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A note on Computing SAGBI-Gröbner bases in

a Polynomial Ring over a Field

Hans Öfverbeck

Abstract
In the paper [2] Miller has made concrete Sweedler’s theory

for ideal bases in commutative valuation rings (see [5]) to the
case of subalgebras of a polynomial ring over a field, the ideal
bases are called SAGBI-Gröbner bases in this case. Miller proves
a concrete algorithm to construct and verify a SAGBI-Gröbner
basis, given a set of generators for an ideal in the subalgebra.
The purpose of this note is to present an observation which jus-
tifies substantial shrinking of the so called syzygy family of a
pair of polynomials. Fewer elements in the syzygy family means
that fewer syzygy-polynomials need to be checked in the SAGBI-
Gröbner basis construction/verification algorithm, thus decreas-
ing the time needed for computation.

1 Introduction

SAGBI-Gröbner theory is a generalisation of Gröbner theory to subal-
gebras of a polynomial ring. Thus we consider a fixed subalgebra A of
a polynomial ring k[X] = k[x1, . . . , xn] over a field k, and we want to
do Gröbner theory in the subalgebra A.

In Gröbner basis theory a so called S-polynomial of a pair (f, g) of
polynomials is defined as (see the next section for the exact definitions
of the notation):

S(f, g) = L1f − L2g, (1)

where

L1 =
lcm(lp(f), lp(g))

lt(f)
, L2 =

lcm(lp(f), lp(g))
lt(g)

.
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247
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In SAGBI-Gröbner basis theory the analogue of a S-polynomial of a
pair is the syzygy family of a pair (f, g). As the name indicates, the
syzygy family usually consists of more than one element, but all the
elements have the form (1) for some (L1, L2) ∈ A2 such that lt(L1f) =
lt(L2g). The purpose of this note is to prove that when constructing
the syzygy family we need only consider polynomials of the form (1)
where (L1, L2) ∈ A2 are such that lp(g) does not divide lp(L1) and
lp(f) does not divide lp(L2) in Lp(A).

This yields a substantially smaller syzygy family than what is indi-
cated in [2].

2 Notation

Since the purpose of this note is to refine a result in the article [2]
we try to follow the notation there as closely as possible. Let k[X] =
k[x1, . . . , xn] be multivariate polynomial ring over a field k. Suppose
we have a term order on k[X], then for a polynomial p ∈ k[X], lp(p)
denotes the leading X-power product of p, lc(p) the leading coefficient
of p, and lt(p) = lc(p)lp(p) the leading term of p. If S ⊆ k[X], then
Lp(S) denotes {lp(s)|s ∈ S}.

If w = xα1
1 xα2

2 . . . xαn
n is an X power product then the multidegree,

mdeg(w), of w is defined as mdeg(w) = (α1, α2, . . . , αn) ∈ Nn. For a
polynomial f ∈ k[X] we define mdeg(f) = mdeg(lp(f)).

For a vector v = (v1, . . . , vm) ∈ Nm and a (implicitly ordered) set
S = {s1, . . . , sm} ∈ k[X] with m elements we define:

Sv =
m∏

j=1

s
vj

j .

Let A be fixed subalgebra of k[X], then Lp(A) is a multiplicative
monoid. For an ideal I in A, Lp(I) is a monoid-ideal in Lp(A). A
SAGBI-Gröbner basis for an ideal I in A is a subset G ⊆ I such that
Lp(G) generates Lp(I) as a monoid-ideal in Lp(A).

For an ideal J in k[X] an ordinary Gröbner basis is a subset G′ ⊆ J
such that Lp(G′) generates J as a monoid ideal in Lp(k[X]). This
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corresponds to the special case A = k[X] for SAGBI-Gröbner bases,
thus we can say that SAGBI-Gröbner bases are a generalisation of
Gröbner bases. On the other hand SAGBI-Gröbner bases are a special
case of the even more general bases presented in [5] and [4].

Throughout this article we assume that we have a finite SAGBI
basis F = {f1, . . . , fm} for the subalgebra A, i.e. F ⊆ A and Lp(F )
generates Lp(A) as monoid.

When dealing with ideals in the subalgebra A we need an analogue
of ordinary reduction which takes into account the fact that we work
inside a subalgebra, the analogue is called SI-reduction.

