the situation of a bad choice of the
randomly chosen vector x)

5. If Az > 0, then output Bx as a feasible solution and stop.

256

A Deterministic and Polynomial Modified ...

6. (Rescaling)
Set A «— A(I +zz") and B «— B(I + zz7).

7. Go back to step 2.

It is not evident that this algorithm will terminate. But Dunagan and
Vempala prove that the margin of the Linear Program will increase in
mean, when many rescalings are made inside the algorithm. This will
in turn make the margin so large such that the Perceptron part of the
algorithm will return a solution to the problem of the Linear Program.

Beside the size of the running time (O(mn*lognlog(1/p), where p
is approximately the size of margin «), the algorithm they presented
was not deterministic. This meant that the result was given in the
mentioned time with very high probability. This is bad, since exceeding
the specified time will not always imply that no solution exists.

Dunagan and Vempala put an open question whether or not there
was a deterministic version of their algorithm.

1.2 A Deterministic and Polynomial Modified Percep-
tron Algorithm

In this paper, we answer the above stated question in the affirmative.
Also, the constructed algorithm presented has the a running time a
factor O(n)faster than the one by Dunagan and Vempala. As a conse-
quence of the construction, we also get a non-deterministic algorithm
running a factor O(n?) faster than the algorithm constructed by Duna-
gan and Vempala.

1.2.1 How to Make it Deterministic

First of all we can conclude that it is due to the random choice of a
unit vector inside the algorithm that makes the algorithm of Dunagan
and Vempala a non-deterministic one. The question to put is if there
is a way of choosing appropriate vectors so that we can keep control of
the number of iterations being made inside the algorithm.

257

O. Barr

What the algorithm wants to choose is a unit vector that has an
inner product of at least 1/y/n with a feasible solution z to the posed
problem. But since we do not know a solution to the problem, we can
ask us if we can have a set V of vectors, where at least one vector
v € V has the mentioned property. The answer to this is positive.
V =U"{e;, —e;}, where U} ;{e;} constitutes an ON-basis for R", will
do according to the following proposition.

Proposition 1.1 Let V = U {e;, —e;}, where U] {e;} constitutes
an ON-basis for R™. Now, for every unit vector w € R™,

1
maxw - v > ——

veV - \/ﬁ

Proof: First assume that e; is the vector with a 1 in the ith coordinate
and zero elsewhere. Now let w = (wy,...,wy,). At least one w; must
have an absolute value of at least 1/y/n, otherwise ||w|| < 1. This yields
that there exists at least one vector v € V such that w-v > 1/y/n as
stated above. To generalize this statement for any ON-basis, we only
have to consider the rotation symmetry of R". g

To make the algorithm deterministic, we will now run the algorithm
in 2n parallel tracks. And instead of using the origin in step 2(a) and
a random unit vector in step 4(a), we will use vectors from our set
V' and update them for each iteration in the algorithm. Since one of
parallel tracks will come closer and closer to a solution for each round,
this specific track will terminate in the time mentioned above. But, we
are running 2n tracks, and the total running time will be a factor 2n
greater than before.

In practice, this is an advantage since the algorithm will tell us how
to make use of paralell processors in a practical situation, making the
algorithm fast when implemented.

1.2.2 How to Speed Up the Algorithm

In order to speed up the algorithm, a deep analysis of all estimates
done by Dunagan and Venpala has been done. As a result of this o can

258

A Deterministic and Polynomial Modified ...

be enlarged to 1/(32y/n) and the 16n? in step 2(b) can be reduced to
4n. These alterations will speed up the process with a factor of order

O(n). New estimates in the margin growth causes another factor of
order O(n).

1.3 The Deterministic Modified Perceptron Algorithm

Now, we are ready to go into details with the topic of this paper.

Below we can study the general structure of the algorithm, breaking
it up into smaller parts that will be presented further on. Important is
though that we are running the algorithm in 2n parallel tracks. This
does not imply that we have to run the algorithm on parallel processors,
only that we do each step for every single track before going to the next
step.

Algorithm 1.3 The Modified Perceptron Algorithm

Input: An m x n matriz A.

