
Computer Science Journal of Moldova, vol.13, no.2(38), 2005

Interfaces to symbolic computation systems:

reconsidering experience of Bergman

Svetlana Cojocaru Ludmila Malahova
Alexandru Colesnicov

Abstract

The article is based on experience of implementation of com-
puter algebra system Bergman and on analysis of other symbolic
computation systems. It is noted that many symbolic computa-
tion systems meet similar interface problems. Necessity of strict
separation of calculation engine and interface shell, functions
of these components, and requirements to them are motivated.
The described approach will be used at future development of
Bergman.

1 Introduction

Bergman [8] is a computer algebra system for symbolic calculations
in non-commutative and commutative algebra. It calculates Gröbner
basis and related information. Bergman is written in Lisp, and the
users were to be communicate with the system through underlying
Lisp console. This was found unsuitable for most users, and a graphical
shell was developed in Java. The system and its interface shell were
described elsewhere [1, 4–7].

We present below some inferences from our experience with Bergman
and its shell. The article is organized as follows:

• General problems of interfaces to symbolic calculation systems
are discussed in Sec. 2. We refer to several existing systems to
illustrate our observations.

c©2005 by S. Cojocaru, L. Malahova, and A. Colesnicov

232



Interfaces to symbolic computation systems . . .

• Some aspects of Bergman shell implementation and used tech-
niques are discussed in Sec. 3. We permitted here some technical
details.

• We try to describe and motivate desired features of interface to
a symbolic calculation system in Sec. 4.

2 General problem of interfaces to symbolic
calculation systems

We suppose the existence of a program executing symbolic computa-
tions (a symbolic computation engine, or, simply, an engine). Symbolic
computations are widely used in many areas, including pure and ap-
plied mathematics, theoretical physics, etc. Multitude of solved prob-
lems makes investigators to create specialized engines for symbolic com-
putations in the cases when use of general purpose systems is inefficient,
or the necessary functionality is not implemented even in commercial
systems. As a rule, the creator of such system has not enough time,
resources, and qualification to develop the interface for it. It is not
unusual that rich mathematical ideas implemented in an engine are en-
veloped in poorly designed interface. The absence of the user-friendly
standard interface do not permit the extensive usage of such system be-
cause of requiring special knowledge and skills, e.g., in programming, to
use it. Another problem of symbolic computation engines is multitude
of data formats and the implied difficulty in communication between
different engines.

We will divide all functionality of a symbolic computation system
(SCS) in two parts: the engine features (the computations that it can
execute) and the interface features. It is obvious that the latter are
external relative to the former and are almost independent of them.

Development of interfaces for SCS was and remains an object of
long-time investigations [2, 3].

The problem of SCS interface has the following aspects:
1. Interaction with text editors;
2. Graphics;

233



S. Cojocaru, L. Malahova, A. Colesnicov

3. Interaction with numerical calculation systems;
4. Interaction between different symbolic computation systems (in-

cluding interaction through computer networks);
5. Testing support;
6. Interaction with end users.
Investigations show that SCS interface development should solve

the following problems:
• 2-D presentation of mathematical expressions,
• Editing of mathematical expressions that includes sub-expression

manipulation,
• Windows that model sheets of paper and combine texts, formulas,

and graphics,
• Processing and presentation of long expressions,
• Simultaneous use of several SCS, which implies the necessity to

solve problems of data conversion, configuration management,
and communication protocols,

• Satisfaction of special needs for teaching systems, (in particular,
the possibility to show intermediate results and explications of
processes applied to obtain them; elaboration of electronic man-
uals, and especially interactive ones),

• Interface extensibility providing additions of new menus, new
fragments of on-line documentation, etc.,

• Guiding of the user during the whole period of his/her problem
solving,

• The system should be self-explanatory; its operational mode
should be understandable directly from the experience of inter-
action with the system,

• Control over problem formulation correctness and over informa-
tion necessary to solve it.

The primary scope of an interface is creation of a comfortable en-
vironment for a mathematician or another specialist that uses mathe-
matical apparatus. It would be preferable for these users to input data
and to obtain mathematical results in their natural 2-dimensional form.
The linear form of input can be used also as the input is faster but it
imposes additional conventions to enter powers, indices, fractions, etc.,

234



Interfaces to symbolic computation systems . . .

or uses additional characters. It is necessary also to provide possibili-
ties to edit expressions, integrate them with a usual text, and obtain
results in a form suitable for publication of an article (e.g., LATEX) or
in Internet (e.g., MathML).

The syntactic check of entered mathematical expressions and the
spelling check of accompanying text would be also desired features.

The following three categories of SCS can be found analyzing SCS
interfaces:

1. Systems or packages that do not have a special interface,
2. Interfaces based on a (specialized) programming language,
3. Graphical interfaces.

