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A note on Computing SAGBI-Grobner bases in
a Polynomial Ring over a Field

Hans Ofverbeck

Abstract
In the paper [2] Miller has made concrete Sweedler’s theory
for ideal bases in commutative valuation rings (see [5]) to the
case of subalgebras of a polynomial ring over a field, the ideal
bases are called SAGBI-Grobner bases in this case. Miller proves
a concrete algorithm to construct and verify a SAGBI-Grobner
basis, given a set of generators for an ideal in the subalgebra.
The purpose of this note is to present an observation which jus-
tifies substantial shrinking of the so called syzygy family of a
pair of polynomials. Fewer elements in the syzygy family means
that fewer syzygy-polynomials need to be checked in the SAGBI-
Grobner basis construction/verification algorithm, thus decreas-

ing the time needed for computation.

1 Introduction

SAGBI-Grobner theory is a generalisation of Grébner theory to subal-
gebras of a polynomial ring. Thus we consider a fixed subalgebra A of
a polynomial ring k[X] = k[z1,...,x,) over a field k, and we want to
do Grobner theory in the subalgebra A.

In Grobner basis theory a so called S-polynomial of a pair (f, g) of
polynomials is defined as (see the next section for the exact definitions
of the notation):

S(f.0) = Lnf — Lng, @

where
I lem(Ip(f),1p(g))
b ()
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I lem(Ip(f),1p(g))
2T 1t(g)
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In SAGBI-Grobner basis theory the analogue of a S-polynomial of a
pair is the syzygy family of a pair (f,g). As the name indicates, the
syzygy family usually consists of more than one element, but all the
elements have the form (1) for some (L1, Ly) € A? such that 1t(L; f) =
1t(L2g). The purpose of this note is to prove that when constructing
the syzygy family we need only consider polynomials of the form (1)
where (L1, Ly) € A? are such that Ip(g) does not divide Ip(L;) and
Ip(f) does not divide Ip(L2) in Lp(A).

This yields a substantially smaller syzygy family than what is indi-
cated in [2].

2 Notation

Since the purpose of this note is to refine a result in the article [2]
we try to follow the notation there as closely as possible. Let k[X] =
klxi,...,zy] be multivariate polynomial ring over a field k. Suppose
we have a term order on k[X], then for a polynomial p € k[X], Ip(p)
denotes the leading X-power product of p, lc(p) the leading coefficient
of p, and 1t(p) = le(p)lp(p) the leading term of p. If S C k[X], then
Lp(S) denotes {Ip(s)|s € S}.

If w=2a{"25? ... 20" is an X power product then the multidegree,
mdeg(w), of w is defined as mdeg(w) = (a1, ag,...,a,) € N". For a
polynomial f € k[X] we define mdeg(f) = mdeg(Ip(f)).

For a vector v = (v1,...,vy) € N™ and a (implicitly ordered) set
S ={s1,...,8m} € k[X] with m elements we define:
m
v,
SY = H s;’
j=1

Let A be fixed subalgebra of k[X], then Lp(A) is a multiplicative
monoid. For an ideal I in A, Lp(I) is a monoid-ideal in Lp(4). A
SAGBI-Grébner basis for an ideal I in A is a subset G C I such that
Lp(G) generates Lp(I) as a monoid-ideal in Lp(A).

For an ideal J in k[X] an ordinary Grobner basis is a subset G’ C J
such that Lp(G’) generates J as a monoid ideal in Lp(k[X]). This
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corresponds to the special case A = k[X] for SAGBI-Grobner bases,
thus we can say that SAGBI-Grobner bases are a generalisation of
Grobner bases. On the other hand SAGBI-Grébner bases are a special
case of the even more general bases presented in [5] and [4].

Throughout this article we assume that we have a finite SAGBI
basis F' = {f1,..., fm} for the subalgebra A, i.e. FF C A and Lp(F)
generates Lp(A) as monoid.