Output: A wvector x such that Ax > 0 and x # 0 or "No solution
erists”.

1. Initials
Choose R = n (the dimension of the Linear Program) and put

0=

32/
Let B=1 and V = U}_,{e;, —e;}, where U'_1{e;} constitutes an
ON-basis for R™,

2. Wiggle Phase

Let U = 0. For each vector v € V, run the Wiggle Algorithm,
collecting aoll returned corresponding vectors v in U.

V «—U.

3. Check for no solution

If V =0, then output "No solution exists" and stop.

259

O. Barr

/.

Note that there are more things to show than only to describe the
smaller algorithms used inside the larger structure. We have to show
that they work, to calculate the complexity and to prove that the main
algorithm always will return a correct answer in the time mentioned

Rescaling Phase Normalize every vector in V. That is, for every

v
veV, letv«— ol

For each vector v in'V (at most 2n), together with its correspond-

ing matrices A and B, run the Rescaling Algorithm.

Perceptron Phase

For each vector v € V, run the Perceptron Algorithm for at most

R rounds with v as the initial vector.

If no feasible solution was obtained in the last iteration of the
algorithm, scale every vector v € V' such that ||v|| = 1 and go back

to step 2.

above.
First we describe the Wiggle Algorithm:

Algorithm 1.4 Wiggle Algorithm

Input: An m X n matriz A, a vector v € R" and a set of vectors U.
Output: One of the following three: A solution x to Az > 0, an
updated vector v that will be put in U or the empty set) (also to be put

inU).

1.

If m < —0o for some row a € A,

then v «— v — (Lv) o
llall [

all -
Repeat step 1 at most (logn)/o? times.

If %2 > —0 for every row a € A, then U — U Uwv

llalllloll =

. If Av > 0, then output Bv as a feasible solution and stop.

260

A Deterministic and Polynomial Modified ...

This algorithm is shown in [5], to output a vector v in at most (logn)/o?
steps, if the input vector v satisfies v-z > 1/4/n, where z is a unit vector
that solves Az > 0. Thus, we have to insure us that at least one of our
starting vectors in V' does have this property. But this was shown in
the earlier proposition presented above.

Also we must calculate the complexity of running through the Wig-
gle Algorithm once:

Proposition 1.2 The number of iterations inside the Wiggle Algo-
rithm is of order O(mn?logn).

Proof: The inner loop of the algorithm requires at most one matrix-
vector multiplication, time O(mn), and a constant number of vector
manipulations, time O(n). This is repeated at most (logn)/o? =
322nlogn times. So, the overall time bound is O(mn?logn). O

The following rescaling procedure is a simple matrix-matrix multi-
plication, being of order O(n?).

Algorithm 1.5 Rescaling Phase
Input: a vector v and its
corresponding matrices A and B.
Quitput: rescaled matrices A and B.

LA = AT+ ™)

[[]

2. B B(I+ g’

The important thing to prove for this part, is that for at least one of
our 2n parallel processes, the matrices will be stretched in a direction
such that the margin increases in the new problem Ax > 0. The proof of
this follows substantially the proof in 7], but using some other indata.
The reason for letting p < 1/(2y/n) in the following theorem is that if
p would be larger, the algorithin will halt later on in the Perceptron
phase.

261

O. Barr

Theorem 1.2 Suppose p < 1/(2y/n) and o = 1/(32y/n). Let A’ be
obtained from A by one iteration of the algorithm (where the problem
is not solved). Let p' and p be the margins of the problems A’z > 0
and Ax > 0 respectively. Also assume that we are studying one of
those processes running parallel, where v -z > 1/y/n and z is a feasible
solution, of length one, to Az > 0. Then p' > (1+ £)p.

Proof: Let a;, i = 1,...,m be the rows of A at the beginning of some
iteration, for one of the parallel processes having v -z > 1/y/n. (Below
we drop the index 4, and usually denote a row a; only with a). Let z be
the unit vector satisfying p = min; II%LH -z, and let o; = HZ—” -v. After the
wiggle phase, we get a vector v such that ﬁ -v = og; > —o for every i.