This division is not strict: e.g., most systems with graphical interface
possess their own programming language also.

There are many systems that have command line interface only,
e.g., Singular [22], Bergman, and Yacas [24].

Absence of graphical interfaces is compensated partially by inte-
gration in an existing editor like Emacs or its derivatives (e.g., such
are Macaulay [13] and Singular), in Scientific Workplace [21], Scientific
Word, or Scientific Notebook (e.g., Maple [14] and MuPAD [17]). Mu-
PAD has the interface to Java but their approach is opposite to ours:
MuPAD itself is regarding as the shell, and Java programs are treated
as applets or plug-ins expanding MuPAD itself. Services provided from
these editors may be not too sophisticated but create much more com-
fortable environment than operating in ASCII from the command line.

We can mention also specialized editors developed to serve as inter-
faces to SCS. One such editor is TEXmacs by Joris van der Hoeven [23].
It combines elements of TeX and Emacs and was successfully applied
for Macaulay 2, Reduce [20], MuPAD, Maxima [16]. Another front-end
product with graphical interface is FrontMan [11]. It offers a small but
useful set of possibilities (transparent SSH sessions, syntactic coloring
of input information and results, export of sessions in HTML format,
integrated document visualization through a Web browser, multiple si-
multaneous sessions). An important fact is that these editors permit
creation of users own style. It is a kind of personalization created by a
user.

235



S. Cojocaru, L. Malahova, A. Colesnicov

Most of features mentioned above can be found in systems with
graphical interfaces. Examples of such systems are Derive [10], Math-
ematica [15], etc. In general, most of these systems provide:

• Visualization of mathematical formulae in 2-dimensional format,
• Sub-expression manipulation,
• Separate windows for data input and results output,
• Separate windows for graphical operations,
• Export of results in a printable format (RTF, PDF, LATEX, etc.)
• Comfortable navigation with on-line help,
• Integration with an existing or specially developed editor that

facilitates editing of mathematical texts,
• Demonstration of intermediate steps to explain processes of ex-

pression transformation.
In addition, so-called “notebooks” support operations over text,

mathematical formulae, and graphics. Most of them can be adapted
to user’s preferences individualizing menus and toolbars, and assigning
hot keys to actions.

Communication between different systems is to be supported by use
of specially developed unified formats for mathematical formulae, like
OpenMath [18] or OpenXM [19].

3 Inferences from development of Bergman and
its shell

Here we analyze and motivate several solutions taken by us in Bergman
implementations. We selected only less trivial aspects; big part of
design (e.g., main menu structure, toolbar, sliders, etc.) is usual for
graphical shells of any kind.

3.1 Implementation language

Bergman was designed under commercial PSL (Portable Standard Lisp).
It works also under Reduce [20] that is in its turn based on PSL. For
better dissemination of Bergman, we ported it to free CLISP [9] imple-
mentation of ANSI Common Lisp. We needed therefore for Bergman

236



Interfaces to symbolic computation systems . . .

shell a programming system that was free and as portable as CLISP.
We selected Java [12] by obvious reasons. We developed the Bergman

shell in Intel PC under Linux and Windows, and in Sun Sparc under
Solaris, and tested CLISP port of Bergman and the shell in all these
machines.

The selection of Java should be classified as very successful. We
found only several small problems in porting the shell:

1. Under Windows, the execution thread with Bergman do not ter-
minates simultaneously with calculations as under Unix. It seems
to happen due to implementation of program run in terminal win-
dow: at first, the terminal itself is started in the thread, and then
CLISP Bergman is started under the terminal. The termination
of Bergman does not mean termination of terminal. We catch
the terminal output and stop the process after the corresponding
message. This solution seems to be not very perfect, and we need
some additional tuning of running Bergman from the shell under
Windows.

2. The screen font sizes and proportions are different in all three
systems: Linux, Solaris, and Windows. The design of screen
forms is to be made taking this into account. We were to redesign
several forms as we tested the shell under Solaris at the first
time. The problem is solved by careful form design and obligatory
testing under all available systems.

3.2 Adaptable user interface: sessions and environments

A session is a set of parameters that fully defines the problem to be
solved. Session is implemented as a directory where all data are saved,
Bergman input files are generated, and Bergman output files are pro-
duced. Sessions serve to return to previous Bergman calculations, mod-
ify them, and experiment with them.

Informally, sessions give to a mathematician the possibility to use
the previous experience of Bergman’s users (own or others) and to save
the current setup for the future calculations.