When dealing with ideals in the subalgebra A we need an analogue
of ordinary reduction which takes into account the fact that we work
inside a subalgebra, the analogue is called SI-reduction.

Definition 1 (SI-reduction) Let G C A. A polynomial h € A SI-
reduces via G to h' € A in one step if there is a nonzero term cX® of
h for which there exists g € G and a € A such that 1t(ag) = cX“ and
W = h—ag. If there is a chain of one-step reductions from h to h'" via
G, then we say that h Sl-reduces to h” via G.

3 Shrinking the syzygy family

Consider the intersection, (Ip(g)) ({Ip(h)), of the monoid ideals gener-
ated by Ip(g) and Ip(h) in Lp(A). The intersection is again a monoid
ideal in Lp(A), which plays a central part in the definition of the syzygy
family:

Definition 2 (Definition 4.1 in [2]) Given g,h € A and a generat-

ing set Ty, in Lp(A) for (Ip(g)) N(Ip(h)), a syzygy family for g and
h is a set that contains, for each t € T, a polynomial of the form
arg — beh with 1t(arg) = 1t(bsh) = lt(cit) for some ¢, € k.

Consider Corollary 4.6 in [2]; there we are told that a syzygy family
for g and h can be constructed in the following way:
Let V be a finite generating set of the monoid of nonnegative integer

solutions v = (v1,vg,. .., Vomy2) of:
vlmdeg(g) + Z ijmdeg(fj) = Z vm+1+jmdeg(fj) + v2m+2mdeg(h)
j=1 j=1

(2)
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where {f1,..., fm} = F is our SAGBI basis for A.

A minimal generating set of the nonnegative solutions of a dio-
phantine system such as (2) is sometimes called a Hilbert basis for the
solutions. There exist several algorithms to calculate the Hilbert basis,
e.g. those described in [1] and [3], this allows us to effectively compute

V.
For an element v of ¥V we let v! = (vy,...,vpm41) and v" =

(Um+2, - - - s Vam+2), then v is called the parent vector of vl and v". Let
Vi={veV|v =voypio =1}

and
V'={u+v|ueV,veW}

where V) = {u € V]u; = L,ugmyo = 0} and Vo = {v € V|v; =
0, vam+2 = 1}, and let
PY =V uV”.

Finally let G = {g, f1,...,fm} and H = {f1,..., fm,h}, (where
fi,.-., fm are the elements of our SAGBI basis F') then by Corollary 4.6
in [2] a syzygy family for g and h is formed by all polynomials of the
form

sp =1e(H") - G" —1e(G”) - HY

where v € PV.

The purpose of this note is to prove that in the definition of PV
we can remove the second set from the union and let PV =V’ and the
only price we have to pay for this reduction is to add 0 to the syzygy
family.

Theorem 1 (Refinement of Corollary 4.6 in [2])

Let G = {g, f1,..., fm} and H = {f1,..., fm,h}, let V be a finite
generating set for the monoid of nonnegative solutions of the system of
equations (2) and let PV =V'. Then the set S consisting of 0 and all
polynomials of the form s, = lc(H") - GY — lc(G”l) - H"", where the
parent vector v of v' and v" lies in V', is a syzygy family for g and h.

250



A note on Computing SAGBI-Grébner bases in . . .

Proof. According to Definition 2 a syzygy family for g and h is only
required to contain a polynomial a;g — bsh for each t € T, thus if
we can replace the polynomial a;g — bsh with a simpler one: a,g — bjh
still having 1t(ajg) = 1t(bjh) = ¢t for some ¢; € k, then we still have
a syzygy family for g and h. In view of Corollary 4.6 from [2] we
need only prove that for each power product ¢ appearing as the leading
power product of a polynomial le(H"") - G*', where v € V", there exist
ag, by € A, ¢; € k\{0} such that 1t(a;g) = lt(bh) = ¢;t and ayg—bih = 0.
Let v = u+w where u € V; and w € V> and let ¢ = lp(G”l) =Ip(H"").
Since u and w are solutions of (2) we know that:

Ip(G*) = Ip(H"),

l s

Ip(G*) = Ip(H"). (3)
Since u € V; and w € Vs their left and right halves have the form
ul = (1,ug, ..., Uns1) and W™ = (Wmi2, ..., Wams1,1), thus if we let
W = (ug, ..., Unpy1) and W' = (Wyt2, ..., Wopmt1) We get:
Gul — Fu”
w” _g w’ (4)
HY = F%Yh,

Let a; = F* F¥' I and b, = F“/Fw/g. Then a¢, b € A and:
It(arg) = 16(beh) = W(FY F™ gh) = 1t(gF* 6(F h) = 1t(G* )t (HY")

where the last equality follows from (4). Since Ip(HY") = lp(Gwl)
wl

according to (3), we can deduce that It(H"") = ¢]lt(G") for some
nonzero constant ¢; € k. Thus

(G E(HY") = et (G )H(G™) = et (GY ") = ¢t (G') = it

where ¢, € k\ {0}, the next last equality is due to v = u + w and the
last equality follows from our definition ¢ = lp(G”l). Hence ayzg — bih
is an element of the syzygy family corresponding to t. Finally we note
that

arg — bth = F¥F¥ hg — F* F* gh = 0.
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O
The practical use of the syzygy family is to check if a given set is a
SAGBI-Grobner basis, much like S-polynomials are used to check if a
set is a Grobner basis. More precisely a set G C A is a SAGBI-Groébner
basis if and only if all polynomials in all syzygy families of pairs in G
SI-reduce to zero via G, cf. Theorem 5.1 and Algorithm 3 in [2]. A
zero Sl-reduced remainder indicates that no violation of the SAGBI-
Grobner condition is found for this particular syzygy-polynomial, thus
we can remove the extra zero indicated in Corollary 1 from the syzygy
family without making the syzygy family less useful. The refinement
of Algorithm 2 in [2] becomes:

Algorithm 1
Input: g,h € A, a finite SAGBI basis F for A
Output: A syzygy family SyzFam(g, h) for g and h
Initialisation: SyzFam(g,h) :==0, PV :=10
Compute a generating set V for the solutions of sys-
tem (2).
PVZZ{UEV:Cozd0:1}
For Fach v € PV:

sy i=lc(HY) - G¥' —1¢(GY") - HY
SyzFam(g, h) := U, epy{sv}

An implementation of this algorithm is included in the author’s
Maple package for SAGBI and SAGBI-Grobner computations, see [6].
For calculating the Hilbert bases the Maple package uses Dmitrii V.
Pasechnik’s implementation of the algorithm described in [3].

As an application of Algorithm 1 we consider example 4.7 and 5.2

in [2].
Example 1 Let A = Q[2?,zy] C Qz,y] and use the degree lexico-
graphical order with x > y. The set F = {z% xy} is a SAGBI basis for
A. Let g = 23y + 2% and h = 2% + 2%y? in A. A Hilbert basis for the
set of solutions of the equation (2) is:

v =(0,0,1,0,1,0), »® =(0,1,0,1,0,0), v =(0,2,0,0,0,1),
v =(1,0,0,1,1,0), »® =(1,1,0,0,1,1), »© =(2,0,0,0,2,1).

T
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Thus PV = {v®}, so by Algorithm 1 a syzygy family for (g,h) is
{G(Ll,()) _ H(O’l’l)} — {_$3y3 +$4}.

In the original version of this example (example 4.7 in [2]) the
syzygy family was {—x2y> + 28, —23y3 + 24} instead. It should however
be noted (as proved in example 5.2, [2]) that the extra syzygy polynomial
—a5y3 + 25 SI-reduces to zero over {g,h}. Thus this extra polynomial
does not affect the final result of the SAGBI-Grébner basis computa-
tions. That the extra syzygy polynomial does not effect the further
computations is a consequence of Theorem 1.
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