As described in the algorithm, let A’ be the matrix obtained after
the rescaling step, i.e. a, = a;+k(a;-v)v. Finally define 2’ = z4a(z-v)v,
where

200+ 1 = py/n

or to put it another way
o = (pv/n — 1)/2.

Even though 2’ might not be an optimal choice, it is enough to consider

this one element to lower bound p’. We have p’ > min; ﬁ T

We will first prove that ”Z:” - 2/ cannot be too small.

ad mar T (gag - 0)v _ , lyap + (ag - 0)ollz + alz - v)o]
! = a a z =)
[a'|| HW + (W -0)| 1 +3(H%H)2

since the vector v is normalized before the rescaling is done. Now,
in the case of a positive oy,

p—l—oi(z-v)(1—|—2a)> 1—|—Ji(z-v)\/ﬁ> l1-0
= =Zp Z P 9
\/1+ 302 \/1+ 30?2 V1+ 302

262

A Deterministic and Polynomial Modified ...

where the last inequality follows from that (z -v) > 1/y/n and o; €
[—0,1], with some hard work using the method of Lagrange. On the
other hand, if 0; is negative we get that the expression is at least

31
32v/1 + 302’

Now we are about to bound ||2’| from above, and for convenience
we study the square of it, ||2’[|?>. We know that

121> = ||z + a(z - v)[|* = L+ (o + 2a) (v - 2)?
Inserting our known a = (py/n — 1)/2 we get that

7 9
||Z/H2=1+((Oz+1)2—1)(v~z)2gl—ﬁzE
since a + 1 < 3/4.

Using the identity
g

>1—-=

VITAT 2

for § € (—1,1), we find that the total estimate for the new margin is

i 5t5) (-8 ()20

when o; is positive. Otherwise, when o; is negative we get that

()6 (=)

This estimate will be enough to fulfill the demand we have on the
margin to increase with a certain proportion, such that we also guar-
antee a convergence in the case of the non-deterministic algorithm. For
further details, see [3] and [7]. O

Now we describe the classical Perceptron Algorithm, but reduced

to at most n steps, being an important component of the modified
algorithm.

263

O. Barr

Algorithm 1.6 Perceptron Algorithm
Input: A starting vector v from V.
Output: A feasible solution Bv or a new updated vector v.

1. If there is a row a in A such that v-a <0, then v — v+ a/|al.
2. If Av > 0, then output Bv as a feasible solution and stop.

3. Repeat the two steps above at most R = 4n times.

The behaviour of this algorithm is well-studied, and we know from, for
example, [6] that it produces a feasible solution if the problem has a
margin p of size at least 1/v/R = 1/(2y/n). Also we can conclude that:

Proposition 1.3 The number of iterations inside the Perceptron Al-
gorithm is of order O(mn?).

Proof: The algorithm will perform at most one matrix-vector multipli-
cation in its inner loop (made at time O(mn)) and a constant number
of vector manipulations (in time O(n)). This is done at most 2n times.
So we get O(mn?). O

Lemma 1.1 The number of times we repeat step 2-5 in Algorithm 1.1
is at most of order O(nlog(1/p)).

Proof: As we have seen above, at least one of our 2n parallel processes
will start with a vector v satisfying v - 2 > 1/4/n where z is a feasible
unit vector. So, after the wiggling phase, the resulting vector will be a
proper direction for rescaling, this enlarges the radius p with a factor
of size at least (14 1/6). But since the perceptron stage will terminate,
yielding a feasible solution if p > 1/(24/n), we know that our algorithm
will terminate after k proper rescalings when

AN
P 6) = 2vn
This yields that £ = O(log(1/p)) O

264

A Deterministic and Polynomial Modified ...

Summing up the information we have got, we get the complexity of
the algorithm in total.

Theorem 1.3 The modified Perceptron Algorithm returns an answer
in time O(mn3lognlog(1/p)).