With sessions, it is possible:

237



S. Cojocaru, L. Malahova, A. Colesnicov

• select a session and load its data to panels, i.e., switch to the
saved problem;

• create a new session;
• save data in the selected session;
• save data in a different session (save as. . . );
• delete a session.
One can see also the session directory, comment, and statistics of

its usage.
The session mechanism is usual for dialog shells and IDEs (Inte-

grated Desktop Environments). For Bergman, we found it necessary
to generalize the notion of session. We called the new feature “envi-
ronments”.

An environment is a partial set of data common for several ses-
sions. It corresponds to the group of mathematical problems the user
investigates during different sessions. E.g., after the installation the
environments directory contains an environment called “commutative”
that fixes a single parameter, the commutativity.

All new sessions are created using the current default environment.
Inversely, when a new environment is created, it is based on the pa-
rameters of the current session. To save a session as an environment,
the user selects parameters that are to be fixed, and drops other pa-
rameters.

3.3 Dialog data input

Main data for Gröbner basis calculations are list of variables and list
of polynomials. They are entered in usual text areas. Other data may
be represented as switches (flags) and selections. There are approx. 30
input fields the user should set.

It was a serious problem to design these fields in comfortable and
reviewable manner. The first idea was to enter the session parameters
step by step (in wizard mode) but it was rejected. One of reasons for
it was the absence of suitable wizard implementation in Java, but the
main reason was that such mode is quite tedious. Next, we tried to
position input fields in five tabs but this was badly reviewable.

238



Interfaces to symbolic computation systems . . .

The current solution permitted us to concentrate all information
in a relatively small panel. We use drop-down menus and labels that
show the current selection. The drop-down menu is activated when the
corresponding label is clicked. Let us revise an example to make the
situation more clear.

There is a possibility to select the field for polynomial coefficients.
The field characteristic can be 0, 2, or any odd prime number. In
characteristic 0, we use integers instead of rational numbers by reducing
all coefficients to a common denominator. The drop-down menu for
coefficient field contains the following items:

• Machine integers (16-bit)
• Machine integers (32-bit)
• Machine integers (64-bit)
• Lisp integers (arbitrary precision)
• Characteristic 2
• Odd prime characteristic
Suppose the user selects odd prime characteristic. Then an addi-

tional small dialog window appears and the user is asked to enter an
odd prime. The entered number is checked. Then the label shows:
“Odd prime characteristic = p”, where p is the entered odd prime.
Here we do not need the additional input field on the form for the odd
prime number, and all information is always visible.

We use menus and not combo boxes because of pure technical rea-
son. We can assign a program action to each menu item that is not the
case with combo boxes.Using actions, we can treat mutually dependent
parameters in a natural manner.

The equivalent set of radio buttons plus the input field (as in our
previous implementation) occupies, obviously, the bigger form surface.

3.4 Expanded consoles

When we start a calculation under the shell, Bergman run in a console
window we programmed for the case. Except of this, we have a possi-
bility to start a console Bergman session. We found that the console
features should be expanded. E.g., the calculation console has addi-

239



S. Cojocaru, L. Malahova, A. Colesnicov

tional buttons “Stop” and “Continue” and its input and output are
caught and come from/to files, but the session console has the feature
of keyboard input imitation from an arbitrary file selected by the user.

3.5 Internal Bergman hooks

We inserted into Lisp coded Bergman modules so-called “hooks” where
we call external programs supplied by the shell. “Stop” button can not
stop calculations in an arbitrary place; the process continues up to
some suitable point where the hook is inserted. The hook checks if
the stop button was pressed, and stops calculation, with the possibility
to continue it from the same point. There are many possible uses of
such hooks, e.g., progress indicator that moves forward in some point
of calculation.

4 Conclusion: desired features of interface to
symbolic calculation system

We can conclude from all aforementioned that SCS interfaces have a
lot of features and functions in common.

Discussion in Sec. 2 and 3 shows that all discussed problems can
be reviewed as general problems of graphical shells to SCSs. We can
look at Bergman as at the calculation engine which is called from
the dialog shell. Inversely, we can look from the shell side and treat
Bergman as the calculation plug-in for the shell.

The separation of calculation engine and interface shell means that
a system can be developed for semi-automatic generation of interface
shell for a SCS. Such system should contain ready made adaptable
interface modules in Java and an interface generator.

In implementation of such system, the following objectives must be
reached:

• To implement selected features of SCS interface at the general-
ized level permitting automated production of interface, taking

240



Interfaces to symbolic computation systems . . .

into account specifics of this area. To implement cross-process
interaction with a symbolic computation engine.

• To elaborate, inside the interface, tools for smart user personal-
ization and intellectual adaptation to his/her preferences.

• To elaborate an interface generator that will produce interface
for a target symbolic computation engine.

• To elaborate programs and filters for interaction with other ex-
isting SCS.

• To elaborate and/or adapt and integrate tools for auxiliary de-
velopment tasks, e.g., help and documentation tools, extensibility
support, testing support, etc.