Definition 1 (SI-reduction) Let G ⊆ A. A polynomial h ∈ A SI-
reduces via G to h′ ∈ A in one step if there is a nonzero term cXα of
h for which there exists g ∈ G and a ∈ A such that lt(ag) = cXα and
h′ = h− ag. If there is a chain of one-step reductions from h to h′′ via
G, then we say that h SI-reduces to h′′ via G.

3 Shrinking the syzygy family

Consider the intersection, 〈lp(g)〉⋂〈lp(h)〉, of the monoid ideals gener-
ated by lp(g) and lp(h) in Lp(A). The intersection is again a monoid
ideal in Lp(A), which plays a central part in the definition of the syzygy
family:

Definition 2 (Definition 4.1 in [2]) Given g, h ∈ A and a generat-
ing set Tg,h in Lp(A) for 〈lp(g)〉⋂〈lp(h)〉, a syzygy family for g and
h is a set that contains, for each t ∈ Tg,h a polynomial of the form
atg − bth with lt(atg) = lt(bth) = lt(ctt) for some ct ∈ k.

Consider Corollary 4.6 in [2]; there we are told that a syzygy family
for g and h can be constructed in the following way:

Let V be a finite generating set of the monoid of nonnegative integer
solutions v = (v1, v2, . . . , v2m+2) of:

v1mdeg(g)+
m∑

j=1

vj+1mdeg(fj) =
m∑

j=1

vm+1+jmdeg(fj)+ v2m+2mdeg(h)

(2)

249
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where {f1, . . . , fm} = F is our SAGBI basis for A.
A minimal generating set of the nonnegative solutions of a dio-

phantine system such as (2) is sometimes called a Hilbert basis for the
solutions. There exist several algorithms to calculate the Hilbert basis,
e.g. those described in [1] and [3], this allows us to effectively compute
V.

For an element v of V we let vl = (v1, . . . , vm+1) and vr =
(vm+2, . . . , v2m+2), then v is called the parent vector of vl and vr. Let

V ′ = {v ∈ V | v1 = v2m+2 = 1}

and
V ′′ = {u + v |u ∈ V1, v ∈ V2}

where V1 = {u ∈ V |u1 = 1, u2m+2 = 0} and V2 = {v ∈ V | v1 =
0, v2m+2 = 1}, and let

PV = V ′ ∪ V ′′.
Finally let G = {g, f1, . . . , fm} and H = {f1, . . . , fm, h}, (where

f1, . . . , fm are the elements of our SAGBI basis F ) then by Corollary 4.6
in [2] a syzygy family for g and h is formed by all polynomials of the
form

sv = lc(Hvr
) ·Gvl − lc(Gvl

) ·Hvr

where v ∈ PV.
The purpose of this note is to prove that in the definition of PV

we can remove the second set from the union and let PV = V ′ and the
only price we have to pay for this reduction is to add 0 to the syzygy
family.

Theorem 1 (Refinement of Corollary 4.6 in [2])
Let G = {g, f1, . . . , fm} and H = {f1, . . . , fm, h}, let V be a finite
generating set for the monoid of nonnegative solutions of the system of
equations (2) and let PV = V ′. Then the set S consisting of 0 and all
polynomials of the form sv = lc(Hvr

) · Gvl − lc(Gvl
) · Hvr

, where the
parent vector v of vl and vr lies in V ′, is a syzygy family for g and h.
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Proof. According to Definition 2 a syzygy family for g and h is only
required to contain a polynomial atg − bth for each t ∈ Tg,h, thus if
we can replace the polynomial atg − bth with a simpler one: a′tg − b′th
still having lt(a′tg) = lt(b′th) = ctt for some ct ∈ k, then we still have
a syzygy family for g and h. In view of Corollary 4.6 from [2] we
need only prove that for each power product t appearing as the leading
power product of a polynomial lc(Hvr

) ·Gvl
, where v ∈ V ′′, there exist

at, bt ∈ A, ct ∈ k\{0} such that lt(atg) = lt(bth) = ctt and atg−bth = 0.
Let v = u+w where u ∈ V1 and w ∈ V2 and let t = lp(Gvl

) = lp(Hvr
).