Proof: The algorithm runs in 2n parallel processes. The wiggle algo-
rithm runs for at most 2!%nlogn times, each round taking time O(mn).
The rescale process takes O(n?) and the Perceptron algorithm runs for
at most n times, each round taking time O(mn). All these three stages
are repeated at most O(log(1/p)) times. So we get that the total time

0] <2nO <log (;)) (2"%mn*logn + O(n?) + mn2)> -

=0 <mn3 log n log <;>>

1.3.1 A Fast Non-Deterministic Polynomial Modified Per-
ceptron

The results in the previous section can be used to strengthen the results
made by Dunagan and Vempala in [7]. In the non-deterministic case
we are not longer in need for our 2n parallel processes anymore. Now,
taking away the condition about having a deterministic process, we can
speed it up a factor 2n.

In general, one could follow the proof made by Dunagan and Vem-
pala in [7] to prove the behaviour of the non-deterministic algorithm.
The only changes made are the size of R, o and k inside the algorithm.

But we do want to point out a statement made in the article: a
statement that says that the probability of two random unit vectors
have inner product at least 1/y/n is at least 1/8 can be shown by a
standard computation. The statement is true, but we have not found a
standard argument proving this statement. A detailed analysis can be

265

O. Barr

found in [3] showing that the probability is at least (1 — erf(1/v/2)/2 >
1/8 where erf(x) is the errorfunction

2 x
erf(z) = ﬁ/(] e~ dt.

Anyhow, we get the following:

Corollary 1.1 There is a polynomial non-deterministic modified per-
ceptron algorithm that terminates in time O(mn?lognlog(1/p)).

References

1]

2]

3]

[4]

[5]

(6]

7]

N. Alon and A. Naor, Approximating the Cut-Norm
via Grothendieck’s Inequality, submitted. Available at
http://www.math.tau.ac.il/ nogaa/PDFS /publications.html

M. Anthony and J. Shawe-Taylor, Using the Perceptron Algo-
rithm to Find Consistent Hypotheses Combinatorics, Probability
and Computing (1993) 2:pp. 385-387.

O. Barr and O. Wigelius, New FEstimates Correcting an FEarlier
Proof of the Perceptron Algorithm to be Polynomial, ISSN 1403-
9338, LUTFMA-5041-2004.

A. Blum and J. Dunagan, Smoothed Analysis of the Perceptron
Algorithm for Linear Programming, in SODA 02, 2002; 905-914.

A. Blum, A. Frieze, R. Kannan and S. Vempala, A Polynomial-
time Algorithm for Learning Noisy Linear Threshold Functions
Algorithmica, 22(1/2):35-52, 1997.

N. Cristianini and J. Shawe-Taylor, Support Vector Machines,
Cambridge, 2000.

J. Dunagan and S. Vempala, A Polynomial-time Rescaling Algo-
rithm for Solving Linear Programs, Microsoft Research, Redmond.

266

A Deterministic and Polynomial Modified ...

8]

19]

[10]

[11]

[12]

[13]

[14]

[15]

M. Grotschel, L. Lovasz and A. Schrijver, Geometric Algorithms
and Combinatorial Optimization, Springer Verlag, Berlin Heidel-
berg, 1988.

D. G. Luenberger, Linear and Nonlinear Programming, Addison-
Wesley, Reading, Massachusetts, 1984.

M. E. Muller, A Note on a Method for Generating Points Uniformly
on N-Dimensional Spheres Comm. Assoc. Comput. Mach.2, 19-20,
1959.

Y. Nesterov and A. Nemirovskii, Interior-Point Polynomial Algo-
rithms in Convex Programming Studies in Applied Mathematics,
Vol. 13, Philadelphia, 1994.

F. Rosenblatt, Principles of Neurodynamics. Spartan Books, 1962.

N. Z. Shor, Minimization Methods for Non-Differentiable Func-
tions, Springer-Verlag, Berlin, Heidelberg, 1985.

D. Spielman and S. Teng, Smoothed Analysis of Termination of
Linear Programming Algorithms, in Mathematical Programming,
Series B, Vol. 97, 2003

D. Spielman and S. Teng, Smoothed Analysis: Why The Simplex
Algorithm Usually Takes Polynomial Time, in Proc. of the 33rd
ACM Symposium on the Theory of Computing,, 296-305, 2001.

Olof Barr, Received December 9, 2005

Centre for Mathematical Sciences
Lund University

Sweden

E-mail: barr@Qmaths.lth.se

267