• To elaborate and/or adapt and integrate tools for visual presen-
tation of data and results.

• To produce, as the result, Java packages to be used in interface
generation, and Java application(s) for interface development.

Some preliminary research is necessary:

• Classification and technological description of features and func-
tions specific to interfaces for SCS;

• Clarification and classification of cross-process interactions be-
tween interface modules and symbolic computation engines;

• Generalization of selected features to the level permitting auto-
mated interface generation;

• Description of adaptive behavior of interface elements, and tech-
niques to implement it;

• As the result, the necessary scientific basis will be created to
automated development of interfaces for SCS.

241



S. Cojocaru, L. Malahova, A. Colesnicov

Interaction between different systems can be provided also.
SCS is a very useful tool that simplifies formula manipulation and

handling of mathematical models for engineering applications, for math-
ematical research, for education and for many other areas. Our ap-
proach can be applied in all these cases and these areas will gain time
and efforts for interface development. Universality of the proposed so-
lution will be guaranteed if we will use Java as the technology for its
implementation. The developed packages and applications will per-
mit investigators in different areas to concentrate efforts on symbolic
computation engines and to use ready-made interface solutions.

References

[1] A. Colesnicov. Implementation and usage of the Bergman package
shell. / Computer Science Journal of Moldova, vol. 4, nr. 2 (11),
1996, pp. 260–276.

[2] N. Kajler, N. Soiffer. A Survey of User Interfaces for Computer
Algebra Systems. / Journal of Symbolic Computation, vol. 25,
issue 2, February 1998, pp. 127-159.

[3] N. Kajler (ed.). Computer-Human Interaction in Symbolic Com-
putation. - Springer-Verlag: Wien, 1998. - ISBN 3–211–82843–5.

[4] J. Backelin, S. Cojocaru, V. Ufnarovski. BERGMAN. In: Com-
puter Algebra Handbook. J. Grabmeier, E. Kaltofen, V. Weispfen-
ning (eds.). – Springer-Verlag: 2003, pp. 349–352.

[5] J. Backelin, S. Cojocaru, V. Ufnarovski. The Computer Alge-
bra Project Bergman: Current State. In: “Commutative alge-
bra, Singularities and Computer Algebra”, eds. J. Herzog and
V. Vuletescu, 2003, pp. 75–101. – Series II. Mathematics, Physics
and Chemistry. Vol. 115, Kluwer Academic Publishers.

[6] J. Backelin, S. Cojocaru, A. Colesnicov, L. Malahova, V. Uf-
narovski. Problems in interaction with the Computer Algebra

242



Interfaces to symbolic computation systems . . .

System Bergman. In: “Computational Commutative and Non-
Commutative Algebraic Geometry”, vol. 196, NATO Science Se-
ries: Computer & Systems Sciences. S. Cojocaru et al. (eds.). –
IOS Press, 2005, pp. 185–198.

[7] J. Backelin, S. Cojocaru, V. Ufnarovski. Mathematical Computa-
tions Using Bergman. - Lund University, Centre for Mathematical
Science, ISBN 91–631–7203–8, 2005, 206 p.

Web references

[8] Bergman: http://www.math.su.se/bergman/

[9] CLISP: http://clisp.sourceforge.net/

[10] Derive: http://www.chartwellyorke.com/derive.html

[11] FrontMan:
http://rpmfind.net/linux/RPM/sourceforge/r/rp/rpmsforsuse/

frontman-0.3.4-1.i386.html
http://www.eleceng.ohio-state.edu/ ravi/kde/frontman.html

[12] Java: http://java.sun.com/

[13] Macaulay: http://www.math.uiuc.edu/Macaulay2/

[14] Maple: http://www.maplesoft.com/

[15] Mathematica:
http://www.wolfram.com/products/mathematica/index.html

[16] Maxima: http://maxima.sourceforge.net/

[17] MuPAD: http://www.mupad.de/

[18] OpenMath: http://www.openmath.org/

[19] OpenXM: http://www.math.kobe-u.ac.jp/OpenXM/

[20] Reduce: http://www.reduce-algebra.com/

243



S. Cojocaru, L. Malahova, A. Colesnicov

[21] Scientific Workplace, Scientific Word, Scientific Notebook:
http://www.mackichan.com/

[22] Singular: http://www.singular.uni-kl.de/

[23] TEXmacs:
http://www.math.upsud.fr/ anh/TeXmacs/TeXmacs.html

[24] Yacas: http://yacas.sourceforge.net/

S. Cojocaru, L. Malahova, A. Colesnicov, Received October 3, 2005

Institute of Mathematics and Computer Science,
5 Academiei str.
Chişinău, MD−2028, Moldova.
E–mail: sveta@math.md, mal@math.md, kae@math.md

244