Since u and w are solutions of (2) we know that:

lp(Gul
) = lp(Hur

),

lp(Gwl
) = lp(Hwr

). (3)

Since u ∈ V1 and w ∈ V2 their left and right halves have the form
ul = (1, u2, . . . , um+1) and wr = (wm+2, . . . , w2m+1, 1), thus if we let
u′ = (u2, . . . , um+1) and w′ = (wm+2, . . . , w2m+1) we get:

Gul
= gF u′ ,

Hwr
= Fw′h.

(4)

Let at = F u′Fw′h and bt = F u′Fw′g. Then at, bt ∈ A and:

lt(atg) = lt(bth) = lt(F u′Fw′gh) = lt(gF u′)lt(Fw′h) = lt(Gul
)lt(Hwr

)

where the last equality follows from (4). Since lp(Hwr
) = lp(Gwl

)
according to (3), we can deduce that lt(Hwr

) = ctlt(Gwl
) for some

nonzero constant ct ∈ k. Thus

lt(Gul
)lt(Hwr

) = ctlt(Gul
)lt(Gwl

) = ctlt(Gul+wl
) = ctlt(Gvl

) = c′tt

where c′t ∈ k \ {0}, the next last equality is due to v = u + w and the
last equality follows from our definition t = lp(Gvl

). Hence atg − bth
is an element of the syzygy family corresponding to t. Finally we note
that

atg − bth = F u′Fw′hg − F u′Fw′gh = 0.
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¤
The practical use of the syzygy family is to check if a given set is a

SAGBI-Gröbner basis, much like S-polynomials are used to check if a
set is a Gröbner basis. More precisely a set G ⊆ A is a SAGBI-Gröbner
basis if and only if all polynomials in all syzygy families of pairs in G
SI-reduce to zero via G, cf. Theorem 5.1 and Algorithm 3 in [2]. A
zero SI-reduced remainder indicates that no violation of the SAGBI-
Gröbner condition is found for this particular syzygy-polynomial, thus
we can remove the extra zero indicated in Corollary 1 from the syzygy
family without making the syzygy family less useful. The refinement
of Algorithm 2 in [2] becomes:

Algorithm 1
Input: g, h ∈ A, a finite SAGBI basis F for A
Output: A syzygy family SyzFam(g, h) for g and h
Initialisation: SyzFam(g, h) := ∅, PV := ∅
Compute a generating set V for the solutions of sys-
tem (2).
PV := {v ∈ V : c0 = d0 = 1}
For Each v ∈ PV:

sv := lc(Hvr
) ·Gvl − lc(Gvl

) ·Hvr

SyzFam(g, h) :=
⋃

v∈PV{sv}
An implementation of this algorithm is included in the author’s

Maple package for SAGBI and SAGBI-Gröbner computations, see [6].
For calculating the Hilbert bases the Maple package uses Dmitrii V.
Pasechnik’s implementation of the algorithm described in [3].

As an application of Algorithm 1 we consider example 4.7 and 5.2
in [2].

Example 1 Let A = Q[x2, xy] ⊆ Q[x, y] and use the degree lexico-
graphical order with x > y. The set F = {x2, xy} is a SAGBI basis for
A. Let g = x3y + x2 and h = x4 + x2y2 in A. A Hilbert basis for the
set of solutions of the equation (2) is:

v(1) = (0, 0, 1, 0, 1, 0), v(2) = (0, 1, 0, 1, 0, 0), v(3) = (0, 2, 0, 0, 0, 1),
v(4) = (1, 0, 0, 1, 1, 0), v(5) = (1, 1, 0, 0, 1, 1), v(6) = (2, 0, 0, 0, 2, 1).
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Thus PV = {v(5)}, so by Algorithm 1 a syzygy family for (g, h) is
{G(1,1,0) −H(0,1,1)} = {−x3y3 + x4}.

In the original version of this example (example 4.7 in [2]) the
syzygy family was {−x5y3 +x6,−x3y3 +x4} instead. It should however
be noted (as proved in example 5.2, [2]) that the extra syzygy polynomial
−x5y3 + x6 SI-reduces to zero over {g, h}. Thus this extra polynomial
does not affect the final result of the SAGBI-Gröbner basis computa-
tions. That the extra syzygy polynomial does not effect the further
computations is a consequence of Theorem 1.
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